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Abstract

We have developed a new tool, called fastDNAml, for
constructing phylogenetic trees from DNA sequences. The
program can be run on a wide variety of computers ranging
Jrom Unix workstations to massively parallel systems, and is
available from the Ribosomal Database Project (RDP) by
anonymous FTP. Our program uses a maximum likelihood
approach and is based on version 3.3 of Felsenstein’s dnami
program. Several enhancements, including algorithmic changes,
significantly improve performance and reduce memory usage,
making it feasible to construct even very large trees. Trees
containing 40—100 taxa have been easily generated, and
phylogenetic estimates are possible even when hundreds of
sequences exist. We are currently using the tool to construct
a phylogenetic tree based on 473 small subunit rRNA sequences
Jfrom prokaryotes.

Introduction

Tools for the construction of phylogenetic trees play a central
role in evolutionary analysis. In particular, methods for inferring
relationships from molecular sequence data are especially
valuable, given the enormous increases in DNA sequence data.
For many groups of organisms, the molecular fossil record
provides the only clear insights we have into their origins and
histories (e.g. Woese, 1987; Sogin et al., 1989). In addition,
the relationships between the various genes in contemporary
organisms reflect the processes by which today’s complex
genomes have arisen from a simpler ancestral genome by
duplications, rearrangements and sequence changes that have
given rise to new functions.

A number of distinct approaches to phylogenetic inference
exist, and a substantial volume of literature comparing their
relative merits has developed (e.g. Nei, 1987; Jin and Nei,
1990; Li and Grauer, 1991; Swofford and Olsen, 1991).
Approaches based on maximum likelihood (Cavalli-Sforza and
Edwards, 1967; Felsenstein, 1973a,b, 1982, 1989; Thompson,
1975; Saitou, 1990) are based on concrete models of the
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evolutionary process and are well motivated statistically, but
their use has been hindered by the computational costs involved.
Until recently, such costs have limited the use of maximum
likelihood techniques to trees of under ~20 taxa.

One of the primary goals of the Ribosomal Database Project
(Olsen ez al., 1992) is to produce and distribute a phylogenetic
tree based on its alignment of ribosomal RNA (rRNA)
sequences. In particular, the initial alignment of small subunit
rRNA sequences from prokaryotes included sequences from 473
taxa, and we wished to produce a high-quality phylogenetic tree
with lengths on the branches. To achieve this objective using
a maximum likelihood criterion, we developed fastDNAml,
which we are now making available. This work builds directly
upon previous work: fastDNAml is an enhancement of version
3.3 of the dnaml program distributed by Felsenstein as part of
the PHYLIP package (Felsenstein, 1989, 1990). We have used
fastDNAml to develop an initial version of the phylogenetic
tree of prokaryotic microorganisms based on the rRNA
alignment; we will present that tree in detail elsewhere. In this
paper, we discuss the enhancements we have introduced into
the program and its use on machines ranging from Unix
workstations to massively parallel supercomputers. We also
provide an outline of how the tool can be used to study large
alignments of sequence data.

Algorithm
General considerations

In the inference of relationships between gene sequences,
maximum likelihood provides a well-defined objective criterion
under which to compare the relative merits of alternative
phylogenetic hypotheses. Specifically, one seeks the tree and
branch lengths that have the greatest probability of giving rise
to the present-day sequences. This is usually broken into
two parts, defining the tree topology to be tested, and then
optimizing the branch lengths on that particular topology. If
the number of possible topologies for a given set of taxa is not
too large, one could generate all unrooted trees containing the
given taxa, and compute the branch lengths for each that
maximize the likelihood of the tree giving rise to the observed
sequences. One then retains the best tree (perhaps, along with
a set of trees that have nearly optimal likelihoods).
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Unfortunately, the number of bifurcating unrooted trees for
n taxa is

2n-5)!
2" 3(n—-3)!

which rapidly leads to numbers of trees that are well beyond
what can be examined practically. Thus, a situation arises in
which some type of heuristic search is made through a (one
hopes) well-chosen subset of the possible trees attempting to
locate that with maximum likelihood. This type of search
is typical of optimization problems in which an exhaustive
search is impractical.

The algorithm we use is a direct outgrowth (see below) of
dnami, version 3.3 (Felsenstein, 1990); the intellectual debt to
Felsenstein will be obvious to anyone who studies the two
programs. Following the algorithm of Felsenstein, we use
sequential addition of taxa and tree rearrangement to search for
the optimal tree topology. In the following outline of the
strategy, n is the final number of taxa, i is the number of taxa
in the current tree and T; is the current estimate of the best tree
of size .

1. Compute the optimal tree, T, for the first three taxa (only
one topology is possible).

2. Pick the next taxon A to be inserted. We consider, in turn,
the topologies that result from attaching a new branch from
A to each of the 2i — 3 branches in tree 7, (i.e. we
examine all the topologies that result from 7, by attaching
a new branch point along an existing branch). For each
of these topologies, compute the optimal branch lengths
and corresponding likelihood. Set T}, to the best of this
set.

3. Increment i (the tree now has one more taxon). If all the
taxa have been added to the tree (i.e. i = n), then skip to
step 5. Otherwise, continue with step 4.

4. Since we have evaluated only a small portion of the possible
trees containing the same taxa as 7;, we may well not have
the optimal tree. At this stage, we perform a partial tree
check to see whether minor rearrangements lead to a bet-
ter tree. By default, these rearrangements can move any
subtree to a neighboring branch (often called nearest
neighbor interchanges). Reset T; to the best tree resulting
from this set of rearrangements. Repeat this step until none
of the alternatives tested is better than the starting tree.
Return to step 2.

5. Perform a full tree check in an attempt to improve T, via
rearrangements. The only difference between the full tree
check and a partial tree check is that the user can elect to
search a greater number of rearrangements by increasing
the number of branch points that can be crossed while
moving a subtree. After testing the set of rearrangements,
reset 7, to the best. Repeat this step until none of the
alternatives tested improves T,. Then terminate, reporting
T, as the best tree found.

The partial tree check in step 4 and the full tree check in
step 5 both are basically hill-climbing optimizations. In each
case, a set of trees is generated by performing simple opera-
tions on T and each of the trees in the set is evaluated. If any
is better than T, T is equated to the best of the set, and the
process repeats from this new starting point. This will produce
a tree that is a local optimum under the given set of simple
operations.

Improving performance

Our primary goal was to arrive at the same answer as dnaml
version 3.3, but to do so faster. In order to achieve this, our
method differs from Felsenstein’s in several ways.

The primary gain in speed was achieved by changing the
algorithm used during the computationally intensive operation
of finding optimal branch lengths. Felsenstein chose an EM
algorithm to make successive steps towards the optimal length
of a given branch; we chose to use a Newton —Raphson method
based on analytic calculation of first and second derivatives of
the likelihood. There is no guaranty that this will converge on
the true optimum, but so far it seems to work in practice (we
have not yet found a tree for which we arrive at branch lengths
significantly different from those found by dnaml. In dnaml
version 3.4 Felsenstein has made a similar change (personal
communication).

A second change in calculation strategy involves the approach
to ‘simultaneously’ optimizing branch lengths over the whole
tree. In both programs this is done by making a number of
passes over the tree, adjusting branches one at a time. The
passes are continued until no branch changes by more than a
given value, or until a maximum number passes is reached.
In dnaml version 3.3, Felsenstein made a substantial effort to
drive each branch toward its optimum before moving on to the
next branch. We limit the effort invested in a given branch on
each pass. The rationale is that subsequent changes to other
branches can invalidate the extra effort; thus, one is better off
making a more limited effort on each pass. The result of the
change is a net decrease in recomputation, though we have
neither measured the extent to which the limit improves
performance, nor determined its optimal value.

One final feature of fastDNAm is a quick add (Q) option
that provides a rapid estimate of the location at which to insert
a new sequence into the growing tree. In essence, if the
conceptual basis of a tree with branch lengths is sound, then
splitting one branch by inserting a new taxon at its proper
location in the tree should minimally perturb the optimal branch
lengths elsewhere in the tree. Thus, if only the new branch (with
the new taxon at its tip) and the two adjacent branches (the two
halves of the branch that was just split) are reoptimized, the
likelihood should still be fairly close to optimal. By not
reoptimizing all the branches in the set of alternative new trees,
much time is saved. Once a specific insertion point is selected
as best, its branch lengths are then refined across the whole
tree. Though it might seem that errors due to this approxiration
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would propagate through the reset of the tree-building process,
this may not be so, since the next operation in the tree-building
algorithm is performing local rearrangements on the tree,
thereby providing an opportunity to correct an erroneous
placement.

Implementation

Program functions

For the full functionality of dnaml, we refer the reader directly
to Felsenstein (1989, 1990). Options that are retained from the
original program include: use of either user-supplied or
empirical base frequencies (F option); a user-specified ratio of
transition substitutions to transversion substitutions (T option);
randomizing (jumbling) the order of sequence addition to the
tree (J option); evaluating the likelihood of a user-supplied tree
(with or without optimizing the branch lengths) (U and L
options); and writing the inferred tree to a file (Y option). Below
we discuss other program options that have been added or
extended.

In the testing of tree rearrangements, we have generalized
Felsenstein’s local and global search operations to allow moving
subtrees across an arbitrary (user-defined) number of nodes.
The user can separately specify (using an extension of the G
option) the number of nodes that are crossed during
rearrangement of partial trees (the default is 1) and the full tree
(default is 1). By crossing one node, the user gets local
rearrangements (nearest-neighbor interchanges). By crossing
many nodes, the user gets the same global rearrangements as
in dnaml. By crossing an intermediate number of nodes, the
user can get regional rearrangements. It is even possible to set
these values to zero, so that taxa are added to the tree without
re-examining earlier decisions. We have not fully determined
the effect of altering the range of permitted rearrangements on
the frequency of converging on the global maximum rather than
a local optimum. However, comparisons on ~ 10 data sets
suggest that increasing the exploration of partial tree
rearrangements is computationally expensive, and gives little
if any increase in the frequency of finding the optimal tree.

We allow more rate categories to be associated with different
columns in the alignment when using the C option. Felsenstein
allows nine in dnaml versions 3.3 and 3.41; we chose to extend
this to 35 categories (represented by the series 1, 2, 3, . . ., 9,
A, B, . . ., Z). If a 1000-fold range of rates were distributed
over 35 categories, any desired rate value would fall within
11% of one of the category rates. Thus, mapping a continuous
distribution of rate estimates onto the discrete set of category
rates will not entail significant degradation (especially when it
is appreciated that the most common practice in molecular
phylogenetic inference is to ‘discretize’ all rates to 1).

We permit alignment position weights other than one and zero
when using the W option. In particular, we allow the positions
to take any integer weight in the range 0—35. This was
originally introduced to define bootstrap samples of the input

data without rewriting the entire sequence alignment. However,
it can also be used as a method for lowering the individual
contributions of highly correlated positions, such as those
involved in base-pairing in RNA secondary structure.

We have added checkpoint and restart capabilities to the
program. Since runs can go for days when executed on single
processors, it can be distressing to lose several days’ work when
a run is interrupted prior to completion. The restart function
(R option) permits continuation of the calculation from the last
completed insertion or rearrangement. A useful side-effect of
the restart function is the ability to add new sequences to an
existing tree easily and rapidly. To do this, the user adds one
or more sequences to the old data table, and then uses the final
tree of the smaller data set as the starting point for the new
larger tree.

One more application of the restart capability is the ability
to increase the set of rearrangements tested on a previously
computed tree. For example, a tree produced with nearest
neighbor rearrangements of the final tree could be restarted with
a global search (G) option, and the additional tree
rearrangements would be generated and tested. Because it
requires 2—3 times as much CPU time to do global re-
arrangements on a tree of n taxa than to construct it from
scratch, we sometimes build a large number of trees using
different orders of sequence addition, and then select only the
best of these as starting points for global rearrangements.

Felsenstein provides the seqboot program to generate
bootstrap samples for dnaml (and the other sequence-based
programs in his package). We have added a bootstrap (B) option
to fastDNAmI that generates an appropriate sample of the
columns (L samples drawn with replacement from the L columns
of the alignment) without rewriting the entire data table. The
bootstrap sample is based on a user-supplied random number
seed, separate from that used by the jumble option.

These enhancements and changes help considerably with
performance and convenience of use. For Unix environments,
we have created an array of shell scripts that can be used to
add program options to the input file before passing it to the
program, thereby minimizing the need to edit the file prior to
each program run (or to interactively edit options, as in version
3.4 of the dnaml program).

Coding and adding parallel processing

To compute the phylogenetic tree of 473 microorganisms, it
was critical that we be able to exploit the computational
resources offered by parallel processors. In our case, the
computational demands were high enough to warrant using a
massively parallel machine (the Intel Touchstone DELTA
System, comprising 576 i860 processors); more commonly,
researchers will find it useful to be able to conveniently use
a set of available Unix workstations.

We used the basic approach outlined in Boyle er al. (1987),
using an updated version of the p4 tools developed by E.Lusk
and R.Butler. We developed the implementation as follows:
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1. We developed a functioning sequential version of the code
in C (dnaml version 3.3 was written in Pascal) running on
Sun SPARCstations under SunOS 4.01. The sequential code
has also been compiled and run on other hardware systems
and software environments including the following: an
i486-based PC (MS-DOS), Alliant FX/8, Cray II, Cray Y-
MP, Digital MicroVax (VMS), Digital DEC station, Digital
Alpha (VMS), IBM RS/6000, Silicon Graphics R4000 and
various Sun SPARCstations. Generally, we have used the
compiler supplied with the operating system, although we
have also used GNU C version 1.40 (SPARC).

2. We split the computation into two processes: a master
process co-ordinated the search for an optimal tree, invoking
the services of a slave process whenever it was time to
optimize branch lengths and evaluate a set of topologies.
Initially, the co-ordination between the master and slave
processes was achieved by communication using Unix files.
This restructuring of the sequential program was achieved
in an afternoon working on a Sun workstation. Currently,
the sequential, master and slave codes are a single file, and
the different versions are produced by a compile-time
switch. This approach ensures functional consistency of the
sequential and parallel codes.

3. The file-based communication was replaced with the p4
routines distributed by Lusk and Butler. Again, this was
a trivial modification, requiring a few hours of effort.

4. Once the software was structured in such a way that
problems were sent to a slave and the master waited for the
results, it was straightforward to introduce a general-purpose
dispatcher between the master and slave. This process
initiates an arbitrary number of copies of the slave,
distributes problems to them, and collects the results to
be sent back to the master. This part of the code could
have been developed on a Sun workstation, but we found
it convenient to use a Sequent Symmetry, a parallel
processor that offers superior debugging support. Coding
and debugging the dispatcher required only a couple of
days. The product was a more-or-less portable program
that could be run on a number of machines.

5. We moved the program to an Encore Multimax, a BBN
TC2000, an Intel GAMMA, an Alliant FX/8 and an Intel
DELTA. Once the p4 toolkit is completely installed on a
system, such ports are achievable in a matter of minutes.
In some cases, when we attempted to use p4 toolkit versions
that were still under development, we did experience
occasional delays. In particular, such delays occurred when
moving to a relatively primitive environment in which
neither the hardware nor the software was yet completely
stable—as was inevitable with the Intel DELTA, on which
we were fortunate to gain access before the delivered
machine was even officially accepted.

6. Once the system was operational on the Intel DELTA, we
made the runs required to construct a tree of the 473

organisms in just a few days, rather than the years that
would have been required on a workstation. The p4
environment became stable, and the program was easily
debugged (since all but one bug had been detected and
solved in the far more benevolent environments supported
on machines such as the Sequent and Encore).

7. Finally, in preparing the system for distribution, we ported
it to a network of Sun workstations. This task required
less than a day and largely involved building in options
that allow a few minor conveniences when one has a
shared file system.

We now have a system that can be run effectively on single-
processor workstations, on a number of medium-scale parallel
processors (such as the Alliant, Sequent and Encore machines),
on massively parallel machines (such as the Intel DELTA) and
on workstations communicating over a network.

Results
Performance of the sequential code

We compared the performance of fastDNAml (without and with
the quick add option) to three versions of dnaml (dnarnl 3.3
compiled with the Sun Microsystems PC-O3 command and the
Sun SPARC executable files for dnaml 3.41 and dnam! 3.5¢c, as
supplied by Felsenstein). Two rRNA data sets were examined:
easy__10, a set of 10 sequences with a clearly defined branching
order; and hard__16, a set of 16 sequences with numerous
nearly equivalent branching orders. We used the jumble option
of the programs to vary the order of sequence addition to the
tree and monitored the CPU time required per replicate. The
results of these comparisons are in Table 1.

When the difficulty of finding the optimal tree is low,
fastDNAmI and dnaml 3.41 have similar performances. The
quick add (Q) option of fastDNAmi provides some advantages.
In contrast, dnaml 3.3 and dnaml 3.5¢ were substantially slower,
so they were not included in further tests. When the tree was
harder to infer, fastDNAml found the correct tree more quickly
than dnaml 3.41, but the distinction in raw rates might not have
been significant given the uncertainty in the probability of
finding the correct tree (Table I and below).

In conclusion, the speed improvements made by Felsenstein
between dnaml versions 3.3 and 3.41 are comparable in
magnitude to the speed improvements we have made in deriving
fastDNAmI from the former program. With the Q option,
fastDNAmI was about twice as fast as dnaml 3.41 at finding
trees using local rearrangements.

Efficiency in finding globally optimal trees

The factor of greatest interest in comparing tree inference
programs is not how long it takes to find a tree, but how long
it takes to find the best (globally optimal) tree. This requires
scaling the time per addition order by the fraction of the addition
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Table I, Performance of DNA maximum likelihood tree programs on a Sun SPARCstation I

Alignment* Performance Program (compile command)
fastDNAmlI fastDNAmlI dnaml 3.3  dnaml 3.41 dnaml 3.5¢
(gee-0) with Q option (pc-03) (compiled by Felsenstein)  (compiled by Felsenstein)
(gec-0)
easy__10 time + SD (s) 201 + 16 126 + 17 1142 244 £ 39 10 506
no. optimal®/trials 100/100 100/100 111 100/100 "
time per optimum (s) 201 126 1142 244 10 506
easy__10_G time + SD (s) 592 + 118 518 + 124 3051 568 + 133 -
no. optimal/trials 50/50 50/50 1/1 50/50 -
time per optimum (s) 596 522 3051 564 -
hard__16 time + SD (3) 2986 + 448 2077 + 460 - 4937 + 750 -
no. optimal/trials 5/400 5/400 - 5/400 -
time per optimum (s) 238 880 166 160 - 394 960 -
hard__16__G time + SD (s) 22 225 + 10237 20918 = 9299 - 24246 + 11 608
no. optimal/trials 0/17 3730 - 0/17 -
time per optimum (s)  >377 825 209 180 - >412 182 -

*Alignment: easy__10, an alignment (1892 columns, but only 385 distinct patterns of nucleotides in the columns) of 10 16S rRNA sequences (from
Haloferax volcanii, Halococcus morrhua, Halobacterium cutirubrum, Halobacterium halobium, Methanospirillum hungasei, Methanocorpusculum parvum,
Methanoculleus marisnigri, Methanoculleus thermophilicus, Methanomicrobium mobile and Methanoplanus limicola) for which one tree is substantially
better than all alternatives; easy__10__G, the easy__10 data with the G (global search) option; hard__16, an alignment (2413 columns with 962 distinct
data patterns) of 16 16S rRNA sequences (from Agrobacterium tumefaciens, Bacillus subtilis, Chlorobium vibrioforme, Clamydia psinaci, Cytophaga
heparina, Deinococcus radiodurans, Fusobacterium nucleatum, Heliobacterium chlorum, Leptonema illini, Leuconostoc oenos, Planctomyces staleyi,
Synechococcus sp. PCC 6301, Thermococcus celer, Thermomicrobium roseum, Thermotoga maritima and Zea mays mitochondrion) for which numerous
branching orders have nearly the same likelihood, making the tree search very difficult; and hard__16_G, the hard__16 data with the G (global search)

option.
> Optimal’ refers to trees equivalent to the (presumptive) global optimum. All orders of sequence addition yield a tree that is at least locally optimal.

orders yielding the globally optimal tree. These values are also
reported in Table 1. In the case of the easy__10 alignment, all
sequence addition orders tested lead to the same tree, so the
scaled comparison is trivial.

Differences in performance of the programs at finding the
globally optimal tree, as opposed to a locally optimal tree,
should be most obvious in the case of hard__16 alignment. In
particular, since the Q option of fastDNAml is a heuristic to
speed the evaluation of tree branch insertion locations, it might,
at least in principle, lead to inferior decisions during the process
of adding taxa to the tree. With the hard__16 alignment,
fastDNAml, fastDNAmI Q and dnaml found the optimal tree
the same number of times, five out of 400 orders of addition.
In examining the behavior more closely, we found that the
programs did not find the global maximum with the same orders
of addition. That is, the results of individual addition orders
were sometimes different, but none of the alternatives were
systematically worse (or better).

Because the globally optimal tree for the hard__16 data was
found so rarely, there is a large uncertainty in the frequency
of finding the best tree, and hence in the scaling that should
be applied to the time per addition order. However, the overall
distributions of scores (locally optimal trees, whether they are
globally optimal or not) were not observably different either.
For the collection of 400 locally optimal trees found by
fastDNAmI, fastDNAmI Q and dnaml, the mean log-likelihoods
(+standard deviation) were —17937.34428 + 11.68394,

—17937.25228 + 11.75695 and —17937.27159 + 12.05913
respectively. Similarly, the median log-likelihoods were
—17933.63079, —17934.19920 and — 17933.63282 respectively.

The global (G) search option of the programs is intended to
increase the fraction of the time that a tree search locates the
globally optimal tree. If this frequency can be increased by a
factor greater than the increase in time required per addition
order, then there will be a net decrease in the time to find the
optimal tree. In the case of the easy__10 data, the optimal tree
was always found, so there was a 2- to 4-fold increase in time
per optimal tree (Table I). With the hard__16 data the time
required per addition order increased 4- to 10-fold. The few
addition orders that we have run suggest that there is not enough
of an increase in the frequency of finding the globally optimal
tree to compensate for the increase in time per cycle. For many
of the problems that we have examined, the global search option
decreases the overall rate of finding the optimal tree. As noted
above, the context in which we have found global (or regional)
searches most useful is to generate a large number of locally
optimal solutions without the G option, and then to combine
the fastDNAmI restart and global options to try to search more
broadly the vicinities of the several best trees.

Thus, there are no obvious differences in the abilities of these
programs to find the globally optimal tree; when it is easy they
all succeed, and when it is hard they do comparably well. To
within the limits of our measurements, the overall rate of finding
globally optimal trees is proportional to the rates at which the
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programs find locally optimal trees, suggesting that fastDNAmlI
with the Q option is about twice as fast as dnaml 3.41 in
solving realistic problems.

Estimating the time required to infer trees from other alignments

Estimating the rate of tree inference for a new alignment is
complex, but to a first approximation it is proportional to
the number of unique data columns in the alignment times the
cube of the number of taxa. Since 126 s were required for
an alignment of 10 sequences with 385 distinct patterns of
nucleotides in the columns, this would extrapolate to 2150 s
for 16 taxa with 962 unique data columns. The average time
for the hard__16 data set was 2986 s (see Table I), so this simple
scaling of time required is ~39% low.

The time required to find a locally optimal tree is divided
between the tasks of adding branches to the tree and performing
tree rearrangements (looking for better trees). For the easy_ 10
alignment, there are seven branch addition steps and at least
six rearrangement steps (each time a rearrangement improves
the tree, then there is another rearrangement step, increasing
the total). Because finding the optimal tree for the easy_ 10
tree was straightforward, the average number of rearrangement
steps per tree was 6.4, very close to the minimum. In contrast,
for the hard__16 alignment, there are 13 addition steps and at
least 12 rearrangement steps. Because the tree search for this
alignment was difficult (due to the number of trees with nearly
the same likelihood), the average number of rearrangement steps
per tree was 20.7. If the extra rearrangements are taken into
account, the time estimate for finding a locally optimal tree for
the hard__16 becomes

2150( 746 )(13 + 20.7) .

7+ 64 13 + 12

or ~2812 s. This is much closer to the actual number, but
it required knowledge about the intrinsic difficulty of finding
a tree for a given set of data. In essence, finding even a
locally optimal tree is harder for some data. Also, as seen
above, finding the globally optimal tree in these cases can
require numerous trials.

The quick add option speeds the addition steps, but has no
impact on the time for rearrangement evaluation. As tree
problems become more difficult, neglecting changes in the
number of rearrangements will have a larger relative effect on
the ime underestimate since the rearrangements occupy a larger
fraction of the total time. It is also possible that the option will
increase the number of rearrangement steps (by making bad
placements that must be corrected by rearrangements). For the
hard__16 alignment, the Q option only increased the average
number of rearrangement cycles from 20.7 to 21.1, so this
latter effect is quite small. The simple scaling of timings from

10 taxa with 385 unique columns to 16 taxa with 962 unique
columns gives a time estimate of 1290 s, which is 61% low

(compared to being 39% low without the Q option)—as
expected, it is harder to scale timings with the Q option
than without it.

The comparison of timings for the easy_ 10 and hard__16
alignments might lead to concerns that the increase in difficulty
is intrinsic in the size of the problem, and that a higher power
of the number of sequences might give more realistic time
estimates. Analysis of an alignment of 43 sequences with 1106
unique columns (and a relatively clear optimal topology)
required an average of 36 088 s per tree inferred when using
fastDNAmI with the Q option. If we take the power law to be
unknown and equate the 10 sequence and 43 sequence trees
to the same rate constant, we get:

1106 columns (43 sequence)” _ 385 columns (10 sequences)’
36 088 s 126 s

rate =

a =317

If we consider the extrapolation from 43 to 80 sequences, the
difference in the timing estimates given by a = 3 versus
a = 3.16 is only 10%. Thus, a slightly higher power might
be better than a cube law, but other differences between
problems contribute larger variations in observed timings.

The other obvious concern—after the poor performance
on the hard__16 alignment—is that inordinate numbers of
input orders will be required to find the optimal tree for
larger numbers of sequences. For the 43 sequence alignment,
~10% of the input orders gave the optimal tree. Thus,
when the data are good, even fairly large trees can be found
with moderate patience.

Reproducibility of the optimal tree log-likelihood values

In analyzing the performances of fastDNAmI and dnamt 3.41,
we observed that the log-likelihood values reported by dnaml
fluctuated for trees of the same topology. For example, the
log-likelihoods reported for 100 analyses of the easy__10
alignment varied from —6536.60742 to —6536.61621, even
though the tree topologies were the same. For each of the
problems in Table I, the means and standard deviations of the
optimal tree scores reported by fastDNAml, fastDNAml Q and
dnaml are recorded in Table II.

We do not know the source of variation in the optimal scores.
The most obvious thought was that it might be due to variations
in the optimized branch lengths. Although the maximum
differences observed between corresponding branch lengths of
the inferred trees were only +0.00002 (about one part in
10 000), this might be sufficient to introduce variations in the
log-likelihood. However, this cannot explain increases in the
log-likelihood, since non-optimal branch lengths would always
lower it. If noise in the branch lengths could raise the likelihoods,
then the branch lengths were not optimal. Thus, we remain
uncertain as to the cause of this variation in reported values.
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Table II. Log-likelihoods reported for globally optimel trees

Data set Log-likelihood + SD*
fastDNAml fastDNAmI with Q option dnaml 3.41

casy__10 —6536.61237 x 0.00011 —6536.61232 + 0.00000 —6536.61162 + 0.00185

easy__10_G —6536.61236 + 0.00010 —6536.61232 + 0.00000 —6536.61139 + 0.00183

hard__16 —17 923.24918 + 0.00000 —17 923.24918 =+ 0.00000 -17 923.24297 + 0.00450
*The number of optimal trees were 100, 50 and 5 for the easy_ 10, easy__10_G and hard__16 data sets. The variations are among trees with the same
topology.
Discussion estimate was based on a number of graduated runs of dnaml

Computational cost has hindered the use of maximum liketihood
for inferring DNA-based phylogenetic trees with more than ~20
taxa. We have built upon the work of Felsenstein to develop
a tool that enables any researcher with access to a workstation
to generate DNA-based trees containing 40— 50 taxa (e.g. about
12 h on a Sun SPARCstation II when the branching order is
relatively well defined by the data). On workstations that support
high-performance floating-point operations, it is practical to
compute trees of 60—80 taxa (and possibly, with patience, to
compute trees with > 100 taxa). For cases in which multiple
trees containing 50— 100 taxa are needed, one can use a set
of workstations on a network. In the fairly limited cases in which
collections of hundreds of sequences exist, one can attain
estimates by using a massively parallel machine.

However, it is generally necessary to compute a number of
trees with different orders of taxon addition in order to gain
some confidence that the optimal branching order has been
found. This was dramatically illustrated with the data in the
hard__16 alignment, which were chosen to include multiple
lineages arising within a particularly short interval. The search
for the optimal branching order is non-trivial, with only slightly
more than 1% of the random addition orders finding the optimal
tree. In addition, specific suboptimal trees were found more
often than the maximum likelihood tree. This emphasizes the
need to replicate any presumptive optimum, preferably several
times.

In developing fastDNAmlI, there were two main advantages
to starting with an existing program. First, we were able to
use direct comparisons with dnaml outputs to verify the function
of our program (a very significant issue in dealing with methods
for which it is difficult to calculate the correct answer by hand).
Second, the approach yields a program that is well integrated
with an array of related tools. This array includes the rest of
the PHYLIP package (Felsenstein, 1989, 1990), programs such
as PAUP (Swofford, 1990) that generate or accept PHYLIP
data file formats, and programs that generate or accept Newick
format tree descriptions.

When we began our effort ta develop a program for analyzing
the alignment of 473 small subunit ribosomal RNA sequences,
we estimated that we might be able to construct one estimate
of such a tree using a few thousand hours of workstation time,
or a few days of time on a machine such as the DELTA. This

and an informal observation that the execution time of dnaml
3.3 seemed to be proportional to the cube of the number of taxa.

As we developed more efficient versions of our program,
we gradually became able to examine its behavior in solving
larger problems. Although we were aware that the search for
the optimal topology could become trapped in local maxima,
we did not know how this scaled with tree size. When we could
construct trees involving 60— 100 taxa, it became clear that at
these sizes local maxima change from a nuisance to a major
problem. In addition, we found that multiple runs with differing
orders of sequence addition (using different jumble option
random number seeds) could yield discrete local maxima more
often than the presumed global optimum. These observations
threw into question the notion of making one long run
constructing a large tree of 473 taxa. A more suitable approach
appeared to be one with four steps: (i) use existing knowledge
(based on phylogenetic analysis of smaller groups of sequences)
to break the complete set of sequences into a number of partially
overlapping subgroups; (ii) make multiple runs to analyze each
group to find its global optimum; (iii) merge the derived trees
into a single large tree; and finally (iv) conduct additional
smaller runs to help resolve any specific problem areas.

In our case, we created 11 groups of taxa, which were
selected to include a limited number of common organisms to
provide landmarks for use in merging the resulting trees.
These groups ranged from 22 to 67 taxa. Using 5— 10 runs for
each group, we were able repeatedly to produce a maximum
likelihood value that we believe is probably optimal. We merged
the best tree for each group into a single 473-organism tree,
using a few runs of 40—50 selected organisms to resolve
ambiguities in how the trees should be joined. These extra runs
could have been eliminated or reduced, had we chosen the
original overlapping sets more carefully. Finally, to develop
data on which to base an estimate of confidence, we ran 15—20
trees of randomly selected taxa; each sample included 60— 100
taxa. In addition, we ran an extensive bootstrap resampling
analysis of one of the groups (70 runs were made of 43 taxa,
which included the Archaea sequences). We are currently
analyzing these data to determine which sections of the overall
tree appear to be clearly determined and which are still in
question. We intend to report on this analysis elsewhere.

The fastDNAmI program, test data, documentation and utility
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programs (implemented as Unix shell scripts) are available from
the Ribosomal Database Project (Olsen eral., 1992) by
anonymous FTP to rdp.life.uiuc.edu (in directory pub/RDP/
programs/fastDNAml). The files in the directory are sufficient
for compiling and running the program in sequential mode.
Since the p4 package is itself in the public domain and is
available by anonymous FTP to info.mcs.anl.gov (in directory
pub/p4), one can now easily install and use the program on
a wide variety of parallel processing systems as well.
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