
Neural network input representations that
produce accurate consensus sequences from
DNA fragment assemblies
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Abstract
Motivation: Given inputs extracted from an aligned column
of DNA bases and the underlying Perkin Elmer Applied
Biosystems (ABI) fluorescent traces, our goal is to train a
neural network to determine correctly the consensus base for
the column. Choosing an appropriate network input repre-
sentation is critical to success in this task. We empirically
compare five representations; one uses only base calls and
the others include trace information.
Results: We attained the most accurate results from networks
that incorporate trace information into their input represen-
tations. Based on estimates derived from using 10-fold
cross-validation, the best network topology produces con-
sensus accuracies ranging from 99.26% to >99.98% for
coverages from two to six aligned sequences. With a
coverage of six, it makes only three errors in 20 000
consensus calls. In contrast, the network that only uses base
calls in its input representation has over double that error
rate: eight errors in 20 000 consensus calls.
Contact: allex@cs.wisc.edu

Introduction

We have applied neural networks to the task of determining
the consensus base in a column of aligned DNA sequences.
The problem we addressed is referred to as consensus calling
and is briefly described in Figure 1.

Accuracy in consensus sequences is an important concern;
the National Human Genome Research Institute (NHGRI)
set a standard for sequencing accuracy at 99.99% (NHGRI,
1998). Unfortunately, the error rate for sequences in Gen-
Bank has been estimated to be from 0.3 to 0.03% (Lawrence
and Solovyev, 1994)—much higher than the standard. When
imperfect DNA sequences are translated, the effect on the
resulting protein sequence can be substantial. Even the muta-
tion of a single amino acid can cause critical changes in the
character of a predicted protein. Furthermore, the deletion or
insertion of bases can result in frame shifts that lead to dra-

matically increased error rates and the failure to recognize
open reading frames when the DNA is translated.

Currently, sequencing accuracy is significantly dependent
upon careful human examination and editing of consensus
sequences in fragment assemblies. The hand process is time
consuming, expensive and error prone, making it unsuitable
for large-scale sequencing projects. Automatic methods such
as ours, that produce highly accurate consensus calls, reduce
errors and alleviate the need for human editing.

One significant way that our system for consensus calling
differs from most existing methods is that it directly pro-
cesses information on the shape and intensity of Perkin
Elmer Applied Biosystems (ABI) fluorescent traces. Other
methods, such as those in the TIGR Assembler (Sutton et al.,
1995), and the Staden Package (Bonfield et al., 1995), exam-
ine only previously determined base calls when calculating
the consensus.

Two existing assemblers that do consider trace characteris-
tics are Phrap (Green, 1997) and DNASTAR’s SeqMan II.
To make a consensus call, Phrap chooses the base call in an
aligned column with the highest quality trace as determined
by its companion base-calling program, Phred (Ewing and
Green, 1988; Ewing et al., 1998). In SeqMan II, the consen-
sus is determined by a method we developed during earlier
work (Allex et al., 1997). The method extracts and sums in-
formation about the shape and intensity of the traces in an
alignment. The sums are used as evidence in determining the
most likely consensus call.

Another difference between our system and others is our
use of neural networks. Figure 2 contains a brief description
of the operation of neural networks; details can be found in
McClelland and Rumelhart (1986). Neural networks can be
a powerful data analysis tool for problems in molecular biol-
ogy (Baldi and Brunak, 1998). Their strength is in their abil-
ity to learn and use complex patterns such as those found in
these types of problems. Despite this, the use of neural net-
works for tasks in DNA sequencing has been scarcely ex-
plored. In one promising example, neural networks are used
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Fig. 1. Consensus calling. State-of-the-art sequencers such as the
Perkin Elmer Applied Biosystems (ABI) 377 use fluorescent dye
labeling to determine DNA fragment sequences (Ansorge et al.,
1986; Smith et al., 1986). For each fragment, the sequencing process
produces dye intensities in four sets of fluorescent traces. Here we
have an example of three fragments that have been sequenced and
aligned. For each fragment, traces and corresponding base calls
output by ABI software are shown. Once sequences have been
aligned, the consensus sequence, as listed above the alignment, is
calculated. In most columns in this example, the base calls indicated
by the traces exhibit total agreement. However, in the first two
highlighted columns, the base calls and traces conflict and the
appropriate ambiguity code is listed as the consensus call. (W
indicates A or T and K indicates T or G.) In the rightmost highlighted
column, a base call has been erroneously inserted in the first
fragment and the consensus shows a gap, meaning no base exists
there.

to make base calls in individual DNA sequences (Golden
et al., 1993). Note that Golden’s work calls bases in single
sequences, whereas the work we describe determines the
consensus for multiple aligned sequences.

System and methods

The ability of a neural network to categorize instances of a
problem correctly is critically dependent upon the input
representation (Baldi and Brunak, 1998). For our work, this
problem can be expressed as follows.

Given: An aligned column of base calls and traces
Do: Represent the column as numerical inputs
We define four features of an aligned column that can be

used singly or in combination to form input representations
for a neural network. Two of the features use information
extracted from fluorescent traces. We believe that much

Fig. 2. Neural networks. A feed-forward back propagation neural
network learns to categorize patterns of inputs. Inputs are numerical
representations of features of a problem. Typically, there is one output
for each category of the problem; the desired output is 1 for the correct
category and 0 otherwise. First the network is trained by processing a
set of categorized examples (a training set). A categorized example is
an instance of the problem that includes its inputs and desired outputs.
During training, weighted connections in the network are adjusted so
that the error in the actual output is reduced. Hidden units in the
network aid by allowing the input representation to be transformed.
When the difference between the desired and actual inputs is
sufficiently low, training is halted and the network can be used to
categorize previously unseen instances of the problem. Future
accuracy of the trained network is estimated by measuring a trained
network’s performance on a disjoint set of testing examples. In this
figure, we have an example of a simple neural network whose function
is to call the consensus for a single aligned column of DNA bases when
given inputs extracted from fluorescent traces. The network is given
four inputs (the relative G, A, T and C trace intensity averages) and
outputs a consensus call (G, A, T or C).

valuable information is lost when the traces are reduced to
base calls. Our hypothesis is that a neural network can exploit
the trace information to make consensus calls that are more
accurate than those made with networks that use only base
calls as inputs.

The inputs that use trace information are weighted by the
quality of the trace so that more emphasis is given to better
data. A description of the calculation of the quality values we
use appears in Allex et al. (1997). One of the input features
that uses fluorescent trace information captures the shape of
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Fig. 3. Trace Classifications. A peak Trace Classification is a set of
three scores that capture the shape and intensity of the traces
associated with a single base call. (a) The classes and the criteria
used to distinguish among them are listed and illustrated. A score
from 0 to 1 is assigned for each of three classes that reflects the
amount of Strong (S), Medium (M) and Weak (W) peak characteristic
that is exhibited by the trace. (b) In this example, one of the four sets
of traces is shown. The scores for the trace indicate a combination
Strong-Medium peak.

the traces. To do this, we employ Trace Classification scores
described in Allex et al. (1996) and summarized in Figure 3.

The four input features we defined for an aligned column
are listed next.
� Base Call Fraction

The fraction of occurrences of G, A, T and C.
� Gap Fraction

The fraction of occurrences of gaps.
� Trace Peak Intensities

For each base, the trace peak intensity weighted by
quality and averaged over the number of aligned se-
quences.

� Trace Peak Shapes
For each base, the Strong (S) and Medium (M) Trace
Classification scores weighted by quality and averaged
over the number of aligned sequences.

Figures 4–7 contain the details of calculating the numerical
inputs for these features.

Fig. 4. Base Call Fraction. There are four aligned sequences in the
highlighted column in this example. For each base call, we divide the
number of their occurrences by the number of sequences. The G base
call occurs once in four sequences, so its input is set to 0.25.
Likewise, the inputs for A, T and C are 0, 0 and 0.5 (2 of 4),
respectively.

Fig. 5. Gap Fraction. For this example, we again have four aligned
sequences in the highlighted column. For this input, we are only
interested in gaps, so the single input is the number of gap
occurrences divided by the number of sequences. Here a gap occurs
once in four sequences, so the input is 0.25.

We tested five network topologies. Each has five hidden
units and five outputs. The desired outputs for the networks
always consist of four zeros and a single one that represents
either one of the four bases or a gap.

The input representations use combinations of the four
possible input features described above. The simplest net-
work, referred to as Base Call, uses an input representation
that consists of the Base Call Fraction and the Gap Fraction
features. The Base Call network is used as the control in test-
ing our hypothesis that inputs that include trace information
produce more accurate results than those that only consider
base calls.

A second network, called Trace Shape, uses nine inputs
that include the Trace Peak Shapes and Gap Fraction input
features. A third network, Trace Intensity, has five inputs that
use Trace Peak Intensities and Gap Fraction input features.
The fourth network, referred to as Trace Shape & Intensity,
uses both the Trace Peak Intensities and the Trace Peak
Shapes as well as the Gap Fraction features in its 13 inputs.
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Fig. 6. Trace Peak Intensities. Three sequences are aligned in the
highlighted column. For each of the four bases in each sequence, the
intensity (value at the center of the column) of the trace is divided by
the maximum possible trace value. This fraction is then multiplied
by the quality value (Allex et al., 1997) assigned to the sequence. The
average over the weighted values forms the input for each base. In
this example, the maximum trace value is 1600 (a typical value for
ABI traces). In the first sequence, the intensity of the T trace is 1104
and its intensity relative to the maximum is 0.69 (1104/1600). Values
for all other bases in each sequence are calculated in the same way.
The values are then weighted by the quality and the results are given
in parentheses below each relative intensity. When averaged, the
values yield the inputs 0, 0, 0.13 and 0.

Finally, we tested one network that included all the possible
input features: Base Call, Trace Peak Intensities, Trace Peak
Shapes and Gap Fraction.

The five network topologies are summarized in Figure 8.
To make a consensus call with one of these networks, we find
the highest output value and its corresponding base or gap is
the consensus call. Ambiguous calls may also be made by
setting a threshold. If more than one output exceeds the
threshold, then the appropriate ambiguous call is made. If
only one output is above threshold, the call is unambiguous.
In non-heterozygote DNA sequences, human editors resolve
ambiguous calls to one of the four bases before submission

Fig. 7. Trace Peak Shapes. To form the inputs for the three aligned
sequences in the highlighted column, we extract trace information
using Trace Classification scores (Allex et al., 1996). We first
compute the Strong (S) and Medium (M) peak scores for each of the
four traces in each sequence. (We found Weak scores to be irrelevant
and do not use them.) Each score is then multiplied by the quality
score for its trace. The scores weighted by the quality are given in
parentheses below the scores. There are two inputs for each base: the
average over all the sequences of the weighted Strong scores and the
average of the weighted Medium scores.

to GenBank. Ambiguous calls serve to focus editors’ atten-
tion on areas in the consensus that warrant closer examin-
ation. In the case of heterozygote genomes, ambiguous calls
pinpoint differences between the alleles.

Implementation

We tested the effectiveness of the networks on examples with
various distinct amounts of coverage (number of aligned se-
quences). Since almost any reasonable algorithm can make
correct calls when the coverage is high, we believe that one
criterion that can be used to identify a superior method is its
accuracy even when the coverage is low. In addition, since
every step required to sequence a fragment adds to the over-
all expense of sequencing, reducing the needed coverage
means a substantial reduction in sequencing costs. In large
sequencing projects, it is typical to produce a coverage of at
least six in all areas to ensure accurate consensus sequences.
This much coverage is not needed when using a method that
is highly accurate with fewer aligned sequences.

To compare the input representations with varying
amounts of coverage, we created example sets in which all
of the examples for a particular set have the same coverage.
We chose examples with coverages of two, three, four, five
and six to form five sets. Each set contains 20 000 examples
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Fig. 8. Network topologies. Each of the five networks has five
hidden units and five outputs. The number of inputs ranges from five
to 17.

of categorized data. Ten training and test sets are constructed
from each example set such that each network is trained on
18 000 examples and tested on the remaining 2000. Each
example occurs in exactly one test set and nine training sets
disjoint from the test set. In these sets, examples with a de-
sired output of gap are far outnumbered by examples with
desired outputs of G, A, T or C. To enable the networks to
learn to recognize gaps, gap examples are duplicated in the
training sets so that they occur with about the same frequency
as examples for each base. (Note that gap examples are not
duplicated in test sets.)

The example sets are extracted from fragment assemblies
of a 124 kb section of Escherichia coli supplied by the E.coli
Genome Project at the University of Wisconsin (Blattner et
al., 1997). The assemblies were created with DNASTAR’s
SeqMan II fragment assembly program. Although most of
the data and alignments in the assemblies are quite good, se-
quence traces do vary in quality and some areas present more
of a challenge for consensus calling. Figure 9 contains an
example of an aligned region in one of the test assemblies
that contains a fair amount of discrepancies, indicating im-
perfect underlying trace data and difficulties for consensus
calling. The data and subsequent alignments included in our
testing and results cover a wide range of quality from near
perfect to quite inexact, as shown in Figure 9. Correct base
calls used to categorize data are taken from E.coli sequences
submitted to GenBank.

Fig. 9. Test assembly alignment. The data used for testing are of
varying quality. Displayed here is a region with four aligned
sequences from one of the test assemblies. Columns whose base calls
are not in total agreement are marked with a ‘?’. There is a fair
amount of disagreement among the base calls, implying poorer
quality underlying trace data. Consensus calling in this region is
more difficult than in areas with near-perfect data.

NeuralWare Inc.’s NeuralWorks Professional II software
was used for all neural network tests. We ran this software on
an HP Pentium Pro 6/200 running Windows NT.

Discussion

We trained and tested each of the neural network topologies
with the five example sets. For each coverage, we used
10-fold cross-validation and report accuracies averaged over
the 10 test sets. During the training phase, each example in
a training set was processed once.

Accuracy results for the five topologies are graphed in Fig-
ure 10. Of the five networks, we found that Trace Shape &
Intensity produces the most accurate consensus calls. With a
coverage of six, it makes only three errors in 20 000 calls.
The range of accuracies is from 99.26% for a coverage of two
to >99.98% with a coverage of six.

The network that uses only base call information in inputs,
Base Call, has the lowest accuracies at every coverage. With
two or three aligned sequences, this network has substan-
tially poorer results than any of the other four networks. Ex-
cept when the coverage is four sequences, differences be-
tween the Base Call and the Trace Shape & Intensity net-
works are statistically significant using a paired one-tailed
t-test at the 95% confidence level. As with the other net-
works, the best results using the Base Call network are
achieved when the coverage is six. With six aligned se-
quences, the error rate is eight in 20 000—more than double
that of the best network that uses trace information.

In additional tests, we experimented with alternative plaus-
ible input representations. In one experiment, we extracted
inputs from a broader context than a single column. Our
premise was that the accuracy of the consensus calls could
be increased by extending the inputs to include trace in-
formation for one or more bases 5′ to the base of interest.
Parker et al. (1995) and Golden et al. (1993) have reported
that intensity values for a base are affected by 5′ adjacent
bases. For example, Parker et al. show that the intensity of a
C peak following a G is relatively low. Several patterns such
as these are described for dye–primer and dye–terminator
labeled data (Parker et al., 1995; Perkin Elmer, 1995). We
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Fig. 10. Results. The Trace Shape & Intensity network produces the
most accurate results at every coverage. With a coverage of four or
more, the accuracies for all networks that use trace information are
>99.9%.

believed that the neural networks could be trained to recog-
nize these patterns, but in practice found no improvement in
accuracy with the extended inputs.

In another experiment, we provided not just a single inten-
sity input for each trace, but rather the intensities in a window
surrounding the center of the base peaks. These are the same
values that we use in calculating Trace Classification scores,
but rather than transforming them algorithmically, we allow
the network to process them. The network using this alternate
input representation required more inputs, but yielded results
very similar to the Trace Shape & Intensity network.

Our work demonstrates that neural networks can be an ef-
fective tool for determining the consensus of aligned DNA
sequences. In particular, networks trained with input repre-
sentations that use fluorescent trace information and ignore
base calls are highly accurate. Further studies in utilizing
traces in neural networks for consensus calling and related
tasks are warranted.
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