
Family pairwise search with embedded motif
models

�'(('�) �+ (# �-0*"2� �*" �')+/&2 �� ��'(#2�

��#,�-/)#*/ +$ �+),0/#- �!'#*!#� �*'1#-.'/2 +$ ��('$+-*'�� ��*/� �-03� �� ����
 �*"
������������ �� ����� ���� �'()�* �-'1#� �("% ���� �� �+((�� �� ����	4����� ���

�������� �� 
������� ��� ����	 ������� �� ���� ��� ����	 ������� �� ���� ��� ����

Abstract
Motivation: Statistical models of protein families, such as
position-specific scoring matrices, profiles and hidden
Markov models, have been used effectively to find remote
homologs when given a set of known protein family members.
Unfortunately, training these models typically requires a
relatively large set of training sequences. Recent work
(Grundy, J. Comput. Biol., 5, 479–492, 1998) has shown
that, when only a few family members are known, several
theoretically justified statistical modeling techniques fail to
provide homology detection performance on a par with
Family Pairwise Search (FPS), an algorithm that combines
scores from a pairwise sequence similarity algorithm such as
BLAST.
Results: The present paper provides a model-based algo-
rithm that improves FPS by incorporating hybrid motif-
based models of the form generated by Cobbler (Henikoff
and Henikoff, Protein Sci., 6, 698–705, 1997). For the 73
protein families investigated here, this cobbled FPS algo-
rithm provides better homology detection performance than
either Cobbler or FPS alone. This improvement is main-
tained when BLAST is replaced with the full Smith–Water-
man algorithm.
Availability: http://fps.sdsc.edu
Contact: bgrundy@cse.ucsc.edu

Introduction

Science may be described as the process of building models to
explain natural phenomena. Although every scientific theory
implies a corresponding model, some models are less explicit
than others. An explicit model with an exact interpretation is
desirable, since it effectively summarizes the important features
of the target phenomenon, rendering them easily explicable. In
the case of protein family characterization, a statistical model
with a probabilistic interpretation, in addition to being useful for
tasks such as multiple alignment and homology detection, can
provide biological insight into the important functional or struc-
tural features of the modeled family.

Unfortunately, the most elegant model is not always the
most useful. For example, recent work (Grundy, 1998) has
shown that, for small training sets, several complex and

theoretically justified protein modeling techniques fail to
provide homology detection performance on a par with a
simple, non-model-based algorithm. The algorithm, called
Family Pairwise Search (FPS), involves combining, for each
sequence in the database being searched, the pairwise simi-
larity scores of the sequences in the family of known homo-
logs comprising the query. These similarity scores may be
computed using a sequence search algorithm such as BLAST
(Altschul et al., 1990). For small query sets, the FPS algo-
rithm outperforms a full-sequence hidden Markov model ap-
proach (HMMER; Eddy, 1995) and a motif-based modeling
approach [model construction by MEME (Bailey and Grib-
skov, 1998) followed by search with MAST (Bailey and
Elkan, 1994)] to homology detection.

The explanations for the relatively poor performances of these
model-based techniques differ. For HMMER, the difficulty lies
in the large number of model parameters relative to the size of
the training set. When only a few sequences are available for
training, the number of parameters in the model is on the order
of the total size of the training set. Consequently, even with
strong prior information, training these models accurately is
difficult. MEME, on the other hand, reduces the number of
trainable parameters by focusing only upon the motif regions of
the training set. The result is a set of relatively well-trained motif
models. It is unlikely that the relatively poor performance of the
MEME/MAST strategy results from a deficiency in the con-
served regions identified by MEME, since a similar comparison
of a motif-based and whole-sequence search method leads to
similar results (Henikoff and Henikoff, 1997). Rather, MEME
loses homology information by discarding the non-motif re-
gions of the sequences (Pearson, 1997), and this loss affects
MAST’s search performance.

Cobbling (Henikoff and Henikoff, 1997) is a hybrid
modeling scheme that addresses both of these problems. A
cobbled profile model of a protein family is constructed by
converting a single, representative family member (the tem-
plate sequence) into a profile (Gribskov et al., 1990) and then
replacing the motif regions with profile representations of
the motifs. All gap-opening and extension penalties in the
profile are set to the same values. The number of trainable
parameters in the cobbled profile model is small, because

�+(� �� *+� � ����

��%#. 
�	�
�

463� Oxford University Press 1999

BIOINFORMATICS



W.N.Grundy and T.L.Bailey

464

Fig. 1. The Family Pairwise Search algorithm.

models are only learned for the motif regions. The rest of the
profile is constructed by simply replacing the letter in the
template sequence with a column from a pairwise score ma-
trix such as BLOSUM (Henikoff and Henikoff, 1992). Thus,
the cobbled model retains useful homology information
in the inter-motif regions by embedding the motif models
into the profile constructed from the complete template
sequence.

Cobbler thus provides a means of avoiding both of the
problems that detract from the classification performance of
the HMMER and MEME statistical modeling techniques.
Therefore, in this paper, we extend the FPS algorithm to use
cobbled profiles. We show that combining FPS with Cobbler
yields a family-based homology detection algorithm with
significantly better classification accuracy than either FPS or
Cobbler alone.

The Family Pairwise Search algorithm

The FPS algorithm is illustrated in Figure 1. The input to the
algorithm is a query set of sequences that are known to be
homologous to one another, as well as a sequence database to
be searched. FPS outputs a version of the database sorted in
order of decreasing similarity with the query set. The algo-
rithm proceeds in four steps. First, each sequence in the query
set is converted into a query. Second, the queries are input to
a similarity algorithm and compared to each sequence in the
search database. Third, each sequence in the search database
is assigned a similarity score by combining its scores relative
to the sequences in the query set. Fourth, the search database
is sorted according to the average similarity score.

Numerous variants of the FPS algorithm are possible, a
number of which have been explored previously (Grundy,
1998). These variants include using the BLAST ‘bit score’
(Altschul et al., 1997) and combining these scores by taking
the average. However, the bit score is not normalized for the
length of the sequence, and recent work has shown that
length normalization improves the sensitivity of database
searches (Pearson, 1998). It can be shown that a length-nor-
malized bit score is proportional to the logarithm of the P
value (Bailey and Grundy, 1999). Consequently, in this
work, we compute the overall score of a sequence by averag-
ing the logarithm of a statistical score (E value or P value).
This works better in practice than the FPS variants examined

previously (data not shown). Variants of the FPS algorithm
that employ the best, rather than the average, score have also
been explored (Grundy, 1998); however, this score-com-
bination method is much more fragile in the presence of
false-positive annotations and is therefore not as useful in
general. In this work, therefore, we employ a version of FPS
that averages the logarithm of a statistical score. For simplic-
ity, we refer to this version simply as ‘FPS’.

Here, we study the variations of the FPS algorithm outlined
in Table 1. In previous work, the sequences in the query set
were used directly to search the database using the BLAST
algorithm. The current work improves FPS by using cobbled
profiles of the sequences. We also examine variants of FPS
that replace BLAST with the Profilesearch (Gribskov et al.,
1990) implementation of the Smith–Waterman algorithm
(Smith and Waterman, 1981). For comparison, we also study
searching with a representative sequence selected from the
query set, as well as searching with a cobbled profile con-
structed using the representative sequence as a template.
These last two search methods do not involve the averaging
step of the FPS algorithm.

Table 1. Summary of homology detection methods investigated here. See
the text for more complete descriptions

Method Query format Search algorithm Combining

BLAST FPS sequence BLAST Yes

Cobbled BLAST
FPS

cobbled profile BLAST Yes

Profilesearch FPS profile Profilesearch Yes

Cobbled
Profilesearch FPS

cobbled profile Profilesearch Yes

BLAST single sequence BLAST No

Cobbled BLAST single cobbled
profile

BLAST No

To convert a sequence in the query set to a cobbled profile,
we use a modified version of the Cobbler (Henikoff and
Henikoff, 1997) algorithm to embed motif profiles into a
profile constructed from the template sequence. Our modi-
fied version of the algorithm can output both log-odds pro-
files and frequency profiles. Log-odds profiles, for use with
the Smith–Waterman algorithm, are built by replacing each



Family pairwise search with embedded motif models

465

letter in the sequence with the BLOSUM row for that letter;
frequency profiles, for use with the BLAST algorithm, use
the target letter frequencies corresponding to the BLOSUM
row, rather than the log-odds scores. To convert a profile into
a cobbled profile, motif models (built as described below) are
converted either into log-odds position-specific score ma-
trices (for log-odds profiles) or target frequency matrices (for
frequency profiles) and are used to replace the appropriate
positions in the profile, as in the original Cobbler algorithm.
Log-odds profiles are built using BLOSUM55, whereas fre-
quency profiles use BLOSUM62 in order to be comparable
with the standard BLAST algorithm. All local gap-opening
and extension penalties in the log-odds profiles are turned
off, so that only the global penalties are used for scoring.

Motifs need only be discovered once for each query set.
Ungapped motifs are discovered and modeled using MEME
Version 2.2 (Bailey and Elkan, 1994) with the default para-
meter settings from the Web interface (Grundy et al., 1996).
These defaults include empirical Dirichlet mixture priors
weighted according to the megaprior heuristic (Bailey and
Gribskov, 1996), a minimum motif width of 12 and a maxi-
mum of 55, and a motif model biased toward zero or one motif
occurrence per sequence. A total of 10 motifs are discovered
from each query set, and motif significance is judged using the
majority occurrence heuristic (Grundy et al., 1997): motifs
that do not appear in more than half of the query sequences are
discarded. This heuristic excludes motifs that are specific to
subfamilies of the given query set. For eight-sequence queries,
the heuristic selects an average of 5.1 motifs. MEME outputs
the motifs in BLOCKS (Henikoff and Henikoff, 1991) format
for use as input to the modified Cobbler algorithm.

To evaluate the benefit of the averaging aspect of the FPS
algorithm, we compare FPS to the use of a single, representa-
tive sequence from the query set. We choose this representa-
tive sequence using the same method as the original Cobbler
algorithm. Essentially, the sequence which best matches the
motifs for the family is chosen. This sequence is used to search
the database, and the averaging step in the FPS algorithm is
skipped. For comparison, we also include a test of the original
Cobbler method. This involves using the same, representative
sequence as the template for a cobbled profile. The database
is searched using just this profile, and the averaging step is
skipped.

In the second step of the FPS algorithm, the queries are input
to a similarity algorithm and compared to each sequence in the
search database. Any algorithm suitable for comparing the
given type of query with protein sequences may be employed
in this second step of FPS. The current work investigates using
the BLAST and Smith–Waterman algorithms for computing
query-to-sequence similarities. For BLAST searches, we use
the negative logarithm of the E value as the similarity score.
For Smith–Waterman searches, we use the negative logarithm
of the P value of the Smith–Waterman score. We define the P

value of the Smith–Waterman score of a sequence as the prob-
ability that the score of a random sequence of the same length
as the given sequence would be at least as high as the observed
score for the sequence.

We use gapped BLAST Version 2.0 (Altschul et al., 1990,
1997). In order to use cobbled profiles as BLAST queries, we
use one iteration of a version of PSI-BLAST (Altschul et al.,
1997) that is capable of storing and reading binary check-
point files. Since these files contain a frequency matrix repre-
sentation of the query, converting our cobbled frequency
profiles to the BLAST checkpoint format is straightforward.
PSI-BLAST is run for one iteration with its default para-
meters. The filtering of low-complexity regions in the query
sequence is turned off because this option is unavailable in
conjunction with reading checkpoint files. For BLAST
searches using sequences as the queries, we use the BLO-
SUM62 score matrix.

For Smith–Waterman searches, we use the Profilesearch
algorithm (Gribskov et al., 1990) as implemented on the
Bioccelerator (Compugen Ltd, 1996). We set the global gap
opening penalty to 8 and the extension penalty to 0.3. In
order to calculate P values corresponding to Smith–Water-
man scores, we calculate the score distribution by fitting the
Karlin–Altschul (Karlin and Altschul, 1990) distribution to
10 000 random sequences of length 250 using linear re-
gression. The estimated values of λ and K can then be used
to calculate the P value of any score.

In the third step of the FPS algorithm, the similarity scores
for a given database sequence with each of the queries are
averaged together to give the score for comparing the se-
quence with the family. For convenience, we only include in
this average the sequences most similar to the query. When
BLAST is used as the similarity algorithm, we compute all
similarity scores that correspond to an E value smaller than
1000 and assign an E value of 1000 to all other sequences.
When Profilesearch is used, we compute scores for the 1000
highest-scoring sequences and assign all other sequences a
P value of 1. Because all protein families in the database we
search have far fewer than 1000 members, this approach
should yield the same results as actually computing all simi-
larity scores.

Comparing homology detection methods

We use a collection of 73 protein families (Bailey and Grib-
skov, 1997; Grundy, 1998) in our homology detection ex-
periments. These families were selected from the PROSITE
database (Bairoch, 1992) for their difficulty, based upon the
number of false positives reported in the PROSITE annota-
tions. The PROSITE IDs and sizes of these families are avail-
able on the Web (http://www.cse.ucsc.edu/bgrundy/75-fami-
lies.html). The families range in size from 5 to 109 se-
quences, and from 949 to 58 015 amino acids. The associated



W.N.Grundy and T.L.Bailey

466

release of SWISS-PROT (Bairoch, 1994), which contains
36 000 sequences and nearly 12.5 million amino acids, is
used as the target database.

Bias within the families is minimized via sequence weight-
ing. Since many weighting schemes perform almost as well
as one another (Henikoff and Henikoff, 1994), all the experi-
ments reported here employ a simple, binary weighting
scheme based upon BLAST similarity scores (Lawrence et
al., 1993). This approach is simple, since the highly similar
sequences can be removed at once before any analysis is per-
formed, and leads to faster execution, since the sizes of the
weighted training sets are reduced. For these experiments, a
BLAST similarity threshold of 200 is used. The sizes of the
weighted PROSITE families range from 2 to 73 sequences
with an average of 10.7 sequences, and from 394 to 18 702
amino acids with an average of 4202.

For each family, the query set is the largest possible set of
size 2, 4, 8, 16 or 32 sequences randomly selected from the
weighted sequence set. This results in 16 query sets of size
2, 22 sets of size 4, 19 of size 8, 13 of size 16, and three query
sets of size 32. In addition, for each family, an independent
test set is constructed, consisting of all family members not
contained in the query set.

Each homology detection experiment returns a sorted ver-
sion of the target database. Each sequence in the sorted data-
base is then marked with a ‘1’ or a ‘0’, indicating whether
that sequence appears in the PROSITE listing for the current
family. In order to test the ability of the homology detection
algorithms to generalize from the query set, all family
members that do not appear in the independent test set are
eliminated from the sorted list. The resulting, purged se-
quence of bits represents the homology detection algorithm’s
ability to separate novel family members from non-family
members. Perfect performance corresponds to a series of
ones followed by a series of zeros.

This bit sequence is subjected to two forms of analysis. The
first is a modified version of the Receiver Operating Char-
acteristic, called ROC50 (Gribskov and Robinson, 1996).
The ROC score is the area under a curve that plots true posi-
tives versus false positives for varying score thresholds.
ROC analysis combines measures of a search’s sensitivity
and selectivity. The ROC50 score is the area under the ROC
curve, up to the first 50 false positives. This value has the
advantages of yielding a wider spread of values, requiring
less storage space, and corresponding to the typical biol-
ogist’s willingness to sift through only ∼50 false positives.
ROC50 scores are normalized to range from 0 to 1, with 1
corresponding to the most sensitive and selective search.

In addition to ROC50 analysis, each homology detection
method is evaluated using the equivalence number (Pearson,
1995). The equivalence number is the number of false posi-
tives given by a database search when the threshold is set so

that the number of false positives equals the number of false
negatives. To compute the equivalence number from the se-
quence of bits described above, a mark is moved along the
sequence until the number of zeros to the left of the mark
equals the number of ones to the right. The equivalence
number is the number of zeros to the left of the mark. Perfect
separation corresponds to an equivalence number of 0, and
the maximum possible equivalence number is the size of the
family. In the results reported here, equivalence numbers are
scaled to range from 0 to 1 by dividing by the size of the
family. This allows equivalence numbers from homology
searches for variously sized families to be compared.

Results

Our experiments show that cobbled FPS performs signifi-
cantly better than both the original Cobbler algorithm and the
original FPS algorithm. This improvement occurs regardless
of whether the BLAST or Smith–Waterman algorithm is
used for pairwise sequence comparisons. On the other hand,
replacing the BLAST sequence similarity algorithm in FPS
with the full Smith–Waterman algorithm does not lead to a
significant performance difference.

Figure 2a shows the performance improvement, as
measured by a two-tailed signed rank test (Snedecor and
Cochran, 1980; Henikoff and Henikoff, 1997; Salzberg,
1997) on ROC50 scores, offered by the cobbled version of
FPS relative to Cobbler. The topmost comparison in the fig-
ure verifies the effectiveness of the cobbled BLAST method
by comparing it with BLAST. The next comparison shows
the improvement that FPS brings to cobbled BLAST. The
final comparison shows the large improvement that cobbled
BLAST FPS offers relative to BLAST alone. All of the dif-
ferences shown here are significant when computed with
ROC50 scores or normalized equivalence numbers. A sum-
mary of the signed rank results for these and other methods
is given in Table 2.

Just as FPS improves the performance of Cobbler, so
Cobbler improves the performance of FPS. Figure 2b shows
the improvement that embedding motif models in the query
sequences brings to FPS. Using either BLAST or Profile-
search, cobbling improves FPS at the 1% significance level.
Similar analyses with normalized equivalence numbers cor-
roborate the improvement of Profilesearch FPS (1% signifi-
cance level), but not that of BLAST FPS. This difference in
statistical significance is not surprising: equivalence number
analysis is less sensitive than ROC analysis, since for a fam-
ily of size n, the equivalence number can take on one of only
n values. Rank comparisons of equivalence numbers there-
fore tend to result in more ties than similar comparisons
based upon ROC scores. Overall, therefore, cobbling im-
proves the performance of FPS.



Family pairwise search with embedded motif models

467

Fig. 2. Improvement offered by cobbled Family Pairwise Search. (a) The benefits of adding Family Pairwise Search to Cobbler; (b) benefits
of adding cobbling to Family Pairwise Search. For each pair of methods A and B, the differences in ROC50 scores are computed with respect
to all 73 families in the study. The resulting differences are sorted ignoring the sign of the difference, and the ranks of the differences for which
method A scored higher than method B are summed. Each bar represents this rank sum for one method with respect to another. The label on
a pair of bars is the significance level at which the null hypothesis that the two methods are equivalent can be rejected.

a

b

Table 2. Summary of signed rank comparisons of homology detection methods. For the cell in row A and column B,
method A received a higher rank sum that method B, and the cell contains the P value at which the null hypothesis that
the two methods are equivalent can be rejected

Method 2 3 4 5 6

1 cobbled Profilesearch FPS 0.657 1.47 × 10–4 0.140 6.42 × 10–5 2.16 × 10–8

2 cobbled BLAST FPS 0.306 5.34 × 10–3 6.97 × 10–7 2.03 × 10–9

3 Profilesearch FPS 0.978 9.90 × 10–5 2.73 × 10–8

4 BLAST FPS 1.88 × 10–5 2.36 × 10–8

5 cobbled BLAST 1.63 × 10–6

6 BLAST

Figure 2b also shows the statistical equivalence of versions
of FPS using BLAST and Profilesearch. For both the cobbled
and uncobbled versions of the algorithm, BLAST FPS per-
forms slightly worse than Profilesearch FPS, but neither dif-
ference is significant. This is somewhat surprising, since
BLAST is a heuristic approximation algorithm that runs in

O(n) time, whereas the Smith–Waterman algorithm is an
O(n2) dynamic programming algorithm.

The improvement that cobbling adds to BLAST FPS is
shown in more detail in Figure 3. The figure compares the
ROC50 scores for each of the query sets. Out of 73 queries,
cobbled BLAST FPS outperforms BLAST FPS 26 times,



W.N.Grundy and T.L.Bailey

468

Fig. 3. Query-by-query comparison of cobbled and uncobbled
BLAST FPS. Each point represents the ROC50 scores from a single
query set. Points above the line y = x are queries for which cobbled
BLAST FPS performs better than BLAST FPS, and vice versa. Six
of the 73 queries were left off the figure because one or both ROC50
scores fall below 0.80.

and the opposite occurs 14 times. The remaining 33 queries
lead to ties, 21 of which involve a perfect ROC50 score for
both methods. Similar results hold for the corresponding
Profilesearch comparison: the cobbled version wins 23 times
and loses six times. The remaining 34 queries result in ties,
of which 23 are for perfect scores.

Table 2 summarizes the pairwise comparisons of all six
methods evaluated in this study. Of the six methods, BLAST
using a single, uncobbled sequence performs worst, fol-
lowed by cobbled BLAST using a single sequence. The two
uncobbled versions of FPS are next, and the two cobbled
versions of FPS perform best overall. The pattern of statisti-
cal significances in Table 2 does not change if a similar table
is generated using normalized equivalence numbers, except
for the difference noted previously for methods 1 and 2.

Discussion

Our results show the benefits of building models of protein
families. Previous experiments indicated that, for small
query sets, a non-model-based algorithm (BLAST FPS) out-
performs both sequence-level and motif-based models on the
homology detection task (Grundy, 1998). The experiments
reported here, however, show that statistical models, used
appropriately, can be helpful even for very small query sets.
The Cobbler approach (Henikoff and Henikoff, 1997) is an
effective means of reducing the size of the models being
trained while retaining homology information in noisy re-
gions of the query sequence. The FPS algorithm takes

Cobbler one step further by retaining the noisy regions of all
query sequences, rather than a single representative. The re-
sult is an intelligent compromise, an algorithm that models
only the regions of the sequence that are effectively model-
able while retaining all of the information from the noisier
regions.

In contrast, incorporating the full Smith–Waterman algo-
rithm into FPS yields a small improvement in performance.
The computational complexity of the Smith–Waterman al-
gorithm is O(n2) in the length of the input sequences, where-
as BLAST is O(n). Thus, the small improvement offered by
the Smith–Waterman algorithm comes at considerable com-
putational cost.

The improved performance of both cobbled BLAST and
BLAST FPS relative to BLAST can be explained in terms of
the use of homology information in the query sequences.
When multiple query sequences are available, searching for
homologs using BLAST with a single representative se-
quence obviously discards important homology information
from the rest of the query set. Cobbled profiles remedy this
problem somewhat, since they include in the motif regions
information from all the query sequences. BLAST FPS
furthers the improvement by including all of the information
from all of the query sequences.

This kind of explanation, however, fails to account for
cobbled FPS’s strong performance relative to FPS. Since the
FPS algorithm already considers all of the information in the
query sequences, the improvement that embedded motif mo-
dels add to the algorithm must derive from the models them-
selves, rather than because cobbled FPS considers more in-
formation in the query set.

Statistical models of the type built by MEME offer two
important advantages over direct pairwise sequence similar-
ity algorithms. First, a position-specific scoring matrix en-
tails the assumption that amino acid occurrences at one posi-
tion in a protein are statistically independent of amino acid
occurrences at other positions. This site-independence as-
sumption allows a candidate protein to receive a high score
even if that protein does not closely resemble a single query
sequence, but instead is comprised of a mix of sites similar
to several proteins in the query set. Second, a statistical
model can incorporate prior knowledge that effectively aug-
ments the information provided in the query set. For this pur-
pose, MEME employs a set of empirically derived Dirichlet
mixture priors (Brown et al., 1995). These priors allow
MEME to guess from very little evidence a biologically
plausible amino acid distribution for each position in the
motif model. Thus, cobbled FPS’s improved homology
detection performance relative to FPS illustrates the positive
effect of the site-independence assumption and of the use of
prior information in detecting homologs.

Ultimately, the decision to use a more effective but more
expensive homology detection method depends upon the re-



Family pairwise search with embedded motif models

469

sources—time and money—available to the experimenter.
Since the FPS algorithm involves comparing each of the n
sequences in the protein family to the sequences in the search
database, the algorithm requires approximately n times as
long as searching with a single representative sequence. In
practice, however, if binary weighting of the family is
employed, n is fairly small. In this study, for example, the
average weighted family size is 10.7. In most cases, the large
performance improvement offered by FPS over single-se-
quence BLAST will justify FPS’s use. However, adding
motif modeling to FPS incurs considerable overhead. In this
study, MEME requires an average of 9.3 CPU min on a 167
MHz Sparc Ultra and MAST requires 70 s. By comparison,
the average BLAST FPS query requires 69 s on the same
hardware.

Although the experiments described here use families of
sequences as queries, cobbled FPS can also operate in a
single-sequence query fashion, scanning a database of se-
quence families. This mode would allow FPS to take advan-
tage of existing motif databases such as BLOCKS (Henikoff
and Henikoff, 1996) and Prints (Attwood et al., 1998). In
single-sequence query mode, cobbled FPS would be similar
to the SSMAL algorithm (Nicodéme, 1998). Like cobbled
FPS, SSMAL differentiates between highly conserved motif
regions and noisier inter-motif regions. SSMAL requires as
input a multiple alignment of the entire family, rather than the
unaligned sequences used by cobbled FPS. SSMAL then op-
erates on an alignment graph that reflects the motif-based
structure of the family. SSMAL is a heuristic algorithm that
incorporates portions of the BLAST algorithm. Therefore,
SSMAL is likely to be faster than cobbled FPS at the cost of
possibly missing some similarities.

Several recent papers have described algorithms that
embed a pairwise sequence similarity algorithm such as
BLAST in an iterative procedure for finding homologs. The
PSI-BLAST algorithm (Altschul et al., 1997) employs a
non-motif-based, position-specific scoring matrix represen-
tation; Probe (Neuwald et al., 1997), on the other hand, em-
ploys motif models. The current results indicate that query-
ing using cobbled FPS, rather than merging the queries into
a single model, may offer superior performance. We there-
fore intend to investigate the use of the cobbled FPS algo-
rithm within an iterative framework.

Acknowledgements

The authors would like to thank Heidi Sofia at NCBI for pro-
viding a pre-release version of PSI-BLAST capable of per-
forming checkpointing, and Michael Gribskov for helpful
discussion. W.N.G. is supported by a Sloan/DOE Fellowship
in Computational Molecular Biology. T.L.B. is supported by
the National Biomedical Computation Resource, an NIH/
NCRR-funded research resource (P41 RR-08605), NBCR

grant (NIH P41 RR-08605) and the NSF through cooper-
ative agreement ASC-02827.

References

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
A basic local alignment search tool. J. Mol. Biol., 215, 403–410.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: A new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

Attwood,T.K., Beck,M.E., Flower,D.R., Scordis,P. and Selley,J.N.
(1998) The PRINTS protein fingerprint database in its fifth year.
Nucleic Acids Res., 26, 304–308.

Bailey,T.L. (1999) MEME—Multiple EM for Motif Elicitation.
http://www.sdsc.edu/MEME.

Bailey,T.L. and Elkan,C.P. (1994) Fitting a mixture model by
expectation-maximization to discover motifs in biopolymers. In
Altman,R., Brutlag,D., Karp,P., Lathrop,R. and Searls,D. (eds),
Proceedings of the Second International Conference on Intelligent
Systems for Molecular Biology. AAAI Press, Menlo Park, CA.

Bailey,T.L. and Gribskov,M. (1996) The megaprior heuristic for
discovering protein sequence patterns. In States,D.J., Agarwal,P.,
Gaasterland,T., Hunter,L. and Smith,R. (eds), Proceedings of the
Fourth International Conference on Intelligent Systems for Molecu-
lar Biology. AAAI Press, Menlo Park, CA, pp. 15–24.

Bailey,T.L. and Gribskov,M. (1997) Score distributions for simulta-
neous matching to multiple motifs. J. Comput. Biol., 4, 45–59.

Bailey,T.L. and Gribskov,M. (1998) Combining evidence using
p-values: Application to sequence homology searches. Bioinformat-
ics, 14, 48–54.

Bailey,T.L. and Grundy,W.N. (1999) Classifying proteins by family
using the product of correlated p-values. In Proceedings of the Third
Annual International Conference on Computational Molecular
Biology. To appear.

Bairoch,A. (1992) PROSITE: A dictionary of sites and patterns in
proteins. Nucleic Acids Res., 20, 2013–2018.

Bairoch,A. (1994) The SWISS-PROT protein sequence data bank:
Current status. Nucleic Acids Res., 22, 3578–3580.

BLAST (1999) NCBI BLAST search. http://www.ncbi.nlm.nih.gov/
BLAST.

Brown,M., Hughey,R., Krogh,A., Mian,I., Sjolander,K. and
Haussler,D. (1995) Using Dirichlet mixture priors to derive hidden
Markov models for protein families. In Rawlings,C. (ed.), Proceed-
ings of the Third International Conference on Intelligent Systems for
Molecular Biology. AAAI Press, Menlo Park, CA, pp. 47–55.

Compugen Ltd (1996) Bioccelerator Manual. http://www.compugen-
us.com.

Eddy,S.R. (1995) Multiple alignment using hidden Markov models. In
Rawlings,C. (ed.), Proceedings of the Third International Confer-
ence on Intelligent Systems for Molecular Biology. AAAI Press,
Menlo Park, CA, pp. 114–120.

Gribskov,M. and Robinson,N.L. (1996) Use of receiver operating
characteristic (ROC) analysis to evaluate sequence matching.
Comput. Chem., 20, 25–33.

Gribskov,M., Lüthy,R. and Eisenberg,D. (1990) Profile analysis.
Methods Enzymol., 183, 146–159.



W.N.Grundy and T.L.Bailey

470

Grundy,W.N. (1998) Homology detection via Family Pairwise Search.
J. Comput. Biol., 5, 479–492.

Grundy,W.N., Bailey,T.L. and Elkan,C.P. (1996) ParaMEME: A
parallel implementation and a web interface for a DNA and protein
motif discovery tool. Comput. Applic. Biosci., 12, 303–310.

Grundy,W.N., Bailey,T.L., Elkan,C.P. and Baker,M.E. (1997) Meta-
MEME: Motif-based hidden Markov models of protein families.
Comput. Applic. Biosci., 13, 397–406.

Henikoff,J.G. and Henikoff,S. (1996) Blocks database and its applica-
tions. Methods Enzymol., 266, 88–105.

Henikoff,S. and Henikoff,J.G. (1991) Automated assembly of protein
blocks for database searching. Nucleic Acids Res., 19, 6565–6572.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution ma-
trices from protein blocks. Proc. Natl Acad. Sci. USA, 89,
10915–10919.

Henikoff,S. and Henikoff,J.G. (1994) Position-based sequence
weights. J. Mol. Biol., 243, 574–578.

Henikoff,S. and Henikoff,J.G. (1997) Embedding strategies for
effective use of information from multiple sequence alignments.
Protein Sci., 6, 698–705.

Karlin,S. and Altschul,S.F. (1990) Methods for assessing the statistical
significance of molecular sequence features by using general
scoring schemes. Proc. Natl Acad. Sci. USA, 87, 2264–2268.

Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F.
and Wootton,J.C. (1993) Detecting subtle sequence signals: A Gibbs
sampling strategy for multiple alignment. Science, 262, 208–214.

Neuwald,A.F., Liu,J., Lipman,D. and Lawrence,C. (1997) Extracting
protein alignment models from the sequence data database. Nucleic
Acids Res., 25, 1665–1677.

Nicodéme,P. (1998) SSMAL: similarity searching with alignment
graphs. Bioinformatics, 14, 508–515.

Pearson,W.R. (1995) Comparison of methods for searching protein
sequence databases. Protein Sci., 4, 1145–1160.

Pearson,W.R. (1997) Identifying distantly related protein sequences.
Comput. Applic. Biosci., 13, 325–332.

Pearson,W.R. (1998) Empirical statistical estimates for sequence
similarity searches. J. Mol. Biol., 276, 71–84.

Salzberg,S.L. (1997) On comparing classifiers: Pitfalls to avoid and a
recommended approach. Data Min. Knowl. Discov., 1, 371–328.

Smith,T. and Waterman,M. (1981) Identification of common molecu-
lar subsequences. J. Mol. Biol., 147, 195–197.

Snedecor,G.W. and Cochran,W.G. (1980) Statistical Methods. Iowa
State University Press, Iowa.


