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Abstract theoretically justified protein modeling techniques fail to

Motivation: Statistical models of protein families, such asProvide homology detection performance on a par with a
position-specific scoring matrices, profiles and hidderfimple, non-model-based algorithm. The algorithm, called
Markov models, have been used effectively to find remd@mily Pairwise Search (FPS), involves combining, for each
homologs when given a set of known protein family membeggquence in the database being searched, the pairwise simi-
Unfortunately, training these models typically requires darity scores of the sequences in the family of known homo-
relatively large set of training sequences. Recent worlegs comprising the query. These similarity scores may be
(Grundy, J. Comput. Biol.5, 479-492, 1998) has shown computed using a sequence search algorithm such as BLAST
that, when only a few family members are known, sever@hltschul et al, 1990). For small query sets, the FPS algo-
theoretically justified statistical modeling techniques fail torithm outperforms a full-sequence hidden Markov model ap-
provide homology detection performance on a par witlproach (HMMER; Eddy, 1995) and a motif-based modeling
Family Pairwise Search (FPS), an algorithm that combinegpproach [model construction by MEME (Bailey and Grib-
scores from a pairwise sequence similarity algorithm such askov, 1998) followed by search with MAST (Bailey and
BLAST Elkan, 1994)] to homology detection.

Results: The present paper provides a model-based algo- The explanations for the relatively poor performances of these
rithm that improves FPS by incorporating hybrid motif-model-based techniques differ. For HMMER, the difficulty lies
based models of the form generated by Cobbler (Henikdff the large number of model parameters relative to the size of
and Henikoff,Protein Sci.6, 698-705, 1997). For the 73 the training set. When only a few sequences are available for
protein families investigated here, this cobbled FPS algaraining, the number of parameters in the model is on the order
rithm provides better homology detection performance thagf the total size of the training set. Consequently, even with
either Cobbler or FPS alone. This improvement is mainstrong prior information, training these models accurately is
tained when BLAST is replaced with the full Smith—Wategjfficult. MEME, on the other hand, reduces the number of

man algorithm trainable parameters by focusing only upon the motif regions of
Availability: http://fps.sdsc.edu the training set. The result is a set of relatively well-trained motif
Contact:bgrundy@cse.ucsc.edu models. It is unlikely that the relatively poor performance of the
) MEME/MAST strategy results from a deficiency in the con-
Introduction served regions identified by MEME, since a similar comparison

Science may be described as the process of building model$t@ motif-based and whole-sequence search method leads to
explain natural phenomena. Although every scientific theor§imilar results (Henikoff and Henikoff, 1997). Rather, MEME
implies a corresponding model, some models are less expli€tges homology information by discarding the non-motif re-
than others. An explicit model with an exact interpretation i§ions of the sequences (Pearson, 1997), and this loss affects
desirable, since it effectively summarizes the important featur®B4AST's search performance.
of the target phenomenon, rendering them easily explicable. InCobbling (Henikoff and Henikoff, 1997) is a hybrid
the case of protein family characterization, a statistical mod@lodeling scheme that addresses both of these problems. A
with a probabilistic interpretation, in addition to being useful focobbled profile model of a protein family is constructed by
tasks such as multiple alignment and homology detection, caanverting a single, representative family member (the tem-
provide biological insight into the important functional or struc-plate sequence) into a profile (Gribsleihal, 1990) and then
tural features of the modeled family. replacing the motif regions with profile representations of
Unfortunately, the most elegant model is not always ththe motifs. All gap-opening and extension penalties in the
most useful. For example, recent work (Grundy, 1998) hgwofile are set to the same values. The number of trainable
shown that, for small training sets, several complex anparameters in the cobbled profile model is small, because
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models are only learned for the motif regions. The rest of thereviously (data not shown). Variants of the FPS algorithm
profile is constructed by simply replacing the letter in thahat employ the best, rather than the average, score have also
template sequence with a column from a pairwise score maeen explored (Grundy, 1998); however, this score-com-
trix such as BLOSUM (Henikoff and Henikoff, 1992). Thus,bination method is much more fragile in the presence of
the cobbled model retains useful homology informatiorfalse-positive annotations and is therefore not as useful in
in the inter-motif regions by embedding the motif modelgeneral. In this work, therefore, we employ a version of FPS
into the profile constructed from the complete templat¢hat averages the logarithm of a statistical score. For simplic-
sequence. ity, we refer to this version simply as ‘FPS'.

Cobbler thus provides a means of avoiding both of the Here, we study the variations of the FPS algorithm outlined
problems that detract from the classification performance afi Tablel. In previous work, the sequences in the query set
the HMMER and MEME statistical modeling techniqueswere used directly to search the database using the BLAST
Therefore, in this paper, we extend the FPS algorithm to uségorithm. The current work improves FPS by using cobbled
cobbled profiles. We show that combining FPS with Cobbleprofiles of the sequences. We also examine variants of FPS
yields a family-based homology detection algorithm withthat replace BLAST with the Profilesearch (Gribskbal,
significantly better classification accuracy than either FPS dr990) implementation of the Smith—Waterman algorithm
Cobbler alone. (Smith and Waterman, 1981). For comparison, we also study
searching with a representative sequence selected from the
guery set, as well as searching with a cobbled profile con-
structed using the representative sequence as a template.
The FPS algorithm is illustrated in FigureThe input to the These last two search methods do not involve the averaging
algorithm is a query set of sequences that are known to Bt€p of the FPS algorithm.
homologous to one another, as well as a sequence database to
be searched. FPS outputs a version of the database sortethiife 1. Summary of homology detection methods investigated here. See
order of decreasing similarity with the query set. The algdhe text for more complete descriptions
rithm proceeds in four steps. First, each sequence in the query
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Fig. 1. The Family Pairwise Search algorithm.

The Family Pairwise Search algorithm

set is converted into a query. Second, the queries are input ¥sthod Query format  Search algorithm Combining
a similarity algorithm and compared to each sequence in theLAST FPS sequence BLAST Yes
search database. Third, each sequence in the search datakasfied BLAST cobbled profile ~ BLAST Yes

is assigned a similarity score by combining its scores relativers

to the sequences in the query set. Fourth, the search datab@§giesearch Frs  profile Profilesearch Yes

s sorted according to the average Sim”?‘rity score. . Cobbled cobbled profile Profilesearch Yes
Numerous variants of the FPS algorithm are possible, @ fiesearch Fps

number of which have been explored previously (Grundy, _

1998). These variants include using the BLAST ‘bit score’®-°T single sequence  BLAST No

(Altschulet al, 1997) and combining these scores by takingCobbled BLAST  single cobbled  BLAST No

the average. However, the bit score is not normalized for the profile

length of the sequence, and recent work has shown that

length normalization improves the sensitivity of database To convert a sequence in the query set to a cobbled profile,

searches (Pearson, 1998). It can be shown that a length-nee use a modified version of the Cobbler (Henikoff and

malized bit score is proportional to the logarithm of fhe Henikoff, 1997) algorithm to embed motif profiles into a

value (Bailey and Grundy, 1999). Consequently, in thiprofile constructed from the template sequence. Our modi-

work, we compute the overall score of a sequence by averdigd version of the algorithm can output both log-odds pro-

ing the logarithm of a statistical scoie\{alue orP value). files and frequency profiles. Log-odds profiles, for use with

This works better in practice than the FPS variants examingte Smith—Waterman algorithm, are built by replacing each
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letter in the sequence with the BLOSUM row for that letteryalue of the Smith—\Waterman score of a sequence as the prob-
frequency profiles, for use with the BLAST algorithm, useability that the score of a random sequence of the same length
the target letter frequencies corresponding to the BLOSUIMs the given sequence would be at least as high as the observed
row, rather than the log-odds scores. To convert a profile ingzore for the sequence.
a cobbled profile, motif models (built as described below) are We use gapped BLAST Version 2.0 (Altscktibl, 1990,
converted either into log-odds position-specific score mat997). In order to use cobbled profiles as BLAST queries, we
trices (for log-odds profiles) or target frequency matrices (fouse one iteration of a version of PSI-BLAST (Altsofiual,
frequency profiles) and are used to replace the appropriat@97) that is capable of storing and reading binary check-
positions in the profile, as in the original Cobbler algorithmpoint files. Since these files contain a frequency matrix repre-
Log-odds profiles are built using BLOSUMS55, whereas fresentation of the query, converting our cobbled frequency
quency profiles use BLOSUMG62 in order to be comparablgrofiles to the BLAST checkpoint format is straightforward.
with the standard BLAST algorithm. All local gap-openingPSI-BLAST is run for one iteration with its default para-
and extension penalties in the log-odds profiles are turnédeters. The filtering of low-complexity regions in the query
off, so that only the global penalties are used for scoring. Sequence is turned off because this option is unavailable in
Motifs need only be discovered once for each query setonjunction with reading checkpoint files. For BLAST
Ungapped motifs are discovered and modeled using MEMg&arches using sequences as the queries, we use the BLO-
Version 2.2 (Bailey and Elkan, 1994) with the default paraSUM62 score matrix.
meter settings from the Web interface (Gruetial, 1996). For Smith—Waterman searches, we use the Profilesearch
These defaults include empirical Dirichlet mixture priorsalgorithm (Gribskovet al, 1990) as implemented on the
weighted according to the megaprior heuristic (Bailey anBioccelerator (Compugen Ltd, 1996). We set the global gap
Gribskov, 1996), a minimum motif width of 12 and a maxi-opening penalty to 8 and the extension penalty to 0.3. In
mum of 55, and a motif model biased toward zero or one moffder to calculat® values corresponding to Smith—Water-
occurrence per sequence. A total of 10 motifs are discover8n scores, we calculate the score distribution by fitting the
from each query set, and motif significance is judged using thearlin-Altschul (Karlin and Altschul, 1990) distribution to
majority occurrence heuristic (Gruney al, 1997): motifs 10 000 random sequences of length 250 using linear re-
that do not appear in more than half of the query sequences gfgssion. The estimated values\aindK can then be used
discarded. This heuristic excludes motifs that are specific {9 calculate th@ value of any score. o
subfamilies of the given query set. For eight-sequence queriesin the third step of the FPS algorithm, the similarity scores
the heuristic selects an average of 5.1 motifs. MEME outpuf@r & given database sequence with each of the queries are
the motifs in BLOCKS (Henikoff and Henikoff, 1991) format @veraged together to give the score for comparing the se-
for use as input to the modified Cobbler algorithm. quence with the family. For convenience, we only include in
To evaluate the benefit of the averaging aspect of the FARS average the sequences most similar to the query. When
algorithm, we compare FPS to the use of a single, represerB-AST is used as the similarity algorithm, we compute all
tive sequence from the query set. We choose this represerftlilarity scores that correspond tolanalue smaller than
tive sequence using the same method as the original Cobbd00 and assign a@value of 1000 to all other sequences.
algorithm. Essentially, the sequence which best matches Hghen Profilesearch is used, we compute scores for the 1000
motifs for the family is chosen. This sequence is used to seardighest-scoring sequences and assign all other sequences a

the database, and the averaging step in the FPS algorithnf)iga'“e of 1. Because all protein families in the database we

skipped. For comparison, we also include a test of the origir’%aerh have far fewer than 1000 members, this approach

Cobbler method. This involves using the same, representatia0uld yield the same results as actually computing all simi-
sequence as the template for a cobbled profile. The databi&dy SCores.
is searched using just this profile, and the averaging step is
skipped. _ _ _ Comparing homology detection methods

In the second step of the FPS algorithm, the queries are input
to a similarity algorithm and compared to each sequence in tige use a collection of 73 protein families (Bailey and Grib-
search database. Any algorithm suitable for comparing thgkov, 1997; Grundy, 1998) in our homology detection ex-
given type of query with protein sequences may be employgrriments. These families were selected from the PROSITE
in this second step of FPS. The current work investigates usidgtabase (Bairoch, 1992) for their difficulty, based upon the
the BLAST and Smith—Waterman algorithms for computingiumber of false positives reported in the PROSITE annota-
query-to-sequence similarities. For BLAST searches, we ugens. The PROSITE IDs and sizes of these families are avail-
the negative logarithm of the value as the similarity score. able onthe Web (http://www.cse.ucsc.edu/bgrundy/75-fami-
For Smith—Waterman searches, we use the negative logarithies.html). The families range in size from 5 to 109 se-
of theP value of the Smith—Waterman score. We definé’the quences, and from 949 to 58 015 amino acids. The associated
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release of SWISS-PROT (Bairoch, 1994), which containthat the number of false positives equals the number of false
36 000 sequences and nearly 12.5 million amino acids, iegatives. To compute the equivalence number from the se-
used as the target database. guence of bits described above, a mark is moved along the

Bias within the families is minimized via sequence weightsequence until the number of zeros to the left of the mark
ing. Since many weighting schemes perform almost as wefuals the number of ones to the right. The equivalence
as one another (Henikoff and Henikoff, 1994), all the experirumber is the number of zeros to the left of the mark. Perfect
ments reported here employ a simple, binary weightingeparation corresponds to an equivalence number of 0, and
scheme based upon BLAST similarity scores (Lawretice the maximum possible equivalence number is the size of the
al., 1993). This approach is simple, since the highly similaiamily. In the results reported here, equivalence numbers are
sequences can be removed at once before any analysis is §éf/ed to range from 0 to 1 by dividing by the size of the
formed, and leads to faster execution, since the sizes of d@nily. This allows equivalence numbers from homology
weighted training sets are reduced. For these experiment$&grches for variously sized families to be compared.
BLAST similarity threshold of 200 is used. The sizes of the
weighted PROSITE families range from 2 to 73 sequences
with an average of 10.7 sequences, and from 394 to 18 7B82sults
amino acids with an average of 4202.

For each family, the query set is the largest possible set ©ur experiments show that cobbled FPS performs signifi-
size 2, 4, 8, 16 or 32 sequences randomly selected from tantly better than both the original Cobbler algorithm and the
weighted sequence set. This results in 16 query sets of sizéginal FPS algorithm. This improvement occurs regardless
2, 22 sets of size 4, 19 of size 8, 13 of size 16, and three quéfywhether the BLAST or Smith—Waterman algorithm is
sets of size 32. In addition, for each family, an independetised for pairwise sequence comparisons. On the other hand,
test set is constructed, consisting of all family members négplacing the BLAST sequence similarity algorithm in FPS
contained in the query set. with the full Smith—Waterman algorithm does not lead to a

Each homology detection experiment returns a sorted vegignificant performance difference. _
sion of the target database. Each sequence in the sorted dathigure 2a shows the performance improvement, as
base is then marked with a ‘1’ or a ‘0’, indicating whethefn€asured by a two-tailed signed rank test (Snedecor and
that sequence appears in the PROSITE listing for the currénpChran, 1980; Henikoff and Henikoff, 1997; Salzberg,
family. In order to test the ability of the homology detectiont997) on ROCS0 scores, offered by the cobbled version of
algorithms to generalize from the query set, all famil)FPS relative to Cobbler. The topmost comparison in the fig-

members that do not appear in the independent test set 4fg Verifies the eﬁ(_a(r:]tiveness of;he cobbled BLAST mﬁthOd
eliminated from the sorted list. The resulting, purged s y comparing it with BLAST. The next comparison shows

guence of bits represents the homology detection algorith e Improvement that FPS brlngs_, to cobbled BLAST. The
ability to separate novel family members from non-famil inal comparison shows the large improvement that cobbled

. BLAST FPS offers relative to BLAST alone. All of the dif-
members. Perfect performance corresponds to a series;0 o .
. ferences shown here are significant when computed with
ones followed by a series of zeros.

ROC50 scores or normalized equivalence numbers. A sum-

This bit sequence is subjected to two forms of analysis. Tr?ﬁary of the signed rank results for these and other methods

first is a modified version of the Receiver Operating CharrS given in Table.

acteristic, called ROC50 (Gribskov and Robinson, 1996). Just as FPS improves the performance of Cobbler, so

The ROC score is the area under a curve that plots true pasispp|er improves the performance of FPS. Figbrshows
tives versus false positives for varying score thresholdg,q improvement that embedding motif models in the query
ROC analys_is combines measures of a search’s Se”SitiVEé(quences brings to FPS. Using either BLAST or Profile-
and selectivity. The ROCS0 score is the area under the RQGarch, cobbling improves FPS at the 1% significance level.
curve, up to the first 50 false positives. This value has thgimilar analyses with normalized equivalence numbers cor-
advantages of yielding a wider spread of values, requiringporate the improvement of Profilesearch FPS (1% signifi-
less storage space, and corresponding to the typical biglance level), but not that of BLAST FPS. This difference in
ogist's willingness to sift through only60 false positives.  statistical significance is not surprising: equivalence number
ROCS50 scores are normalized to range from 0 to 1, with dnalysis is less sensitive than ROC analysis, since for a fam-
corresponding to the most sensitive and selective search.ily of sizen, the equivalence number can take on one of only

In addition to ROC50 analysis, each homology detection values. Rank comparisons of equivalence numbers there-
method is evaluated using the equivalence number (Pearsfore tend to result in more ties than similar comparisons
1995). The equivalence number is the number of false posiased upon ROC scores. Overall, therefore, cobbling im-
tives given by a database search when the threshold is sepsoves the performance of FPS.
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BLAST vs. cobbled

BLAST 1.63 x 10°®

cobbled BLAST vs.

cobbled BLAST FPS 6.97 x 107
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Fig. 2. Improvement offered by cobbled Family Pairwise SeaahTlje benefits of adding Family Pairwise Search to Coblidghénefits

of adding cobbling to Family Pairwise Search. For each pair of methods A and B, the differences in ROC50 scores are dbmespedtwi
to all 73 families in the study. The resulting differences are sorted ignoring the sign of the difference, and the ratiKe@frtbes for which
method A scored higher than method B are summed. Each bar represents this rank sum for one method with respect to labethan. The
a pair of bars is the significance level at which the null hypothesis that the two methods are equivalent can be rejected.

Table 2. Summary of signed rank comparisons of homology detection methods. For the cell in row A and column B,
method A received a higher rank sum that method B, and the cell contaihsahe at which the null hypothesis that
the two methods are equivalent can be rejected

Method 2 3 4 5 6
1 cobbled Profilesearch FPS 0.657 1.47x 104 0.140 6.42x 10> 2.16x 1078
2 cobbled BLAST FPS 0.306 5.34103 6.97x 107 2.03x 1079
3 Profilesearch FPS 0.978 9.8010°5 2.73x 1078
4 BLAST FPS 1.88 105 2.36x 1078
5 cobbled BLAST 1.6% 106
6 BLAST

Figure2b also shows the statistical equivalence of version®(n) time, whereas the Smith—Waterman algorithm is an
of FPS using BLAST and Profilesearch. For both the cobble@(n?) dynamic programming algorithm.
and uncobbled versions of the algorithm, BLAST FPS per- The improvement that cobbling adds to BLAST FPS is
forms slightly worse than Profilesearch FPS, but neither dishown in more detail in Figu2 The figure compares the
ference is significant. This is somewhat surprising, sincROC50 scores for each of the query sets. Out of 73 queries,
BLAST is a heuristic approximation algorithm that runs incobbled BLAST FPS outperforms BLAST FPS 26 times,
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1

. Cobbler one step further by retaining the noisy regions of all
098 | N 0 8 guery sequences, rather than a single representative. The re-
N sult is an intelligent compromise, an algorithm that models
2 096 T P 1 only the regions of the sequence that are effectively model-
Q 094+ o ’ Q 1 able while retaining all of the information from the noisier
P osg2t N | regions.
- In contrast, incorporating the full Smith—Waterman algo-
% 09 r rithm into FPS yields a small improvement in performance.
@ 088 1 The computational complexity of the Smith—Waterman al-
% 0.86 | e | gorithm isO(n?) in the length of the input sequences, where-
8 o84 L | as BLAST isO(n). Thus, the small improvement offered by
e T the Smith—Waterman algorithm comes at considerable com-
o2 1 putational cost.
o8 L k R ) . The improved performance of both cobbled BLAST and

08 082 084 0.86 pOR8. 09 092 094 096 098 1 BLAST FPS relative to BLAST can be explained in terms of
the use of homology information in the query sequences.
When multiple query sequences are available, searching for

Fig. 3. Query-by-query comparison of cobbled and uncobbledh mol ina BLAST with inale repr ntativ _
BLAST FPS. Each point represents the ROC50 scores from asingle0 010gs using S th a single representative se

query set. Points above the line x are queries for which cobbled ?uencﬁ ObVIOufSIBr/]dlscards Impgrtsglt hdomoﬁgy mforn;atl(;n
BLAST FPS performs better than BLAST FPS, and vice versa. SixTOM the rest of the query set. Cobbled profiles remedy this

of the 73 queries were left off the figure because one or both ROCS@rOblem'SomeWhatv since they include in the motif regions
scores fall below 0.80. information from all the query sequences. BLAST FPS

furthers the improvement by including all of the information
from all of the query sequences.

and the opposite occurs 14 times. The remaining 33 queried NiS kind of explanation, however, fails to account for
lead to ties, 21 of which involve a perfect ROC50 score fdfobbled FPS's strong performance relative to FPS. Since the
both methods. Similar results hold for the correspondinffPS algorithm already considers all of the information in the
Profilesearch comparison: the cobbled version wins 23 tim@ilery sequences, the improvement that embedded motif mo-
and loses six times. The remaining 34 queries result in tiedels add to the algorithm must derive from the models them-
of which 23 are for perfect scores. selves, rather than because cobbled FPS considers more in
Table 2 summarizes the pairwise comparisons of all siformation in the query set.
methods evaluated in this study. Of the six methods, BLAST Statistical models of the type built by MEME offer two
using a single, uncobbled sequence performs worst, fdmportant advantages over direct pairwise sequence similar-
lowed by cobbled BLAST using a single sequence. The twi&/ algorithms. First, a position-specific scoring matrix en-
uncobbled versions of FPS are next, and the two cobbldails the assumption that amino acid occurrences at one posi-
versions of FPS perform best overall. The pattern of statisfion in a protein are statistically independent of amino acid
cal significances in Tablgdoes not change if a similar table occurrences at other positions. This site-independence as-
is generated using normalized equivalence numbers, excépimption allows a candidate protein to receive a high score
for the difference noted previously for methods 1 and 2. even if that protein does not closely resemble a single query
sequence, but instead is comprised of a mix of sites similar
to several proteins in the query set. Second, a statistical
model can incorporate prior knowledge that effectively aug-
Our results show the benefits of building models of proteiments the information provided in the query set. For this pur-
families. Previous experiments indicated that, for smafpose, MEME employs a set of empirically derived Dirichlet
query sets, a non-model-based algorithm (BLAST FPS) outrixture priors (Brownet al, 1995). These priors allow
performs both sequence-level and motif-based models on tNEME to guess from very little evidence a biologically
homology detection task (Grundy, 1998). The experimeng@ausible amino acid distribution for each position in the
reported here, however, show that statistical models, usewbtif model. Thus, cobbled FPS’'s improved homology
appropriately, can be helpful even for very small query setdetection performance relative to FPS illustrates the positive
The Cobbler approach (Henikoff and Henikoff, 1997) is arffect of the site-independence assumption and of the use of
effective means of reducing the size of the models beirgrior information in detecting homologs.
trained while retaining homology information in noisy re- Ultimately, the decision to use a more effective but more
gions of the query sequence. The FPS algorithm takexpensive homology detection method depends upon the re-

Discussion
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