
BIOINFORMATICS Vol. 16 no. 12 2000
Pages 1091–1104

Protein domain decomposition using a
graph-theoretic approach

Ying Xu 1,∗, Dong Xu 1 and Harold N. Gabow 2

1Computational Biosciences Section, Life Sciences Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37830-6480, USA and 2Department of Computer
Science, University of Colorado, Boulder, CO 30309, USA

Received on May 10, 2000; revised on August 3, 2000; accepted on August 4, 2000

Abstract
Motivation: Automatic decomposition of a multi-domain
protein into individual domains represents a highly inter-
esting and unsolved problem. As the number of protein
structures in PDB is growing at an exponential rate, there
is clearly a need for more reliable and efficient methods
for protein domain decomposition simply to keep the do-
main databases up-to-date.
Results: We present a new algorithm for solving the
domain decomposition problem, using a graph-theoretic
approach. We have formulated the problem as a network
flow problem, in which each residue of a protein is repre-
sented as a node of the network and each residue–residue
contact is represented as an edge with a particular capac-
ity, depending on the type of the contact. A two-domain
decomposition problem is solved by finding a bottleneck
(or a minimum cut) of the network, which minimizes
the total cross-edge capacity, using the classical Ford–
Fulkerson algorithm. A multi-domain decomposition
problem is solved through repeatedly solving a series of
two-domain problems. The algorithm has been imple-
mented as a computer program, called DomainParser.
We have tested the program on a commonly used test
set consisting of 55 proteins. The decomposition results
are 78.2% in agreement with the literature on both the
number of decomposed domains and the assignments of
residues to each domain, which compares favorably to
existing programs. On the subset of two-domain proteins
(20 in number), the program assigned 96.7% of the
residues correctly when we require that the number of
decomposed domains is two.
Availability: The executable of DomainParser and its web
server are available at http://compbio.ornl.gov/structure/
domainparser/ .
Contact: xyn@ornl.gov

∗To whom correspondence should be addressed.

Introduction
Structural domains are considered as the basic units of
protein folding, function, evolution, and design (Holm
and Sander, 1994). While there has not been a precise
and universally accepted definition of a structural domain,
domains are generally considered as compact and semi-
independent units of a protein, each of which may
consist of a small number of continuous segments of the
peptide chain and form a structurally ‘separate’ region
in a protein three-dimensional (3D) structure (Wetlaufer,
1978; Richardson, 1981).

A number of popular protein structure databases, e.g.
SCOP (Murzin et al., 1995), DALI (Holm and Sander,
1996), and CATH (Orengo et al., 1997), have been
constructed based on the concept of structural domains.
These databases provide an important basis for protein
structure/function classification, analysis, prediction, and
design. As the number of proteins being deposited into
the PDB database (Bernstein et al., 1977) increases at an
exponential rate, we expect that the need for reliably and
efficiently identifying structural domains from a solved
protein structure will continue to increase, e.g. simply to
keep the domain databases up-to-date.

Automatic identification (or decomposition) of domains
of a given 3D structure has been an active research
field since late 1970s when Wetlaufer published his
study on protein domains (Wetlaufer, 1978). Numerous
approaches have been proposed to formulate and solve this
interesting and challenging problem. While earlier works
were mainly focusing on domains consisting of a single
peptide chain (Crippen, 1978; Nemethy and Scheraga,
1979; Rose, 1979; Lesk and Rose, 1981; Rashin, 1981;
Zehfus and Rose, 1986), more general methods have been
proposed in recent years to deal with domains containing
multi-segments of a chain (Holm and Sander, 1994; Islam
et al., 1995; Sowdhamini and Blundell, 1995; Siddiqui
and Barton, 1995; Wernisch et al., 1999; Taylor, 1999).
Though these approaches vary in their specific formulation
of the problem, they generally follow one basic principle:
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the (short-distance) residue–residue contacts are denser
within a domain than between domains.

To this date, the domain identification problem re-
mains an unsolved problem as indicated in a recent study
by Jones et al. (1998). Based on their analysis on four pop-
ular domain identification programs (Holm and Sander,
1994; Siddiqui and Barton, 1995; Islam et al., 1995;
Swindells, 1995), they found that the most ‘accurate’
program is consistent in 76% of the cases with manually
identified domains by experts on a data set consisting of
55 protein chains, and the four programs agreed in only
55.7% of the identified domains on a larger data set with
787 chains. Because of this reason, manual checking is
generally required when decomposing a solved protein
structure into domains and putting them into the domain
databases like SCOP (Murzin et al., 1995), DALI (Holm
and Sander, 1996), and CATH (Orengo et al., 1997).
The manual process is a major barrier in updating these
databases in a timely fashion.

We propose a new algorithm for the domain identifica-
tion problem. The algorithm follows the same basic prin-
ciple as the previous methods. We have formulated the do-
main identification problem as a network flow problem,
which has been widely studied in the field of operations
research (Ford and Fulkerson, 1962; Lawler, 1976). In this
formulation, each residue is represented as a node of a con-
nected network and each residue–residue contact, within
certain cutoff distance between their atoms, is represented
as an edge with a particular capacity value, depending on
the type of interaction between the two involved residues.
The basic problem we want to solve is to divide the net-
work into two connected parts in such a way that the total
edge capacity across the division is minimized. Intuitively,
we want to find the bottleneck of the network. Based on
the classical Ford–Fulkerson Theorem, this minimum-cut
problem can be efficiently solved by finding the maximum
flow of the network.

Using the representation by Picard and Queyranne
(1980) of all minimum cuts, we can efficiently enumerate
all cuts of the network that achieve the minimum cross-
edge capacity. Having the capability of enumerating all
minimum cuts allows us to evaluate and rank different
domain decompositions in a post-processing step. Our
test results have shown that this capability has helped to
improve the quality of the decomposition.

For the more general situation where a protein may have
multiple domains, our algorithm employs this network
flow algorithm repeatedly to partition a protein into two
parts until some stopping criteria are met. Currently the
stopping criteria include various parameters related to the
geometric and physical properties observed from known
domains.

One of the key aspects of this work is to assign
edge capacities in such a way that a minimum cut

corresponds well with an interface between two domains.
The parameters for capacity values are ‘trained’ based
on a set of proteins with domains assigned manually by
experts. Tests on a separate set of proteins are done.
Similar levels of decomposition performance are achieved
on the training and the test sets. Our preliminary test
results suggest that this network flow formulation of the
problem has captured the essence of the basic principle
used in the various domain decomposition methods.

We have implemented the algorithm as a computer
program, called DomainParser, using the C programming
language. The program allows a user to either use default
parameters or interactively change the parameters and to
put constraints on the number of domains that a protein
should be partitioned into. DomainParser also provides
a confidence level for each assignment, based on the
compactness of a domain and the tightness of the contacts
between two domains. A user can decide if he/she may
want to accept a partition or not, based on the confidence
level. A web server for partitioning all the protein chains
in PDB is freely available at http://compbio.ornl.gov/
structure/domainparser/. If the web browser is configured
to incorporate a molecular viewer, such as CHIME (MDL
Information Systems, 1999) or RasMol (Sayle and Milner-
White, 1995), the decomposition result can be viewed
directly with the partitioned domains being color-coded.

Method
In this section, we first introduce a flow network represen-
tation of a protein structure, and also present an algorithm
for domain decomposition, based on the network flow al-
gorithm by Ford and Fulkerson (1962). Then we describe
how the parameters in the DomainParser program are de-
termined.

Problem formulation of two-domain decomposition
A flow network is a graph consisting of a set of nodes and
a set of edges. A network has two distinguished nodes: a
source s and a sink t . Each edge connects two nodes, and
has a nonnegative capacity. An edge with zero capacity
is equivalent to an edge that does not exist. For a 3D
protein structure, we represent each residue by a node,
and use an edge (between two nodes) to represent that the
two residues are spatially close (e.g. the cutoff distance
between their closest atoms is 4.0 Å in our current
program). The capacity of an edge is defined so to reflect
the packing between the two involved residues (more
details in Parameter determination of this section). s and
t are two artificially defined nodes, which we will explain
later. Figure 1 shows an example of a flow network.

An s–t cut is a set of edges, whose removal
leaves no path from s to t . For example, edges
{(s, 1), (s, 2), (s, 3), (s, 4)} form an s–t cut in Figure 1. A
minimum s–t cut is an s–t cut that has the smallest total
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Fig. 1. A directed flow network. Each circle represents a node and a
link between two nodes represents an edge. The number attached to
each edge represents the capacity of the edge.

edge capacity. Edges {(1, 5), (2, 5), (2, 9), (4, 8), (6, 7),

(7, 8)} form a minimum s–t cut in Figure 1.
A minimum s–t cut can be calculated by finding a

maximum flow from the source s to the sink t , based
on the maximum-flow/minimum-cut theorem† (Ford and
Fulkerson, 1962). In order to apply the Ford–Fulkerson
algorithm‡, we use a directed graph by assuming each edge
(u, v) having two directed edges, one from node u to node
v and one from v to u and both having the same capacity
of (u, v), as shown in Figure 1.

A set of values assigned to the edges of the directed
network forms an s–t flow if they satisfy the following
three conditions. We use f (u, v) to represent the flow
value assigned to edge (u, v) and c(u, v) the capacity of
(u, v).

• capacity constraint: f (u, v) � c(u, v), for each edge
(u, v).

• skew symmetry: f (u, v) = − f (v, u), for each edge
(u, v).

• flow conservation: for each node u other than s and t ,
its total in-flow should be equal to its total out-flow, i.e.

∑

v

f (u, v) = 0,

where
∑

v means summing over all nodes.

† The maximum-flow/minimum-cut theorem states: the value of a maximum
flow from s to t is equal to the minimum edge capacity across a partition of
the network that separates s and t .
‡ Other algorithms can be used for the flow problem of an undirected
network. Goldberg and Rao (1998) has the fastest maximum-flow algorithm
for a directed network. But Ford–Fulkerson is easy to implement, and
sufficient for our purpose.

The value of a flow f is defined as
∑

v f (s, v). The
maximum s–t flow problem is defined to find a flow
f that has the largest possible value. The maximum
s–t flow problem can be solved by the Ford–Fulkerson
algorithm (Ford and Fulkerson, 1962; Lawler, 1976).

Ford–Fulkerson algorithm
This section outlines the Ford–Fulkerson algorithm, as im-
plemented by Edmonds and Karp (1972). We first intro-
duce a crucial definition of the Ford–Fulkerson algorithm.
For a given flow f , the residual capacity of an edge (u, v)

is defined as

c f (u, v) = c(u, v)− f (u, v). (1)

By the above definition of a flow, c f (u, v) is always � 0.
Figure 2a shows the flow network of Figure 1b labeled
with residual capacities, for a flow defined by

s
f (s,2)=4−→ node 2

f (2,9)=4−→ node 9
f (9,t)=4−→ t,

and

s
f (s,4)=4−→ node 4

f (4,8)=4−→ node 8
f (8,t)=4−→ t,

and the rest of the edges have flow f = 0, where x −→ y
represents a directed edge from node x to node y. Note
that the residual capacity could be larger than the capacity
since a flow could have a negative value (see the definition
of a flow). In Figure 2, we did not draw edges with zero
residual capacity.

The basic idea of the Ford–Fulkerson algorithm is to
repeatedly find a directed path p from s to t , consisting
of directed edges (u, v) with c f (u, v) > 0; and then
to increase the flow value f of each edge along p by
the minimum value of c f (u, v) of p (and also update
the values of f (v, u) to keep the skew symmetry). This
procedure continues until no such a path can be found.
Initially, we set all f values to zero.

Ford and Fulkerson proved that this strategy finds a
maximum s–t flow if all capacities are integral (Ford
and Fulkerson, 1962). Edmonds and Karp further proved
that if the directed path p has the smallest number of
edges among all possible such paths, this algorithm runs in
O(nm2) time (Edmonds and Karp, 1972), where n is the
number of nodes and m is the number of edges§. Finding a
path with the smallest number of edges can be done by
doing a breath-first search of the network starting from
the source s. By following this procedure, we can check
that the value of a maximum s–t flow of the network in
Figure 1b is 26. Figure 2b shows the network labeled with
residual capacities when a maximum s–t flow is found.
Apparently, there is no directed path that goes from s to t .

§ In our formulation, the number of edges associated with each node is
bounded from above by a small constant. Hence, m = O(n).
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Fig. 2. The flow network labeled with residual capacities. (a) Resid-
ual capacities of a non-maximal s–t flow; (b) residual capacities of
the maximum s–t flow.

A residual network is the network containing all edges
with positive residual capacity. Given the residual network
of a maximum s–t flow, one can find a minimum s–t cut
by labeling all nodes that can reach the sink t , as a set
T , and labeling the rest of the nodes as T . Apparently
there is no directed edge from T to T since otherwise
more nodes will be added to T . This means that all the
edges directed from T to T have zero residual capacity,
and hence they form a minimum s–t cut. For the network
of Figure 1b, the following edges form a minimum s–t
cut: {(1, 5), (2, 5), (2, 9), (6, 7), (8, 11), (8, 12), (8, t)}. It
is easy to check that the total capacity of these directed
edges is 26, which is equal to the maximum s–t flow value
as it should be. By removing these edges in Figure 1a, we
get a partition of the network and of the corresponding
protein.

A careful reader may have noticed that the minimum
s–t cut is not unique, i.e. there are more than one
cuts that have total cross-edge capacity of 26. For
example, {(1, 5), (2, 5), (2, 9), (6, 7), (4, 8), (7, 8)} and
{(s, 4), (1, 5), (2, 5), (2, 7), (2, 9), (3, 4), (3, 7)} also
form minimum s–t cuts. The following section gives an
algorithm that finds all minimum cuts of a network, based
on the residual network of the Ford–Fulkerson algorithm.

Enumeration of all minimum cuts
Our enumeration procedure of minimum cuts consists of
two components: (i) the enumeration of all ‘interesting’
s–t networks for a given protein, and (ii) the enumeration
of all minimum s–t cuts for a given s–t network. As
mentioned before, both s and t are artificially introduced
nodes, which serve the following purpose. The Ford–
Fulkerson algorithm requires a source and a sink. If we
choose two nodes directly from the network representation
of a protein as the source and the sink, we may get a
trivial and incorrect partition, i.e. a partition consisting of
one of the two nodes and the rest of the nodes. To avoid
this, we want to select two groups of nodes, collectively
as the source and the sink. s and t are used to implement
this strategy by connecting to the two groups of nodes,
respectively, with infinitely large edge capacities. This
will force each group of selected nodes to stay in one
domain. The enumeration of s–t networks is done using
the following procedure.

For each node u representing a surface-exposed residue,
add a source node s and create a directed edge from s
to u and to each of the k residues that are closest to u
spatially, where k is a parameter of the algorithm and its
default value is set to be 30 (this number was selected
through training as discussed in the following). Each of
the added edges has a capacity of +∞. For each fixed u,
we go through all other surface-exposed residues v. For
each such residue v, we create a sink t and k + 1 directed
edges from v and v’s k neighbors¶ to t . Similarly, all these
edges have a capacity of+∞. We call u and v the extreme
nodes. In the current implementation of DomainParser, we
also require that the two extreme points should be certain
distance apart and satisfy certain geometric and physical
properties (more details in Parameter determination of
this section).

For each s–t network, we have applied an algorithm
by Picard and Queyranne (1980) to enumerate all mini-
mum s–t cuts. The basis of the Picard–Queyranne algo-
rithm is the following observation. For a given residual
network R and its source s and sink t, a partition of R’s
nodes into two disjoint sets S and T gives a minimum s–t
cut of R if and only if (i) S contains s but not t , and (ii) no
node of T can be reached from any node of S, through the

¶ We require that there is no overlap between s’s neighbors and t’s neighbors.
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V4V1

V2 V3

Fig. 3. The contracted network of the residual network, where
V 1 = {s, 1, 2, 3}, V 2 = {4, 7}, V 3 = {8}, and V 4 =
{5, 6, 9, 10, 11, 12, t}. A directed edge is placed between two
contracted nodes if there is a directed edge between a pair of nodes
belonging to the two contracted nodes, respectively, in R.

directed edges. The Picard–Queyranne algorithm gives an
efficient way to enumerate all such S–T partitions.

We first introduce one useful concept for explaining the
algorithm. A strongly connected component of a directed
graph is a maximal subgraph such that every node of
the subgraph can reach every other node of the subgraph
through its directed edges. In Figure 2b, the subgraph
consisting of nodes {4, 7} forms a strongly connected
component, but the subgraph consisting of nodes {3, 4, 7}
does not since node 3 can reach neither node 4 nor
node 7. One simple observation about an S–T partition
is that if S contains a node x then S has to contain the
strongly connected component (which was calculated in
the residual graph) containing x. The same is true for
T . So conceptually, we can treat a strongly connected
component as one single node. Also for the purpose
of finding all the S–T partitions, we can conceptually
consider all nodes reachable from s (including s) as one
single node, and all nodes that can reach t (including) as
one single node. Figure 3 shows the network of Figure 3b
after conceptually contracting these nodes.

The enumeration of all S–T partitions can be done
using the following procedure. We initialize S to be the
contracted node containing s and T to be the contracted
node containing t . Then we consider all possible ways
to assign the other (contracted) nodes to S and T under
one constraint—if a node is assigned to S then all nodes it
can reach (through the directed edges) should be assigned
to S. The enumeration algorithm by Schrage and Baker
(1978) can be used to efficiently enumerate all such
S–T partitions. The following lists all S–T partitions of
Figure 3b:

• 1. S = {V 1} and T = {V 2, V 3, V 4};
• 2. S = {V 1, V 2} and T = {V 3, V 4};
• 3. S = {V 1, V 2, V 3} and T = {V 4}.
Note that S = {V 1, V 3} and T = {V 2, V 4} do not form
an S–T partition as defined above since node V 2 of T

is reachable from node V 3 of S. It is not hard to check
that each of these partitions gives a different minimum
s–t cut of the original network. In the post-processing step,
different partitions are evaluated and ranked using more
global properties (see Post processing of this section). The
following gives a pseudo-code of the Picard–Queyranne
algorithm.

Procedure ENUMERATE ALL S-T MIN CUTS (R, s, t)
1. begin
2. find all strongly connected components of R, and

contract each into one node;
3. find all nodes of R reachable from the source s, and

contract them into one node;
4. find all nodes of R that can reach the sink t , and

contract them into one node;
5. enumerate all S–T partitions of the contracted

network using the Schrage-Baker algorithm;
6. for each S–T partition, replace each contracted

node by the original nodes of R, and
output it as a minimum s–t cut;

7. end

The strongly connected components of a network (line 2)
can be found in linear time using Tarjan’s algorithm (Tar-
jan, 1972). The following summarizes our enumeration
procedure of all minimum cuts.

Procedure ENUMERATE ALL MIN CUTS (P , L)
1. begin
2. set L ← ∅; /* L contains all minimum cuts */

set maxflow← 0; /* maxflow records the current
maximum flow */

3. enumerate s–t networks for protein P;
4. for each s–t network do
5. run Ford–Fulkerson algorithm to find a maximum

s–t flow f and construct the
residual network R;

6. if f � maxflow then
7. if f > maxflow then set L ← ∅;

maxflow← f ;
8. call ENUMERATE ALL S-T MIN CUTS

(R, s, t) to find all minimum s–t cuts
and put them into L;

9. sort L lexicographically and merge the minimum
cuts that yield the same domain interface.

10. end

In the worst case, a graph with n nodes may have up to
2n−2 s–t minimum cuts. Hence, the complexity of this
procedure can be exponential. Fortunately, most partitions
in actual proteins have only one minimum s–t cut. The
largest number of the minimum s–t cuts observed in the
proteins that we studied so far is 3. The small number is
probably because protein domain interfaces are typically
well defined so that not many alternatives exist.
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Decomposition of multi-domain proteins
The core of DomainParser is a two-domain decomposition
algorithm as outlined above. To deal with proteins having
more domains (see Figure 4), DomainParser repeatedly bi-
partitions a protein, using the core algorithm. It first repre-
sents a protein structure as a network as described in Sec-
tion Problem formulation of two-domain decomposition,
and finds a minimum cut of the network. Then it repeats
this process by representing each partitioned sub-structure
as a separate network until the following stopping criteria
are met: the current (sub-)structure has less than 80 amino
acids‖, or its partitioned domains do not satisfy the neces-
sary conditions of our domain definition (defined in terms
of the compactness, the size of the interface versus the vol-
ume of a domain, etc.—details are given in Section Param-
eter determination). The following pseudo-code outlines
the decomposition procedure. For simplicity of presenta-
tion, we consider here only the minimum cut of a network
by the Ford–Fulkerson algorithm with fixed source and
sink. The more general situation, i.e. considering differ-
ent s–t pairs or a network with non-unique s–t minimum
cuts, can be treated in a similar manner for each of the s–t
minimum cuts.

Procedure Decomposition (P)
1. begin
2. if protein P has more than 80 amino acids then
3. construct a network representation N of

protein P with selected source s and sink t ;
4. call Ford–Fulkerson (N , s, t) to find an s–t

minimum cut of N ; let (P1, P2) be the
corresponding bi-partition of P;

5. call Decomposition (P1), and call
Decomposition (P2);

6. if P1 or P2 is labeled as ‘rejected’ then
7. label both P1 and P2 as ‘rejected’;
8. label P as ‘accepted’ or ‘rejected’ based

on the criteria given in Section Domain
evaluation and refinement: a post-
processing step;

9. else
10. label P as ‘accepted’ or ‘rejected’ based on the

criteria given in Section Domain evaluation
and refinement: a post-processing step;

11. label each ‘accepted’ sub-structure as a domain.
12. end

In the general situation (when considering non-unique
minimum cuts), this procedure generates a list of possible
ways to decompose a protein into individual domains.
A post-processing step (see Section Domain evaluation

‖A partition for a (sub-)structure having less than 80 amino acids will yield a
sub-structure with 40 amino acids or less, and hence violate our requirement
for the minimum domain size.

and refinement: a post-processing step) is used to rank
the generated ‘domains’, using various geometric and
physical parameters.

Parameter determination
The DomainParser program uses three classes of parame-
ters: (a) parameters related to edge capacities, (b) param-
eters used for the selection of the extreme points, and (c)
parameters used for post processing. Each of the parame-
ters is determined in such a way to optimize the decompo-
sition performance on a training set with domains already
identified by experts.

Our training set consists of 169 single-domain protein
chains and 34 two-domain chains, which are selected from
a set of 284 proteins collected by the authors of Islam et
al. (1995). These proteins are selected for the following
reason. Among the 284 proteins, 55 proteins have been
used for performance testing by Jones et al. (1998). For the
purpose of comparison with other programs, we decided
to use these 55 proteins as our test set and excluded them
from the training set. Also excluded from the training set
are (1) protein structures with only Cα coordinates, and (2)
proteins with domains consisting of less than 40 residues
(PDB codes: 1bbo, 1cpca, 1cpcl, and 4rcrh). We have
also excluded proteins with more than two domains from
the training set. This leaves 169 single-domain protein
chains∗∗ and 34 two-domain protein chains††.

Determination of edge capacity. Two atoms are said to
be in contact if their distance is 4.0 Å or less, following
the definition of Holm and Sander (1994). An edge is
created between two residues if they have at least one pair
of atoms in contact. In assigning the capacity of an edge,
we are trying to capture some of the general rules used
for domain decomposition by human experts. The very
basic rule is that residue–residue contacts should be denser
within a domain than between domains. In addition, we
also intend to enforce the following rules:

∗∗The PDB codes of these proteins (with the fifth letter indicating the chain
name, if any): 0acha 0sc2a 1aaf 1aapa 1aba 1ads 1aps 1atx 1ayh 1baa 1babb
1barb 1bba 1bbl 1bbt1 1bbt2 1bgc 1bop 1bova 1btc 1bw4 1c2ra 1c5a 1caj
1cbn 1cbp 1cd8 1cdta 1cis 1cmba 1coba 1csei 1ctc 1d66a 1dhr 1dnka 1eaf
1eco 1efm 1egf 1end 1erp 1fas 1fbaa 1fc2c 1fcs 1fdd 1fha 1fiab 1glaf 1glua
1gps 1hcc 1hddc 1hgeb 1higa 1hiva 1hsda 1ifa 1ifci 1isua 1ixa 1le4 1ltsa
1ltsc 1ltsd 1mdaa 1mdah 1mdc 1mrra 1ms2a 1mup 1nipb 1nrca 1nxb 1omf
1ovb 1paz 1pcda 1pdc 1phb 1phy 1poa 1poc 1ppba 1prcc 1prcm 1prf 1pte
1r094 1r1a2 1r1ee 1rea 1rnd 1rpra 1rro 1s01 1shaa 1shfa 1tabi 1ten 1tfg
1tfi 1tgsi 1tho 1tima 1tnfa 1ttba 1utg 1vaab 1wrpr 1xima 1ycc 256ba 2avia
2bds 2bpa1 2bpa2 2bpa3 2cbh 2cdv 2cpl 2crd 2cro 2dpv 2ech 2gb1 2hhma
2hipa 2hpda 2ihl 2ila 2lala 2lalb 2madl 2mev1 2mev4 2mhr 2msba 2pf2
2plv1 2plv3 2por 2scpa 2sn3 3adk 3b5c 3cbh 3dfr 3il8 3mona 3pgm 3rubs
3sgbi 3sici 4cpai 4enl 4fxn 4htci 4sbva 4sgbi 4tgf 4tms 5nn9 5tgle 7apib
8i1b 8rxna 9rnt
††The names of these proteins: 1abk 1abma 1arb 1caua 1caub 1cid 1dri 1fc1a
1glag 1gssa 1hila 1l92 1lgaa 1mamh 1omp 1osa 1ppfe 1sbp 2cts 2er7e 2glsa
2liv 2sga 2snv 2tbva 3cox 3gbp 4enl 4gpd1 4ts1a 6ldh 7aata 8abp 9rubb

1096



Protein domain decomposition

0 1 2 3 4 5 6 7 8
number of domains

0

300

600

900

1200

1500

nu
m

be
r 

of
 p

ro
te

in
s

1323

419

146
52 32 10 4 1

Fig. 4. Distribution of the number of domains for the protein chains
in FSSP.

• each domain should not have many discontinuous se-
quence segments; or equivalently, the backbone con-
tact should not be cut frequently in the decomposition
process;

• a decomposition should generally avoid splitting a β-
sheet into different domains;

• a β-strand should generally not be cut.

We use the following function to assign the capacity of
an edge (u, v).

c(u, v) = ku,v + kb
u,vωb + kβ

u,vωβ + ke
u,vωe . (2)

ku,v is the number of atom–atom contacts between
residues u and v. kb

u,v is the number of backbone–
backbone atom contacts between u and v, which gives
additional weights to backbone–backbone atom contacts.
kβ

u,v = 1 if u and v form a backbone–backbone hydrogen
bond across a β-sheet, otherwise it is 0. This term is
mainly used to preserve a β-sheet in a domain decompo-
sition. ke

u,v = 1 if u and v belong to the same β-strand,
and it is 0 otherwise. ωb, ωβ and ωe are scaling factors.
The first two are to be ‘trained’ on our training set. ωe is
determined separately.

In training ωb and ωβ , our goal is to find values for
them so that the total number of residues assigned to
the wrong‡‡ domains is as small as possible. The search
for the ‘optimal’ values is done using a procedure called
the orthogonal array method (Sun et al., 1999). This

‡‡Here we consider the domains assigned by the authors of these proteins as
the correct assignments.

procedure starts with a coarse search grid, and gradually
focuses on a reduced and finer search grid. It converges
to local optima quickly. The following are the values we
have obtained through training:

ωb = 5 ; ωβ = 12 .

Typically a domain partition should not split a β-strand
into two different domains. So ωe should have a value+∞.
But we have seen a few cases where human experts have
cut a long β-strand into two domains in all-β proteins
(e.g. in 3cd4). With only a very few such cases, we find
it difficult to systematically ‘train’ the parameter ωe. In
the current version of Domainparser, we have arbitrarily
assigned a large number (1000) to ωe. This should avoid
cutting a β-strand when other possible partitions exist, but
still allow the possibility of cutting a β-strand in an all-β
protein.

Selection of extreme points. Extreme points (see Sec-
tion Enumeration of all minimum cuts for definition) are
used as ‘seeds’ of domains to be identified. Clearly, dif-
ferent seeds may lead to different decomposition results.
To overcome the problem that an incorrect selection of
seeds may result in incorrect domain decomposition,
we consider multiple possibilities of seeds and use a
post-processing step (see Section Domain evaluation
and refinement: a post-processing step) to rank various
decompositions using more global information. Our
current selection rule is a result of the trade-off between
prediction accuracy and computational efficiency. We
select three sets of extreme-point pairs from the top 5%
of the farthest pairs (in 3D space) from the each of the
following sets: (i) all residue pairs in a structure; (ii) the
residue pairs whose connecting lines are perpendicular
(allowing 5o-orientation deviation) to the line between the
farthest residue pair in the structure; and (iii) the residue
pairs whose constituting residues are on different sides
of the minimal contact-density point along the sequence
axis, where the contact density (Islam et al., 1995) at
sequence position k for a structure of n residues is defined
by ∑k

u=1
∑n

v=k+1 c(u, v)

k(n − k)
. (3)

Overlaps are removed if different rules produce the same
extreme-point pairs. We have found that generally, the
more extreme points we consider, the better decomposi-
tion results (after ranking) we can expect and the more
expensive the computation will be. Then the improvement
becomes asymptotic beyond a certain number of extreme
points used (see Figure 5).

Parameters for post processing. The post-processing
step is used to evaluate and rank decomposition results.
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Fig. 5. The accuracy of domain assignment vs. the number of
extreme-point pairs used. The data consists of both the 34 two-
domain protein chains in the training set and the 20 two-domain
protein chains in the test set. The accuracy is the percentage of
agreement between the manual assignments by experts and the
assignments by DomainParser when we require that the number of
decomposed domains is two.

Three parameters gm , fm , and ls are used in this step, for
determining if a decomposed domain is consistent with
the general characteristics of known domains. gm is a
threshold for the compactness of a partitioned domain; fm
is a threshold for the ‘size’ of a domain interface relative
to the ‘volume’ of the domain; and ls is a threshold for the
number of residues per segment in a domain.

We have used the same search procedure as outlined
above to find the ‘optimal’ parameter values. The training
set for these parameters consists of only the 34 two-
domain proteins. The objective here is to find values of
gm , fm , and ls so that the number of structures that are
partitioned into two domains is as high as possible. The
following are the values we have obtained:

gm = 0.54 ; fm = 0.52 ; ls = 35 .

Domain evaluation and refinement: a post-processing
step
The post-processing step serves two purposes: (i) ranking
or rejecting decomposed domains, and (ii) refining the
accepted domain decompositions. It applies more global
information about a domain to evaluate and improve the
quality of domain decompositions.

Evaluation of decomposed domains. Certain partitioned
‘domains’ are simply not consistent with the general
characteristics of a domain; and some partitioned domains

look more reasonable than the others. Here we use the
overall geometric and physical properties observed from
known domains to evaluate the partitioned ‘domains’.
DomainParser uses the following rules, similar to those
used in Holm and Sander (1994), to reject a bad domain
decomposition:

• A domain should have at least 40 residues.

• At most one β-strand can be cut at the interface
between two domains; and a β-sheet having more
than 2 residues in each strand can belong to only one
domain.

• A domain must be compact enough to satisfy the
following condition (Holm and Sander, 1994):

∑
i, j pi, j

na
� gm , (4)

where i and j are any two atoms separated by at least
three residues on the sequence; pi, j = 1 if the distance
between i and j is 4.0 Å or less, otherwise pi, j = 0;
and na is the number of atoms in the domain.

• The interface between two domains must be small
enough to satisfy

∑
inter-domain pi, j∑
intra-domain pi, j

� fm . (5)

• The number of segments in a domain, D, is not too
many such that

r(D)

s(D)
� ls , (6)

where r(D) and s(D) are the numbers of residues and
segments in a domain D, respectively.

DomainParser ranks the partitioned domains that which
pass these rules, using the following ranking function:

q =
s(D1) s(D2)

∑
inter-domain

pi, j

r(D1) r(D2)
∑

intra-domain−1
pi, j

∑
intra-domain−2

pi, j
.

(7)
In DomainParser, the lower the q value, the higher the
rank. In addition, DomainParser uses a combination of (1)
q, (2) the compactness, and (3) the interface size versus
the volume of a domain as an indicator of its prediction
confidence.

Decomposition refinement. DomainParser may refine an
‘accepted’ partitioned domain, using various empirical
rules. For example, some short segments may ‘dip’ in and
out of one domain while most of its flanks are in another
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Table 1. Decomposition of multi-domain proteins.

Protein Literature DomainParser Agreement

2 domains:

1ezm 1–134/135–298 1–133/134–298 99.7%
1fnr 19–161/162–314 19–152/153–314 97.0%
1gpb 19–489/490–841 19–63/64–484;828–841/558–648; overcut

712–792/485–557;649–711;793–827
1lap 1–150/171–484 1–173/174–484 99.4%
1pfka 0–138;251–301/139–250;302–319 0–137;254–319/138–253 93.1%
1ppn 1–10;112–208/21–111;209–212 1 domain undercut
1rhd 1–158/159–293 1–63;74–157/64–73;158–293 96.3%
1sgt 22–123;234–245/129–233 1 domain undercut
1vsga 1–29;92–251/42–75;266–362 1–32;86–255/33–85;256–362 100.0%
1wsyb 9–52;86–204/53–85;205–393 90–189/9–89;190–393 83.6%
2cyp 3–145;266–294/164–265 2–144;273–294/145–272 97.1%
2had 1–155;230–310/156–229 1 domain undercut
3cd4 1–98/99–178 1–98/99–178 100.0%
3gapa 1–129/139–208 1 domain undercut
3pgk 1–185;403–415/200–392 0–188;402–415/189–401 100.0%
4gcr 1–83/84–174 1–83/84–174 100.0%
5fbpa 6–201/202–335 1 domain undercut
8adh 1–175;319–374/176–318 1–173;321–374/174–320 98.9%
8atca 1–137;288–310/144–283 1–130;292–310/131–291 96.3%
8atcb 8–97/101–152 8–97/101–153 100.0%

3 domains:

1phh 1–175/176–290/291–394 32–124/180–268/1–31;125–179;269–394 72.6%
3grs 8–157;294–364/158–293/365–478 8–161;290–368/162–289/369–478 97.5%

4 domains:

1atna 1–32;70–144;338–372/33–69 0–33;97–147;337–372/34–96 90.6%
/145–180;270–337/181–269 /148–180;273–336/181–272

2pmga 1–188/192–315/325–403/408–561 1–188/189–303/304–406/407–561 97.8%
8acn 2–200/201–317/320–513/538–754 2–530/531–754 undercut

The four columns show protein PDB codes, residue ranges of domains assigned by the literature (’/’ is used to
separate domains), residue ranges of domains assigned by DomainParser, and the percentage of overlap
between the literature assignments and the DomainParser assignments, respectively.

domain. They are typically formed due to the structural
adjustment in the packing between the domains (Xu et
al., 1998). To make the domain partition more biologically
meaningful and to avoid creating too many short segments
in a domain, the program re-assigns the short segment to
the domain which contains its flanks if such a segment has
less than 10 residues. A similar rule is applied to a segment
at the terminus of a protein sequence and with less than
five residues in the domain. The decomposition refinement
prevents too many segments in a domain, and is generally
used by the other domain assignment programs.

Results
Using the ‘trained’ parameters, we have tested the perfor-
mance of DomainParser on a set of 55 proteins, the same
test used by Jones et al. (1998). Among the 55 proteins,
30 are single-domain proteins, 20 are two-domain pro-

teins, 3 are three-domain proteins, and 2 are four-domain
proteins. Jones et al. consider a domain decomposition as
correct if the number of decomposed domains is the same
as in the literature (i.e. the manual assignments by the au-
thors of the structures) and the residue assignment is at
least 85% in agreement with the structure authors (Jones
et al., 1998). Using this definition, DomainParser correctly
assigned 27 single-domain proteins, 13 two-domain pro-
teins, 1 three-domain protein (1phh), and 2 four-domain
protein (1atna and 2pmga), i.e. 78.2% of the 55 proteins.
Table 1 lists the decomposition results for all 25 multi-
domain proteins. Figure 6 shows four decomposition ex-
amples from this set.

Among the single-domain proteins with incorrect
decompositions, all three are decomposed into two
domains: 1gky (15–97;182–186/0–14;98–181), 1ula
(1–114;220–236;255–289/115–219;237–254), and 3dfr
(36–109/1–35;110–162). For the seven two-domain
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Fig. 6. Examples of domain decompositions by DomainParser. The different representations (thick ribbons, thin ribbons, strands, and
backbone traces) show different domains.

chains with wrong predictions, five chains (1ppn, 1sgt,
2had, 3gapa, and 5fpba) are undercut and assigned to
single domains; one chain (1gpb) is overcut into four
domains; and one chain (1wsyb) is correctly cut into two
domains, but the residue assignment is only 83.6% in
agreement with the manual assignment by experts. For the
five chains with more than two domains, DomainParser
has clearly done a better job than the four existing

programs (Holm and Sander, 1994; Siddiqui and Barton,
1995; Islam et al., 1995; Swindells, 1995) as assessed
by Jones et al. (1998). While DomainParser has assigned
three of them correctly, only two of these programs
assigned one correctly.

We have tested the stability of DomainParser in terms of
its prediction accuracy versus the exact choice of extreme
points. For each protein, if we call the extreme points
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Fig. 7. The accuracy of domain assignments (on 20 two-domain
proteins in the test set) as the extreme points drift away from
the optimal ones. The x-axis represents the kth spatially closest
residue (measured between the Cα distance) of the optimal extreme
point (with 0 representing the optimal one). The y-axis represents
the percentage of agreement between the manual assignments by
experts and the assignments by DomainParser when we require that
the number of decomposed domains is two.

which give the best decomposition (ranked #1) the optimal
ones, we have found that its performance level does
not change much if we select other residues as extreme
points, which are spatially close to the optimal ones (see
Figure 7). This indicates that our program is quite stable.

We have applied DomainParser to the non-redundant
protein chains (a total of 1987) in the FSSP database (Holm
and Sander, 1996) (release of January, 2000). The de-
composition results of all 1987 chains can be found
at http://compbio.ornl.gov/structure/domainparser/. A
summary of the results can be found in Figure 4. Domain-
Parser runs efficiently. For virtually every protein chain in
FSSP, it takes less than 30 seconds CPU time to complete
the decomposition on a DEC/alpha workstation. Figure 8
gives the computational time for all two-domain chains of
this set (419 in total).

Discussion
On the test set used by Jones et al. (1998), DomainParser
compares favorably to other existing programs. Compar-
ing to the overall accuracy level ranging from 67 to 76%
by the four exiting programs (Holm and Sander, 1994;
Siddiqui and Barton, 1995; Swindells, 1995; Islam et al.,
1995), DomainParser achieves an accuracy level of 78.2%
on the same set. Particularly worth mentioning is that the
improvement by DomainParser on proteins with more than
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Fig. 8. CPU time of running DomainParser as a function of the
number of residues for 419 two-domain chains in FSSP.

two domains is quite significant. Since the definitions of
domains and parameters used in DomainParser are simi-
lar to the ones used in other programs, we believe that the
main strengths of DomainParser are (a) that it does not rely
on the topological information of a protein structure (i.e.
how residues connect with each other on the sequence),
while the four existing methods all do directly or indi-
rectly; and (b) that the Ford–Fulkerson method provides
a rigorous and robust way for doing partitioning. Relying
solely on geometric information, i.e. the contact densities
within a domain and between domains, makes Domain-
Parser more general and robust. One test result is quite
revealing. On the 20 two-domain test proteins, Domain-
Parser has assigned 96.7% of residues correctly if we re-
quire that the number of decomposed domains is two (Do-
mainParser allows a user to do that). This suggests that
our current rules for stopping is inadequate, particularly
knowing that most of our incorrect decomposition results
(on multi-domain proteins) are caused by undercutting. By
using more sophisticated rules for defining the necessary
conditions of a ‘domain’, we believe that we can signifi-
cantly improve the performance of DomainParser. Studies
are ongoing to test the performance of using different new
rules and related parameters.

Some of the discrepancies between our assignments and
the ones in the literature may not necessarily indicate that
our assignments are incorrect in these cases. It may simply
be a result of the lack of precise definition of a structural
domain, as pointed out by several studies (Taylor, 1999;
Wernisch et al., 1999). The manual assignments by ex-
perts are sometimes quite subjective, depending on what
they believe constitutes a protein domain. Figure 9 shows
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Fig. 9. (a) Manual decomposition of 1arb by experts (1–139;229–263/140–228). (b) Domain decomposition of 3dfr by DomainParser (36–
109/1–35;110–162). The thick ribbons and thin strands show different domains.

two examples (1arb and 3dfr). The manual decomposi-
tion of 1arb by experts contains two domains, while Do-
mainParser assigns only one domain for the protein. The
packing between two manually assigned domains is ac-
tually very tight. In contrast, DomainParser assigns two
domains for 3dfr, while the experts’ assignment contains
only a single domain. However, the packing between the
two manually-assigned domains in 1arb is tighter than the
packing between the two domains assigned by Domain-
Parser for 3dfr. So it is clear that there exist inconsistencies
in the decomposition rules used by different human ex-
perts. We have also noticed that different experts may give
different domain assignments even for the same proteins.
For example, 1sgt was assigned as a two-domain protein
by the authors of the structure (Read and James, 1988).
But SCOP (Murzin et al., 1995) has assigned it as a single-
domain protein (as assigned by DomainParser), based on
the close interactions between the two ‘domains’. Another
ambiguity is the assignment of short segments. If a short
segment ‘dips’ in and out of one domain while most of
its flanks are in another domain, it can be assigned to the
domain of its flanks depending on the size of the segment.
Different experts use different size cutoff. Some have used
a cutoff smaller than 10 residues (e.g. residues 1–10 in
1ppn was assigned to the domain it dipped into), while
others use a cutoff as large as 14 residues (e.g. residues
828–841 in 1gpb was assigned to the domain of its flanks).

The inconsistencies in experts’ assignments suggest that
a rigorous definition of a structural domain is needed. Only
then one can have a set of systematic rules to correctly
assign domains without manual checking. An interesting

experiment we have done is to modify the parameters
and the decomposition rules used in DomainParser. We
found that DomainParser can correctly assign each of
the 55 proteins with very high agreement with the
literature assignment. This indicates that once a set of
decomposition rules are rigorously defined, DomainParser
can assign domains very reliably.

Other discrepancies between our assignments and
the ones in the literature suggest possible directions
for improvements. We found that most of the wrong
assignments are caused by our rules of accepting or
rejecting a partitioned domain in the post processing.
Inequalities (4) and (5) are too simple for enforcing the
compactness of a domain and the tightness of the contacts
between two domains. Figure 10 shows two examples
(1mrra and 3gapa) of poor partitions by DomainParser.
The chain 1mrra, which is assigned as a single-domain
structure by experts, is overcut by DomainParser into
two domains. DomainParser regards the interactions
between the two ‘domains’ as weak compared with the
tight helical packing within each ‘domain’. On the other
hand, the chain 3gapa, which is assigned as a two-domain
structure by experts, is undercut by DomainParser into
one domain. Although DomainParser initially partitioned
3gapa correctly (1–123/124–208, with an accuracy of
97.0%), the post processing regards the interactions
between the two domains as too tight compared with the
packing density within the small domain (124–208). More
studies are ongoing to explore possible improvement in
the post-processing criteria. For example, we are trying
to use information about surface area and hydrophobic-
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Fig. 10. (a) Decomposition of 1mrra by DomainParser (1–65;100–131;224–257/66–99; 132–223;258–340). (b) Manual domain decomposi-
tion of 3gapa by experts (1–129/139–208). The thick ribbons and thin strands show different domains.

ity Tsai and Nussinov (1997) as well as use cutoff values
depending on the size of domain and the composition
of secondary structure types in a domain. Some new
definitions about the packing density (Tsai et al., 1999)
can be employed to see their impact on the performance
of domain partitions. In addition, using information of
recurrent domains (Holm and Sander, 1998) in PDB and
domains determined through multiple sequence alignment
(e.g. ProDom Corpet et al. (1999) and Pfam Bateman et
al. (1999)) will probably make the domain partition more
reliable and more function related.

In summary, we have developed a computer program
for protein domain decomposition, based on a network-
flow representation of a protein and a rigorous algorithm
for finding minimum cut of the network. Our preliminary
test results have been quite encouraging. We expect that
using the network flow algorithm as a partition technique
will help us move one step closer towards reliable and
automated domain assignments.
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