
BIOINFORMATICS ONTOLOGY Vol. 16 no. 12 2000
Pages 1129–1144

Semiotes: a semantics for sharing

Toni Kazic 1

1Institute for Biomedical Computing, Washington University, 700 South Euclid
Avenue, St. Louis, MO 63110, USA

Received on April 5, 1999; revised on November 11, 1999 and June 1, 2000; accepted on June 18, 2000

Abstract
Motivation: Reliable, automated communication of
biological information requires methods to declare the
information’s semantics. In this paper I describe an
approach to semantic declaration intended to permit
independent, distributed databases, algorithms, and
servers to exchange and process requests for information
and computations without requiring coordination or
agreement among them on universe of discourse, data
model, schema, or implementation.
Results: This approach uses Glossa, a formal language
defining the semantics of biological ideas, information,
and algorithms, to executably define the semantics of com-
plex ideas and computations by constructs of semiotes,
terms which axiomatically define very simple notions. A
database or algorithm wishing to exchange information
or computations maintains a set of mappings between its
particular notions and semiotes, and a parser to trans-
late between its indigenous ideas and implementation and
the semiotes. Requests from other databases or algorithms
are issued as semiotic messages, locally interpreted and
processed, and the results returned as semiotes to the re-
questing entity. Thus, semiotes serve as a shared, abstract
layer of definitions which can be computably combined by
each database or algorithm according to its own needs
and ideas. By combining the explicit declaration of se-
mantics with the computation of the semantics of complex
ideas, Glossa and its semiotes permit independent compu-
tational entities to lightly federate their capabilities as de-
sired while maintaining their unique perspectives on both
scientific and technical questions.
Availability: http://www.ibc.wustl.edu/agora/semiotes/
and files therein.
Contact: toni@athe.wustl.edu

Why do semantics matter?
Whenever one entity attempts to communicate with an-
other, the message’s utility is determined by how well the
recipient understands it. This is obvious when the entities
are two people conversing, but it is equally true when a
program processes data it has received from a database; or
one interfaces two or more independent pieces of code; or

one enters information into a database. In each instance,
a symbol of one or more characters is used to denote an
abstraction—a scientific, mathematical, or computational
idea, datum, or result. But the symbol qua symbol is
mute: it doesn’t say what abstraction it denotes. To know
which abstraction a symbol denotes—formally, to map
the symbol to its denoted semantics—requires an entity
that knows the language accurately enough to define the
symbol’s semantics and is vigilant enough to detect and
correct any errors of usage. When the choice of abstrac-
tion is uncertain or the mapping is not one-to-one, then
the semantics of a symbol are ambiguous. This ambiguity
is independent of the symbol’s syntax: knowing a symbol
is an array, a regular expression, or a CORBA method will
not help one divine its meaning.

As long as computational entities—programs,
databases, knowledge bases, and servers—do not com-
municate with each other or with human beings, semantic
ambiguities are isolated and relatively inconsequential.
But communicate, and each entity must determine which
abstractions are denoted by the other’s symbols and map
the denoted abstraction to its notions, data structures,
algorithms, and schema. If the mapping is inaccurate or
incomplete, the accuracy of any computation involving
more than one entity cannot be assured. (Obviously a
computation’s accuracy is independent of its completion
or efficiency.) The ambiguities intensify when one moves
from simple to more complex universes of discourse†,
such as from electronic commerce to biology. Semantic
issues arise whether the goal is to build an integrated
database that subsumes others or a looser federation
intended only to provide interentity communications.
The most interesting abstractions are those describing the
science, not the mechanics of database arrangement or
query execution. All too often, however, the most clearly
defined semantics are for notions of the latter sort.

The importance of modern biological questions have

† By ‘universe of discourse’ I mean all the ideas and terms relevant to an area
as modeled by a database or algorithm. One sometimes sees ‘domain’ used
as a synonym for ‘universe of discourse’. In this paper I will restrict the use
of ‘domain’ to its mathematical usage (loosely, the set on which a function
operates).

c© Oxford University Press 2000 1129

T. Kazic

stimulated the production of many sophisticated databases
and algorithms. One naturally expects these resources
can jointly address those questions. Thus the challenge
is plain: people, databases, and algorithms must reliably
and automatically define the semantics of their biological
universes of discourse in a mutually intelligible way. The
penalty for unreliable definitions is the proliferation of
scientifically meaningless (or worse, misleading) results,
which without additional inspection are indistinguishable
from meaningful ones. The penalty for nonautomatic
methods is an insatiable demand for these human inspec-
tors. The penalty for mutual unintelligibility is a very real
tower of automated pseudoscientific Babel.

But the technical means to meet the challenge are much
less clear. Any attempt at defining the semantics of a sci-
entific universe of discourse faces four fundamental prob-
lems. One may summarize these as determining correct-
ness, managing controversy, expressing complexity, and
choosing the computational means.

First, humans are the ultimate arbiters of correctness
for language for now, so human oversight is essential to
any definitional effort. Second, deciding what something
is really is hard: humans and their computational cre-
ations often disagree about a term’s semantics for valid
scientific, experimental, or technical reasons. To reify a
controversial term one must either decide the controversy
arbitrarily or suspend the term’s implementation in code
until the controversy is someday resolved. The first
course means some usages of the term will not agree
with the proposed definition, introducing errors and
diminishing the expressivity, portability, and utility of the
semantics. The second course means an indefinite delay
in implementation. Third, the relationships among bio-
logical entities—e.g. molecules, physiological processes,
ecosystems—are structurally complex. They vary with the
particular biological entities and over time, often as non-
continuous functions; they are mechanistically intricate;
and they incorporate many types of relationship, from
geometric adjacency to systems of nonlinear differential
equations. Many of these relationships cannot be reduced
to set membership and subsumption (e.g. part—whole
or isa). Indeed, the most relevant relationship between
two entities in a particular instance will often not be
related to sets at all. This structural complexity places a
premium on the expressivity of the semantics, but in turn
increases the number of terms. Finally, the short history
of biological databases does not stimulate much optimism
that there will be universal agreement on any but the
simplest technical and epistemological standards. While
implementing a computable semantics necessarily entails
local technical choices, the specification of a computable
semantics should depend on neither a particular technical
apparatus nor data models.

Not surprisingly, defining the semantics of a universe

of discourse is a very durable problem. One may crudely
divide these efforts into three sometimes overlapping
categories: those that attempt to build data models,
software systems or languages for ‘managing’ terms;
those that attempt to define semantics for particular
universes of discourse; and those that focus on generic
tools for the federation of multiple databases.

Efforts to build software for ontologies are in the first
category. Examples include Ontolingua and its companion
Reusable Ontologies (Knowledge Systems Laboratory,
1999); OML (Ontology Markup Language, Kent, 1999);
GKB (Generic Knowledge Base Editor, which is specific
to frame-based systems, Chaudhri and Lowrance, 1999);
and XOL (Ontology Exchange Language, Karp et al.,
1999). (See Clark, 1999 for an on-line bibliography of
similar projects, many based on Sowa’s original notion of
conceptual graphs, (Sowa, 1984), and Abernethy, 1999 for
references to some biologically-inspired ones.) Schulze-
Kremer’s Ontology Editor combines term management
with a more scientifically relevant ontology (Schulze-
Kremer, 1996). Since ontologies aim to classify terms,
rather than define them (Sowa, 1998), in most instances
definitions per se do not exist. Given a (natural language)
definition and an instance of usage, human inspection
seems to be required to determine the correctness of the
usage. For example, OML defines a syntax that allows
one to mark up data as belonging to particular classes,
and uses the conceptual graph formalism to provide a
theoretical framework for the classes and the λ calculus
to describe the graph. But apart from identifying that an
entity is an instance of a class, there is no definition of the
class per se. The terms and relationships used as examples
are quite general, thereby minimizing controversy, speci-
ficity, and scientific utility. When definitions are included,
they and their relationships are often separated from
terms; for example, Ontolingua separates vocabulary,
the model of the universe of discourse, and schema.
Thus many of the elements required to make a definition
computationally executable are diffused among different
programs. Finally, each system lays specific technical
bets which restrict portability. Though XOL attempts to
minimize this problem, it does rely on an XML apparatus
(Karp et al., 1999).

In the second category are attempts to define the seman-
tics of particular universes of discourse. Examples include
controlled vocabularies or metathesauri for macromolecu-
lar structure (mmCIF, Bourne et al., 1997; IUCr Working
Party on Crystallographic Information, 1999); medical
information (UMLS, Nelson et al., 1993; Galen, Goble
et al., 1994); Drosophila melanogaster (FlyBase, The
FlyBase Consortium, 1999a,b); genomics (GDB, Genome
Data Base Staff, 1996); ontologies for experiments on
ribosome (RiboWeb, Altman and Abernethy, 1997) and
macromolecular structure (BioML, Proteometrics Inc.,

1130

Semiotes: a semantics for sharing

1999); and a semantic grammar for sentences found in
immunology papers (Harris et al., 1989). Each relies on
humans to interpret the semantics, ranging from com-
pletely human-oriented (e.g. Flybase) to some definitions
one might guess from the actions of extrinsic programs
(e.g. mmCIF, CML, RiboWeb). Usually the only semantic
clue available is an hierarchical arrangement of terms
denoting subset relationships, making it harder to decide if
a usage is correct. Moreover, hierarchical structures have
a subtle but important impact on a semantics’ granularity:
notions are often fused just by being nested together in
the tree. This produces a poorly resolved and sometimes
ambiguous semantics. When coarse granularity collides
with complex notions, the outcome is frequently con-
troversy. For example, the formal semantic grammar
of immunology by Harris et al. is complex and precise
enough to minimize the problem of determining correct-
ness (Harris et al., 1989). But the granularity of its terms
is too coarse to prevent controversy. Similarly, coarse
granularity can produce problems in deducing a label’s
semantics from the actions of a program. For example,
Murray-Rust’s CML (Chemical Markup Language) relied
heavily on computational chemistry programs spawned
upon the recognition of particular file extensions to define
the semantics of the labels (Murray-Rust, 1995). Yet the
semantics of many such programs are extremely complex,
both because of their underlying science (quantum and
molecular mechanics) and the possible variations in
the parameters, conditions, and methods for a given
calculation. While extrinsic programs can express very
complex semantics, they cannot be relied upon to reveal
that semantics without significant human intervention.

The third category is the attempts to devise generic
methods for federating heterogeneous and distributed
database systems. The earliest work, summarized in Sheth
and Larson (1990), required significant schema uniformity
and identical database management systems and query
languages among federation members. The result is a
mandatory implicit semantics for an arbitrary universe
of discourse. Though this approach has been used in
some instances for biological databases (for example,
see Ritter, 1994 and references therein), in practice
agreement on the components—semantics, data model,
and schema—has often proven difficult to obtain and
maintain, even for the relatively simple semantics of
the commercial and financial sectors. So considerable
effort has been devoted to methods that are useful even
when these conditions are not met. (For a review, see
Elmagarmid et al., 1999; the following citations are
merely exemplars, not a comprehensive survey.) The main
efforts have been in schema declaration, mapping, and
reconciliation schemes (Chen et al., 1997; Seo et al.,
1997; Bellahsene, 1997; Ram, 1991; Topaloglou et al.,
1999); multidatabase query languages and optimization

(Mihaila et al., 1998; Chen et al., 1997; Wu, 1996; Missier
et al., 1999; Hameurlain and Morvan, 1996; Ounis and
Chevallet, 1996; Lee and Yoo, 1994; Hammer et al.,
1997; Li et al., 1997; Papakonstantinou et al., 1995);
and semantic mapping and conversion (Huemer et al.,
1997; Kashyap and Sheth, 1999; Hammer and McLeod,
1999; Goble et al., 1994). In the first two categories, the
focus of research is on the database machinery assuming
the semantics of the participating databases have been
manually (or simplistically; e.g. Lee and Yoo, 1994)
resolved. Thus the semantics treated are those of the
database models and machinery, not the universe of
discourse (Goble et al., 1994; Houstis et al., 1994, being
exceptions). Occasionally one sees methods to resolve
manually mapped terms, usually relying on the semantics
of a particular data model. Thus OPM’s definition of
the semantics of the databases that will be converted
to its data model includes considerable information on
that database’s tables, classes, attributes, and queries
(Chen et al., 1997), and TSIMMIS uses essentially the
same strategy (Hammer et al., 1997; Li et al., 1997;
Papakonstantinou et al., 1995). There are also fledgling
efforts to automatically resolve a semantics declared in
natural language (Kashyap and Sheth, 1999). Here too
terms from each database are usually manually mapped
to each other, forming all possible pairs of terms; then
a probabilistic guess of the best mapping is computed.
The sophistication of these systems rests, not in their
declaration or use of semantics, but in their attempts to
infer the semantics of a novel term or construct. The terms
themselves are quite simple, especially as compared to
biology, and it is an open question how well these systems
could infer the semantics of biological terms.

However, there are two fields that routinely manipulate
or define semantics: linguistics and the theory of formal
languages, which includes programming languages. In
linguistics, many of the semantic definitions are in human
natural language (for example Eco, 1984; Lakoff, 1987);
formal work has been directed at disambiguating extant
natural language (Aronoff and Rees-Miller, 2000). There
have been many computational attempts to extract, and
to some extent, ‘understand’ phrasal semantics as part
of projects to extract information from corpora of texts.
This area has recently blossomed for biologically related
texts (Baclawski et al., 1993; Futrelle, 1997; Craven
and Kumlien, 1999; Blaschke et al., 1999; Rindflesch
et al., 2000; Salton et al., 1993; Stapley and Benoit,
2000; Thomas et al., 2000; Lehnert, 2000; Baclawski
et al., 2000; Message Understanding Conference, 1992;
Humphreys et al., 2000). The semantic constructs are
too coarsely grained for computational exchange and
require further resolution, presumably because they
are simply taken as they are in the natural language
corpora. Conversely, the semantics of terms and con-

1131

T. Kazic

structs is explicitly defined and composed in the case of
formal languages (for example Meyer, 1990). However
in this case the universe of discourse of the language
is extremely limited: even a very expressive program-
ming language is semantically trivial compared with
modern biology. Nonetheless, formal languages offer a
potentially powerful set of methods for defining and im-
plementing the semantics of complex constructs, provided
the basis of the language is well defined both formally
and in terms of the semantics of the particular universe of
discourse.

Here I outline a new approach to defining the semantics
of scientific knowledge for use by computational entities.
The goal of this work is to enable scientifically reliable
computations distributed over many participating entities,
without constraining the participants’ semantics, schema,
or computational machinery. Its fundamental premises
are that the only useful semantics for machines is a
computable one, and that controversy about ideas signals
a healthy scientific discourse and should not be artificially
constricted. This approach uses a formal language to
declare the semantics of biological ideas and computations
by providing computable definitions built from terms
whose own semantics are so simple as to be axiomatic.
These definitions are executable computations, not texts in
a natural language. I call this language Glossa (the Greek
for ‘tongue’ in multiple senses), and the symbols denoting
the terms, semiotes (a neologism reflecting their debt to
semiotics while avoiding the controversies native to the
terms seme, sign, and others, Eco, 1984). The semiotes
and their semantics are required to be unique, disjoint, and
elementary. The set of semiotes, called the semantic basis
set, serves as an abstract layer shared by the participants.
Each resource translates only between itself and the basis
set by using mappings and parsers between the basis set
and its local implementation, not to each of the other
resources. The effect is to lightly federate the participating
resources for that subset of computations and information
each shares.

Glossa aims to minimize the problem of correctness
by making semantics computable; to avoid the problems
of controversy and complexity altogether by provid-
ing simple, finely grained terms which can be flexibly
combined to express complex ideas; and to avoid the
problem of computational choices by stating definitions
declaratively and avoiding extrinsic definitions. The
choices of implementation are left to each computational
entity participating in a very lightly federated consortium.
Semiotes were sketched in Kazic (1995), and Glossa is
being implemented as part of The Agora, an infrastructure
for the transparent sharing of curatorial and computa-
tional functions among biological databases (Bugrim et
al., 2000).

The rest of the paper is organized as follows. The next

section sketches the formal bases of Glossa. The main
result is that Glossa is semantically and computationally
well behaved if certain conditions are met. The following
section illustrates several semiotes and bundles used in
The Agora to describe reaction equations, and also gives
some examples of what semiotes are not and why. The
penultimate section briefly describes the use of Glossa in
very lightly federating participating servers; and the last
section discusses some final points.

An outline of Glossa
To begin the exposition I formally define the basics
of Glossa, especially its notion of semantics. I then
prove a theorem about the semantics of constructs in
Glossa, and finally describe its most basic terms, the
semiotes. Formal apparatus is important for three reasons.
It forces us to be as clear as possible in our use of
terms; it provides a standard against which one can judge
whether the language has the necessary properties; and it
enables automatic evaluation of the semantics of a specific
computation. This section should be regarded only as a
current statement of work in progress.

Let Glossa be a formal language describing a biologi-
cal universe of discourse, including operations in it, im-
plemented in a software system. For example, the sub-
set of Glossa describing a taxonomic database would in-
clude symbols both for the phylogenetic ideas and the ab-
stract operations on the notions in the database. Like all
other formal languages, Glossa has a finite, discrete set of
symbols it uses, �, and a set of rules � for combining
those symbols into ‘sensible’ constructs. The individual
members of these sets are denoted σ and π , respectively,
with subscripts as needed. � includes symbols for sub-
stantives, operations, and modifiers (crudely, nouns, verbs,
and {adjectives, adverbs, prepositions}). It also includes
the empty symbol, σ∅: when concatenated to the left or
right of any other symbol it leaves the other symbol unal-
tered.

It is useful to distinguish several different subsets of �,
which fall into three groups. The first group is the subsets
encompassing the semiotes and nonsemiotic symbols (�ς

and its complement taken over �, �′
ς). Any symbol

may be a member of either �ς or �′
ς , but not both.

The second group is the subsets encompassing symbols
whose semantics are those of, or derived from, the
predicate calculus (of any form); mathematical functions;
and procedural statements intended to control execution
of an expression or communicate with the shell or other
processes. For brevity I’ll call these the logical, functional,
and procedural classes of symbols (�l , � f , and �p
respectively), and refer to these subsets as ‘classes of
symbols’. Any symbol can be a member of only one of �l ,
� f , and �p, though it is not required to be a member of

1132

Semiotes: a semantics for sharing

any. This last condition forms the third group of symbols,
the ‘classless’ ones (�u). Classless symbols are provided
so that symbols denoting the same variable can be used
in any context—e.g. X can occur in logical expressions
(not(X)), mathematical functions (X = sin(omega *
t)), and procedural statements (while X < $N do).
Thus the set relationships are

∅ = �l ∩ � f ∩ �p ∩ �u (1)

∅ = �ς ∩ �′
ς (2)

and

� = �l ∪ � f ∪ �p ∪ �u (3)

� = �ς ∪ �′
ς . (4)

Glossa has a set of rules, �, for organizing symbols into
constructs and interpreting those constructs. These rules
correspond to the production rules of a grammar. Glossa’s
� is currently described by a left-recursive, context-free
Backus–Naur Form grammar (Kazic et al., 2000). 	 is
the set of semantic mappings. The members of 	 and �

operate on the members of the symbol set �, and each
mapping (ω, indexed as needed) and rule (π) is one-to-
one and onto. But just as the function sin(x) is not defined
if x = true, so too not every mapping or rule is defined
for every member of �. Therefore every member of 	

and � is a partial finite function, its domain restricted to
those members of � for which it is defined. 	−→ indicates
the mapping operation and is used in preference to −→
to avoid confusion with biochemical reactions. Applied
to the sets, the notation 	 : � 	−→ 	(�) should be
interpreted as ‘the set of mappings, each of which is
defined for at least one member of � and produces one and
only one member of 	(�) when applied to that member
of �’ (and analogously for �).

First I define Glossa’s notion of semantics.

DEFINITION 1. For all σ j ∈ �, j a positive integer in-
dex, its semantics, ω(σ j), is a computationally executable
definition of σ j ’s meaning. It is found or produced by ap-
plying a semantic mapping, ω to σ j , denoted ω : σ j 	−→
ω(σ j), such that ω is one-to-one, onto, and defined for that
σ j . Under these conditions, we call both symbol and map-
ping semantically well-formed.

If for each σ j ∈ � there is at least one ω that is
semantically well-formed, then we say the term semantics
of 	 : � 	−→ 	(�) are well-formed, where 	 is the set
of all semantically well-formed mappings operating on �

and 	(�) is the set of defined semantics for the members
of �.

For the computer to take a symbol and test or derive
its meaning, Glossa must be unambiguous. So the first
requirement is that Glossa have well-formed term seman-
tics. The definition gives tests for new terms (symbols),

mappings, and their semantics: the semantics must be
computationally executable and produce a unique def-
inition for each term for which a particular mapping
is defined. This unambiguity does not imply that the
definition of a term’s semantics must exclude conditional
or disjoint statements: it simply says there can be only
one definition of a symbol, in contrast to human natural
languages. (The distinction is the difference in the defi-
nitions of ‘bank’ (multiple nouns and verbs) and ‘read’
(a noun, and two parts of the same verb) versus ‘several’
(either three, or four, or five objects). The last would be a
single definition with disjoint statements or a range, while
the other two terms would not have a single definition.)

To determine the semantics of constructs of symbols
requires a bit more apparatus. To simplify the notation I
first define expressions.

DEFINITION 2. An expression ε is a delimited se-
quence of syntactically and semantically well-formed
symbols which either belong to only one class of symbols
or are classless. An expression may also include any
mappings ω ∈ 	 or rules π ∈ � defined for the symbols
in the sequence, either individually or taken together as a
tuple. An expression is delimited by the prefix and postfix
logical operators � and � to indicate its boundaries. Let
〈σ1, σ2, . . . , σ j 〉 denote the sequence of symbols inside
the delimiters for any particular expression, where j is a
positive integer indexing the symbols of that sequence.
Then

ε = �〈σ1, σ2, . . . , σ j 〉� (5)

where each σ j in the sequence is a member of only one
of �l , � f , or �p; or is a member of �u . The class of an
expression is that of its classed symbols. The semantics of
an expression, ω(ε), for an ω defined for each symbol in
the sequence, is

ω(ε) = ω(�〈σ1, σ2, . . . , σ j 〉�). (6)

Since the only requirement is that the symbols within an
expression be from the same symbol class or be classless,
the expressions can be quite long and complex. Each
expression is wrapped in a logical tissue, and substitution
of a variable for an expression allows for the use of
meta-expressions (i.e. expressions using or about other
expressions). These two rules (logical delimiters and
substitution) are of course members of �.

Now we are ready to build big constructs.

DEFINITION 3. A construct c in Glossa is a combina-
tion of one or more expressions formed by at least two
rules drawn from �. The first rule is that every pair of
expressions is separated by a logical infix operator. The
other rule or rules specify the syntax of the construct, and

1133

T. Kazic

can include rules which prefix and postfix the entire con-
struct with logical operators or delimiters. Let •i denote
the separating logical operators, and let i index the oper-
ators, k the expressions, and j the symbols, each index
independent of the others and all ranging over the positive
integers. Then (exhibiting the most general form)

c ≡ •0 ε1 •1 ε2 •2 · · · •i−1 εk •i . (7)

The set of all such constructs c which can be formed from
� by applying all members of � defined for the symbols
in c (taken individually or jointly according to syntax) is
denoted C (C = �(�)); symbolically,

� : � 	−→ C. (8)

For example,

c = (ε1 ∧ (ε2 ∨ ε3)) (9)

where

ε1 ≡ �y = mx + b� (10)

ε2 ≡ �m = 5� (11)

ε3 ≡ �b = 7�, (12)

giving a functional expression to evaluate under two
different boundary conditions.

The grammatical rules � ensure that every construct
has a framework of logical expressions, each of which
in turn may conceal multiple functional or procedural
expressions. This permits one to operate on the whole
with the various predicate calculi so long as functional and
procedural expressions retain their native operations and
semantics. The scope of expressions is specified by their
logical delimiters, and can range from the entire construct
to a single symbol. The definition does not distinguish
among different types of expressions, nor does it restrict
the form the construct can take (in particular, it is not
constrained to be a string). For notational convenience I
have lumped together delimiters, such as (,), [, and],
conditional operators (‘if x then y’), set operators, etc., so
that a construct which looks like Equation (7) could easily
conceal extensive nesting, conditionals, and other Baroque
syntactic structures. The formally inclined will recognize
that c and its components are simply special cases of S-
expressions (Meyer, 1990).

What are the semantics of constructs in Glossa? First a
useful lemma, then the main theorem.

LEMMA 1. Given any two mappings, ωl and ωl ′ , de-
fined for an expression ε (l a positive integer index, l �= l ′),
such that

ωl : ε 	−→ ωl(ε) (13)

ωl ′ : ωl(ε) 	−→ ωl ′(ωl(ε)) (14)

and the domain of ωl ′ is the range of ωl , the composition
of ωl ′ and ωl , ωl ′ ◦ ωl , maps

ωl ′ ◦ ωl : ε 	−→ ωl ′(ωl(ε)). (15)

The proof is by induction and will not be elaborated
(Meyer, 1990; James and Beckenbach, 1968). The effect
is to provide a path over the semantics of each successive
substitution in an expression, for those semantic mappings
that are defined for the expression and the results.

THEOREM 1. The semantics of c is the composite of the
semantics defined for its symbols, for all c ∈ C. Taking the
most general case, if

c = •0 ε1 •1 ε2 •2 . . . •i−1 εk •i (16)

then denoting the semantics of c as ωn(c),

ωn(c) = ωn(•0 ε1 •1 ε2 •2 . . . •i−1 εk •i) (17)

= ωn(•0(ωn−1(ε1(ωn−2(•1(ωn−3(ε2(ωn−4(

•2(. . . ω3(•i−1(ω2(εk(ω1(•i))))) . . .)))))))))

(18)

= ω1 ◦ ω2 ◦ ω3 ◦ . . . ◦ ωn−4 ◦ ωn−3 ◦ ωn−2 ◦
ωn−1 ◦ ωn(•0 ε1 •1 ε2 •2 . . . •i−1 εk •i), (19)

where each ω is defined for the symbols (individually or
jointly, depending on syntax) on which it operates, and the
domain of ωl+1 is equal to the range of ωl , for each such
pair, l a positive integer indexing ω, 1 � l � n.

Under these conditions the semantics of c are well-
formed. If there is a mapping ω ∈ 	 that is semantically
well-formed for each c ∈ C, then we say the construc-
tional semantics of Glossa are well-formed and write
	 : C 	−→ 	(C).

The proof of the theorem is by induction, relying
on the identity of ε and S-expressions and on the
lemma (Meyer, 1990). Briefly, there are two cases to
consider: the first is if the construct consists entirely
of logical symbols, and the second is if it includes
nonlogical symbols. In the first case, one simply has the
predicate calculus, its standard operations, and constructs
built on the predicate calculus. The semantics of the
predicate calculus and its operations are well-defined,
and the semantics of logical constructs are defined by
the executable (predicate calculus) code specifying the
construct, per Definition 3. So the semantics of the first
case are defined per the theorem. For the second case, one
has nonlogical statements embedded in the framework of
the predicate calculus. The semantics of the framework are
defined, so the question is what are the semantics of the
nonlogical expressions? These are simply the functional
or procedural semantics of those expressions, which are

1134

Semiotes: a semantics for sharing

also well-defined. Thus the semantics of the second case
are also defined.

There’s no mystery about either the theorem or its
proof—real programming languages mix logical, mathe-
matical, and procedural statements while retaining a well
defined semantics. This is simply what Glossa has been
carefully defined to do.

Now that we understand what semantics are for both
symbols and constructs, we can formally define the set of
symbols having the most basic semantics, the semiotes.

DEFINITION 4. A semiote is a symbol denoting the
semantics of a useful elementary part of an idea, datum,
or computation.

More formally, let a symbol in Glossa be denoted σ0 and
the set of all symbols in Glossa other than σ0 be denoted
�′, or �′ = � − {σ0}. A member of the set �′ is denoted
σ j , j a positive integer indexing �′. Then σ0 is considered
to be an elementary symbol, or semiote, if three conditions
are fulfilled.

well-formed There is one and only one well-formed
mapping ω such that ω : σ0 	−→ ω(σ0).

unique The symbol σ0 and its semantics, ω(σ0), are
unique, or

σ0 �= σ j , (20)

ω(σ0) �= ω(σ j), (21)

∀ σ j ∈ �′.

elementary Denote the set of all possible constructs of
symbols in �′ by C′, and a particular construct, ck ,
k a positive integer index. Then σ0 is elementary if,
for a well-formed mapping ω, the semantics of every
construct, ω(ck), is not equal to the semantics of σ0,
ω(σ0), or

ω(σ0) �= ω(ck), (22)

∀ ck ∈ C′.

The semiote σ0 is denoted ς . Every semiote has four
properties:

• its formally defined, computable semantics;

• its formally defined, computable syntax;

• its informally defined, natural language semantics; and

• its informally defined, natural language syntax.

The set of all semiotes in Glossa is denoted �ς , and is
also called the semantic basis set of Glossa. A construct
consisting of semiotes is called a bundle of semiotes or a
semiotic bundle.

We now have the most fundamental symbols in our
formal language. Like the rest of the symbols in �, the
semantics of semiotes, and the semantics of constructs
formed from them, are defined. The semiotes include
members of the classes and classless symbols. The non-
semiotic symbols (the members of �′

ς) can vary among
computational entities as long as they are semantically
well-formed and explicitly defined semiotically (though
it is certainly possible to share these symbols and their
definitions as well). Glossa’s syntax and semantics are
independent of any particular computer language: all that
is needed is to syntactically transform constructs in the
formal language into the computational language(s) of
one’s choice.

Glossa and The Agora
To illustrate some uses of Glossa, I now describe some
examples drawn from our work on The Agora (Bugrim
et al., 2000). In preparation for computations shared
by the three participating databases, we are developing
semiotes and bundles for the transmission of legacy data
to a central query server and for the de novo deposit
of information on biochemical reactions for subsequent
automated and human review. Much of these data concern
aspects of reaction equations. Legacy data tend to focus
on overall biochemical reaction equations as catalyzed
by an enzyme or class of very similar enzymes, with
varying charge/mass balance and many synonymous
names for molecules. Directly deposited information
supports a much richer model of biochemistry for all
types of reactions, including information on reaction
and enzyme mechanisms, kinetics, thermodynamics,
biological localization, and phylogenetic distribution. But
the reaction equation is fundamental for both.

To begin, consider the semiote denoting a name of
a molecular species, cpd name/1. Figure 1 shows the
computable, formal definitions of its semantics and syntax
and their narrative translations.

Its defined semantics has elements that clearly fall into
the category of something that must be checked by a
human—the only clues indicating this is a compound’s
name are the names of the semiote and the variable. (The
computational definitions of semiote syntax and semantics
illustrate the huge gap between syntactic and semantic
parsers.) This illustrates both the axiomatic nature of
the semiotes—their meaning should be obvious—and
the importance of human supervision. Similarly, the
congruence of formal and informal definitions can only
be detected by humans. The syntactic specification gives
a regular expression against which to test the semiote’s
syntax and the language for executing that test, in this case
specifying a regular expression using JavaScript syntax.
If the definition was used to check that a particular

1135

T. Kazic

cpd name/1

cpd_name(_NameOfAMoleculeOrMolecularComplex).

Any term used to reference a molecule, molecular complex, ion, or molecular assembly, for
all molecules or pseudo-molecules (such as genes) of interest, independent of their structure.
The name itself may be a trivial, biochemical, or IUPAC name.

semiote_syntax(cpd_name(CpdName)) :-

nonvar(CpdName),

apply_regexp(cpd_name(CpdName)).

regexp(cpd_name,javascript,

'\\''*[\\w\\d\\-_\\,\\{\\}\\�\\s\\.\\'']+\\''*::g').

A Prolog atom. Either it is enclosed in single quotes (‘term’) or it obeys the following rules:
the first character is a lower-case letter; only alphanumeric characters and underscores are
present.

Fig. 1. A semiote and its definitions. The upper left hand phrase is the name of the semiote; to its right, any pertinent mathematical symbol
would appear; in the top of the top box, its formal declarative semantics; below, its informal natural language semantics; in the top of the
lower box, its formal declarative syntax; and below, its informal natural language syntax. The pseudocode follows the standard Prolog syntax:
variables are capitalized, predicates are not; conjunction is indicated by commas, disjunction by a semi-colon; :− is ‘is defined as’; and the
end of a definition is marked by a period. I have written out the name of the anonymous variable (beginning with) for declarative clarity;
also the Prolog convention for naming predicates and semiotes (name/arity) is used. The predicate apply regexp/1, omitted here for brevity,
calls a regular expression definition of the semiote’s syntax stored in regexp/3, which is shown. The regular expression’s single right quotes
are escaped for Prolog by doubling them and for JavaScript by a back slash.

datum met the definition of cpd name/1 from within a
Prolog process, a call to the shell to spawn a JavaScript
process and execute the regular expression would be
issued. In practice, this type of syntactic check is done by
a JavaScript function called by an HTML form used to
enter data de novo, so that only syntactically well-formed,
semantically labelled data are transmitted to the server
(code omitted for brevity).

The resemblance of the pseudocode to Prolog is not
coincidental (Sterling and Shapiro, 1986; O’Keefe, 1990):
each formal definition is in fact executable Prolog. One
can of course write the definitions in an even more abstract
manner, but this seems to confer no real advantage since
it would still have to be translated into the computational
language of one’s choice.

There are two equally valid ways to read the definitions:
as a declarative definition in a formal language, and as
computational operations in a particular language. The
definitional reading of the JavaScript clause is thus ‘the
value of the variable matches this JavaScript regular

sinistra_cpd(CompoundName) :-

(cpd_name(CompoundName)

;

synonym(_PrimaryCompoundName,CompoundName)

).

dextra_cpd(CompoundName) :-

(cpd_name(CompoundName)

;

synonym(_PrimaryCompoundName,CompoundName)

).

Fig. 2. Two terms which are not semiotes: their semantics are neither
well-formed, unique, nor elementary.

expression’; the computational reading is ‘call JavaScript
and instruct it to perform a pattern match with this
pattern on the value of this variable.’ Systems written in
other languages would implement their parsers between
the semiotes and the local system in their own choice
of languages, following the definitional reading of the

1136

Semiotes: a semantics for sharing

data_source_abbrv(umbbd,’UMBBD’).
accession(_EntryAccessionNameOrCodeFromContributingDatabase).
cpd_name(_NameOfAMoleculeOrMolecularComplex).
stoich(_StoichiometryOfSpeciesInReaction).
mol_state(_StateOfAMolecularSpeciesInAParticularReaction).
compartment(_CompartmentOfAMolecularSpeciesInAParticularReaction).

Fig. 3. Semiotes and their formal semantic definitions used in the transmission of data about reactions. The pertinent instance of
data source abbrv/2 is shown. I have omitted the names of particular mol states and compartments for brevity; these are included
in the syntactic definitions of these semiotes.

semiotes and their syntactic conventions. We define the
syntactic equivalents for the semiotes in Perl, JavaScript,
and HTML as needed. Our forms use JavaScript functions
to syntactically check input data, prepare the semiotes
and bundles, and transmit the message to the server to
circumvent the limited functionality of HTML.

Why is cpd name/1 a semiote? The answer depends on
inspection of the full sets of semiotes and bundles (Kazic,
2000), which space prevents showing here, to see if the
semiote fulfills the conditions of Definition 4. However,
it is useful to state how the semiote meets the definition.
First, the semiote’s semantics are well-formed: there is
only one definition for this semiote. Second, the semiote
and its semantics are unique with all other semiotes: there
is only one semiote of this name and definition in the
set of semiotes, and there are no semiotes of different
names having the same definition. Finally, the semiote is
elementary: there are no constructs in the set of bundles
whose semantics is equal to the semiote.

But it is probably more telling to consider some
alternatives to see if they fulfill the definition—say some
that denote the name of a compound appearing on a
particular side of an arbitrary reaction equation. Consider
two such candidates, shown in Figure 2. Why are these
not semiotes? The obvious answer is that the result of
applying the definitions would be identical whether a
particular compound was a sinistra cpd or a dextra cpd,
so that the condition of uniqueness fails. But the more
subtle answers are equally important. First, nowhere do
the definitions specify on which side of a reaction equation
the compound is found. Instead, that information is
dependent on the term’s context, given either by a human
being or from some other information specified elsewhere,
say on an HTML form. If that contextual information
were incorporated in the definitions, then obviously they
would become unique: but to do so requires knowing the
definition of the rxn eqn/1, which is shown below to
involve bundles involving other bundles and terms related
to cpd name/1. So one ends up with, if not a circular, then
a very spiral set of definitions. Second, the proposed terms
combine two ideas: that of the name of a compound and

that of the side of a reaction equation on which it appears.
In fact the notion of a reactant is quite complex (e.g. it
includes stoichiometry), and the alternatives arbitrarily
truncate that set of ideas. Thus the proposed terms fail both
the formal definition and several aspects of an intuitive
notion of axiomatic.

Given the semiote cpd name/1, how is it used? In
Figures 3 and 4 I list the semiotes, bundles, and their
formal semantic definitions used in transmitting UM-BBD
legacy data on reaction equations (Ellis and Wackett,
1995a,b).

Reaction equation information comes from UM-BBD in
a bundle of bundles, shown in Figure 5. The bundle and its
components are computed from a set of mappings between
UM-BBDs CORE database and the semiotes; the bundling
code is written in Java and is run at UM-BBD, and the
results sent as files of bundles. Reading declaratively,
a reaction equation must have two sets of coreacting
species (sinistras and dextras), but is not required to
have a catalyst. This permits both spontaneous reactions
and alternative approaches to bundling reaction equation
information. A recursive definition for rxn eqn is used to
conveniently exploit the computational model of Prolog; if
I were writing the bundle definition in Perl, I would instead
iterate over a hash whose keys were the bundle names
(sinistras, dextras, catalysts) and whose values were
the complete bundles. Figure 5 shows a rxn eqn bundle
instantiated for a particular UM-BBD reaction. Given this
bundle, The Agora can immediately test to see if it fulfills
the conditions specified for a rxn eqn/1 bundle. If the
bundle does not fulfill the semantics of rxn eqn/1 (or any
other available bundle), then the test fails and the bundle
is rejected by The Agora.

These UM-BBD bundles relied on their names to convey
information, for example about a molecule’s role in the
reaction (reactant, catalyst). In the transfer of legacy data
this was sufficiently clear. However in other applications,
such as the deposit of information to The Agora, it is
preferable to label each value in a bundle with its semiote’s
name and to indicate the rxn role explicitly to ensure
the sets of coreacting species are correctly formed (in

1137

T. Kazic

data source(Source) :-
(data source abbrv(Source,)
;

data source abbrv(,Source)
).

rxn(AgoraAcc, TypeOrEC, SubRxns).

reactant(CompoundName,Stoich,State,Compartment) :-
cpd name(CompoundName),
stoich(Stoich),
mol state(State),
compartment(Compartment).

catalyst(CatalystName,State,Compartment) :-
cpd name(CatalystName),
mol state(State),
compartment(Compartment).

sinistras(ListOfSinistraLateralReactants) :-
forall(member(X,ListOfSinistraLateralReactants),

X = reactant(CompoundName, Stoich, State, Compartment)).

dextras(ListOfDextraLateralReactants) :-
forall(member(X,ListOfDextraLateralReactants),

X = reactant(CompoundName, Stoich, State, Compartment)).

catalysts(ListOfCatalysts) :-
forall(member(X,ListOfCatalysts),

X = catalyst(CompoundName, State, Compartment)).

rxn eqn([]).
rxn eqn([H|T]) :-

compound(H),
functor(F,H,1),
arg(1,F,ListParticipants),
(F == sinistras →

sinistras(ListParticipants)
;

(F == dextras →
dextras(ListParticipants)

;
F == catalysts,
catalysts(ListParticipants)

)
),
is unique set(ListParticipants,T),
rxn eqn(T).

Fig. 4. Definitions of bundles used in the transmission of legacy data about reactions. The predicate forall/2 has the same meaning as ∀ and
is in this instance most conveniently read, ‘X is a reactant(, , ,) for all X which are members of the list.’ The definition of is unique set/2
is omitted for brevity. compound/1 is a Prolog predicate that checks a term’s atomicity and has nothing to do with chemistry.

[dcb(data_source(umbbd),accession(r0234)),

sinistras([reactant(ethylbenzene,1,_,_),reactant(’H2O’,1,_,_)]),

dextras([reactant(’1-phenylethanol’,1,_,_),reactant(’H+’,2,_,_)]),

catalysts([catalyst(’ethylbenzene dehydrogenase’,_,_)])]

Fig. 5. A bundle transmitted from UM-BBD for its reaction r0234. The bundle is a list which in this case includes the bundles dcb/2 (for
datum constant bundle), sinistras/1, dextras/1, and catalysts/1. Each of the last three bundles contains a list; the catalysts/1 bundle is
not used if the reaction is spontaneous.

[sinistras([reactant(cpd_name(’ethylbenzene’),stoich(1),mol_state(uns),

compartment(prok_unk),rxn_role(noncatalyst)),

reactant(cpd_name(’H2O’),stoich(1),mol_state(uns),

compartment(prok_unk),rxn_role(noncatalyst))]),

dextras([reactant(cpd_name(’1-phenylethanol’),stoich(1),mol_state(uns),

compartment(prok_unk),rxn_role(noncatalyst)),

reactant(cpd_name(’H+’),stoich(2),mol_state(uns),

compartment(prok_unk),rxn_role(noncatalyst))])]

Fig. 6. The same reaction as currently bundled by The Agora’s reaction equation entry form. Catalyst information is separately bundled.
Semiotes used for tracking and relating information are not shown.

1138

Semiotes: a semantics for sharing

catalyst(’ethylbenzene dehydrogenase’,80092,[unsaid],[unsaid]).
datum index(r0234,80092).
datum serial num(80092,reaction(80092,putative ec num,[])).
datum serial num(80093,putative ec num(80092,ec num(1,17, ,))).
datum serial num(80094,sinistra(ethylbenzene,80092,1,[unsaid],[unsaid])).
datum serial num(80095,sinistra(’H2O’,80092,1,[unsaid],[unsaid])).
datum serial num(80096,dextra(’1-phenylethanol’,80092,1,[unsaid],[unsaid])).
datum serial num(80097,dextra(’H+’,80092,2,[unsaid],[unsaid])).
datum serial num(80098,catalyst(’ethylbenzene dehydrogenase’,80092,[unsaid],[unsaid])).
datum serial num(80099,evidence(80092,citation(ball96),unknown)).
datum serial num(80102,datum index(r0234,80092)).
datum serial num(80103,xref(80092,umbbd,r0234)).
datum serial num(80104,info entry(80092,[curator role(person([

given names(’Ryan’),surname(’McLeish’)]),typist)],931243011,’hydra.labmed.umn.edu’)).
datum serial num(80105,search(80092,medline,’http://www.ncbi.nlm.nih.gov/’,

’ethylbenzene[ALL]+AND+anaerobic[ALL]+AND+biodegradation[ALL]’)).
datum serial num(86548,reaction(86548,’ethylbenzene (anaerobic) pathway’,

[77403,77417,80092,80214,80230,missing,missing])).
datum source(80092,umbbd).
dextra(’1-phenylethanol’,80092,1,[unsaid],[unsaid]).
dextra(’H+’,80092,2,[unsaid],[unsaid]).
evidence(80092,citation(ball96),unknown).
info entry(80092,[curator role(person(

[given names(’Ryan’),surname(’McLeish’)]),typist)],
931243011,’hydra.labmed.umn.edu’).

putative ec num(80092,ec num(1,17, ,)).
reaction(80092,putative ec num,[]).
reaction(86548,’ethylbenzene (anaerobic) pathway’,

[77403,77417,80092,80214,80230,missing,missing]).
search(80092,medline,’http://www.ncbi.nlm.nih.gov/’,

’ethylbenzene[ALL]+AND+anaerobic[ALL]+AND+biodegradation[ALL]’).
sinistra(’H2O’,80092,1,[unsaid],[unsaid]).
sinistra(ethylbenzene,80092,1,[unsaid],[unsaid]).
xref(80092,umbbd,r0234).

Fig. 7. UM-BBD data as represented in The Agora. The Agora accession numbers are arbitrary for now.

our case by the JavaScript syntax checking/bundling
code). Figure 6 shows the same reaction as currently
bundled by The Agora’s reaction deposit form. Since data
on catalysts are separately bundled, the catalyst for the
reaction equation is not shown here. Each form element
is named by the semiote of the information to be entered
in it. Once entry for a given form is complete and the
user has pushed the ‘submit’ button, JavaScript functions
check the syntax of the entered data, wrap each datum
in its corresponding semiote, and bundle the semiotes
together. Data rejected on syntactic grounds are shown
to the user, and the user must approve the final data
before their transmission to the server. The Agora’s model
of reaction equations is shown in Figure 7. It can be
seen immediately that The Agora’s model is quite different
from UM-BBDs, and condenses information from many
semiotes and several bundles with internally generated
information, such as The Agora accession numbers and
time stamps.

Lightly federating databases and servers
How can Glossa and semiotes be used to share information
and computations among disparate, independent systems?
Three components are needed:

(1) a public set of semiotes and their definitions forming
a shared abstract semantic layer, publicly defined
and maintained;

(2) publicly visible mappings between the notions rei-
fied by a software system and the semiotic layer,
for just those computations and data the software
system wishes to share, manually constructed and
maintained by the local participating system;

(3) a local parser translating between semiotic requests
and the local query or implementation language,
manually constructed and maintained by the local
participating system.

In practice, a user would access a request interface
at a participating site and compose a request using the

1139

T. Kazic

tools the site provided. Behind the scenes, however, that
site would maintain a mapping between its local ideas
and the semiotes, and a parser between its own interface
language and the semiotes. It would translate the request
into semiotes and send it to one or more answering sites
(including itself), depending on the requirements of the
request and the routing mechanism chosen. Answering
sites would maintain mappings and parsers. (Alternatively
a central router could distribute requests and answers, but
it still would require similar public mapping information.)
Upon receipt of the semiotic request local resources would
translate it into their local language using their parser;
fulfill it; translate the result into semiotes; and return that
semiotic result to the requesting site. That site would
translate the result as it sees fit and return it to the user. The
process is quite similar to http protocols, except that in this
case every request and result has a defined semantics. It is
quite likely that a request posed by one site would require
data or computations from several others: these could now
be mixed and matched automatically using their declared
semantics with complete confidence in the integrity of the
result.

This scheme, which we are implementing in The Agora,
offers several advantages. First, semiotes can be defined
as we need them with only minimal oversight. Thus
the task of trying to formalize all biological knowledge
at once is very sharply reduced; only as new areas of
biology, or new ideas in existing areas are discovered
or needed, need the set of semiotes increase. We also
have a test for the completeness of any set of semiotes,
relative to the nonsemiotic terms, in any reification
of Glossa: the semantics of every nonsemiotic term
should be generable from those of the members of �ς .
Because the semiotes themselves only refer to very
simple ideas, those most likely to engender controversy
are left where they belong—as the private opinions of
people, databases, or algorithms. Second, every con-
tributing system is perfectly free to change its internal
details and profferred services (database management
system, schema, query language, parameter values,
computational engine, etc.) without forcing any change
in the semiotic layer (assuming that such changes don’t
suggest new semiotes). Third, the use of a shared layer
sharply reduces the number of parsers which must be
written. In the worst case of each of n systems writing
a unidirectional parser to all other systems, (n − 1)n−1

parsers would need to be built; with a shared layer, this
drops to n bidirectional parsers. Fourth, the semiotes
themselves depend on very little technology. Written in
ASCII pseudocode and transmitted by http protocols,
they can be translated into the local system’s language
of choice by its resident parser. Once the local parser
and mappings have been written, they change only if
the local system changes. Finally, the scheme allows

for technological evolution. Because it is relatively
technology-independent, changes in technologies can
evolve independently and in turn use the semiotic layer as
they see fit, and vice versa.

Discussion
Glossa and its components are tools for declaring the
semantics of ideas, data, and computations so that these
can be shared among different computational entities.
It is best thought of as a lingua franca for requesting
computations. Glossa is neither a multidatabase query
language—which would require more agreement among
the participating entities than the model advocated here—
nor is it a shared schema. Semiotes differ from ontologies
in that they computably define and label much smaller
ideas and ignore classifications. Semantics are distinct
from database schema, which describe the relationships
among objects internal to the database but depend on
the observer to recognize their meanings (Naqvi and
Tsur, 1989; Date, 1990). Thus the semiotes are not
shared schema: they are shared fragments from which
unshared schema can be built, and indeed are indifferent
to schema. Indeed, the intent is to completely bypass
such considerations, which necessarily dominate database
integrations, in favor of a much more lightly federated
approach.

This paper concentrates on machinery for defining
the semantics of a biological universe of discourse, and
completely ignores issues such as query distribution and
efficiency of query execution. The last may become
important if network speeds improve significantly.

It remains to be seen if Glossa will need to be a context-
dependent language. For the moment I am striving to keep
it context-free so that a variety of automatic tools that
generate look-ahead(1) left-right parsers from a Backus–
Naur Form grammar can be employed.

Semantics of database information is sometimes called
metadata, and there is considerable interest in declaring
metadata information so that databases from different
sources and even disciplines can be jointly used (e.g.
Dombrowski et al., 1994). As usual, the difficulty is
deciding if X in one database is X , Y , or some relative of Z
in another. Comparing the topologies of the ontologies is
obviously flawed, but even matching by identical symbols
is insufficient to determine the symbols’ usage in this case.
Only if the semantics of the symbols and each of their
instantiations are provably identical can one then say the
two databases are identical in this regard. For data which
emanate from one or very few sources, are semantically
simple, and circulate among a tightly-knit, very similarly
educated community, reliance on an implicit, human-
based semantics may be adequate. Thus there are several
fairly successful efforts using metadata among the remote

1140

Semiotes: a semantics for sharing

sensing and astronomical communities (though problems
are encountered when one tries to use another’s data,
e.g. radio versus optical astronomers, because the implicit
semantics are no longer sufficent; Kurt Weller and Harlan
Onsrud, personal communications). But none of these
conditions are true in biology, and there are ample
examples of inconsistent usage of symbols within a single
database. Thus on logical, pragmatic, and social grounds,
the need for an explicit, computable semantics is clear.

The strategy detailed here shares with those described
in the introduction the first problem—that the ultimate
arbiter of correctness is a well-educated and discerning
human. Glossa seeks to minimize this problem by popu-
lating the basis set with terms which express very simple,
relatively noncontroversial ideas, by clearly defining the
semantics of the semiotes, by defining the semantics of
constructs of the semiotes as computations, and by explic-
itly identifying semiotes, constructs computed with them,
and the mappings between the semiotes and a particular
computational resource. Provided the definitions of the
semiotes are accurate and that they are accurately used—
something that for now only humans can judge—then the
semantics of their constructs, and the results computed by
the constructs, are verifiable automatically and without
reference to the models of the universe of discourse of the
databases and algorithms which have contributed to the
results. Hence the emphasis on a computable semantics
and the effort to develop a formal structure to use in
proving the correctness of constructs.

The semantics of the basis set is constrained to be
very elementary and disjoint both to make it easier for
humans to agree (an operative approximation of the notion
of axiomatic) and to permit expression of a very wide
range of ideas. These include ideas about which either
no consensus exists, epistemologically or in the inner
workings of databases and algorithms, or are structurally
complex notions. In this framework there is no need
to argue over the definitions of reaction or standards
for sharing reaction information or how to calculate a
molecularity: one simply identifies all the components and
fundamental relationships that are recognized by some
scientific entity, human or computational, in describing
reactions; defines appropriate semiotes for them; and
lets each resource, if it wishes to share information
on reactions, express its definition of a reaction as
an executable bundle of the appropriate semiotes. The
definition of semiotes does not depend on the resolution of
underlying scientific questions, and in fact may stimulate
such discussions by explicitly defining the alternatives. As
a rule of thumb, the existence of scientific or technical
differences is a signal that more than one semiote is
needed for the basis set.

The semiote definitions are written in declarative pseu-
docode which happens to be executable Prolog. In writing

the definitions I have tended to opt for declarative clarity
rather than procedural speed (the choice of memberchk/2,
which does not backtrack if it succeeds, over member/2 il-
lustrates an exception). I also opted to use a computational
language as our basic definitional tool, rather than a purely
formal system, to emphasize the computability of the def-
initions. The reader should note the semantics of the pseu-
docode folds in some of the semantics of Prolog, for exam-
ple in forall/2, compound/1, and memberchk/2 (Swedish
Institute of Computer Science, 1999). While the defini-
tions do not rely on a particular computational model for
their semantics, they do exploit notions of recursion, iter-
ation, and term rewriting and equivalence testing common
in computational languages.

Each computational resource is free to choose and
change its own machinery to implement its use of
semiotes. Moreover, any future technological changes
which prove advantageous can readily incorporate
semiotes, without altering their definitions. In The Agora,
we are multilingual and multisystem in our technical
choices: implementation of the definitions and everything
else involves many languages, software systems, and
platforms, and constantly evolves.

We are testing the utility of this approach by first
demonstrating these ideas, implementing them as part of
The Agora (Bugrim et al., 2000). A fuller description
of the implementation is the subject of another paper;
the examples shown are selected from many semiotes,
bundles, operators, and mappings (Kazic, 2000). Our
experience so far indicates one can indeed define semiotes
incrementally and communally, and that vigilant checking
against the definition of semiotes is important. It is
premature to speculate on how well this approach will
prove to scale. I do not yet have a good estimate for the
eventual size of the semantic basis set for The Agora: it is
certainly more than a few terms but so far does not seem
as if it will be intractably large. As each area of biology
is added the basis set will continue to grow. The hope is
that by choosing axiomatic notions the number of semiotes
will be minimized. While incremental definition reduces
the effort it obviously doesn’t eliminate it altogether. We
have experimented to find the right ‘granularity’ of ideas
for definition of semiotes, but some future fluidity is
possible. Preliminary definitions of semiotes can be found
at (Kazic, 2000).

Implementing these ideas for many computational
resources will certainly require community participa-
tion and effort. Some sort of oversight body to resolve
conflicts, check definitions, and monitor simplicity and
uniqueness will be needed; and for those who wish
to participate, some effort to write and maintain the
mappings and parsers. Apart from official scientific
nomenclature bodies, efforts at communal definition have
often been still-born in the past, though they have tended

1141

T. Kazic

to focus more on big ideas and so are not necessarily
directly applicable to the present proposal. Yet we have
several remarkable successes to cheer us on: the growth
of standards for http and HTML, and the rapid and
transparent exchange of financial information worldwide
come immediately to mind. Moreover, the need for ready,
semantically reliable exchange continues to grow as each
of us wants the information in somebody else’s database
or needs that other person’s algorithm for our own task.
It’s more efficient to share, and Glossa and semiotes offer
one way of doing so.

Acknowledgements
I thank Russ Altman, Helen Berman, Sinéad Boyce,
Andrej Bugrim, Lynda Ellis, Francis Fabrizio, Mark
Feldman, Douglas Hershberger, Peter Karp, Maureen
Kelly, Harlan Onsrud, Jun Ouyung, Andrew McDonald,
Jakub Slomczynski, Keith Tipton, Kurt Weller, and Guang
Yun for useful discussions; Jakub Slomczynski for writing
HTML forms and JavaScript functions; and Jun Ouyang
and Guang Yao for writing the UM-BBD mappings and
parser. Parts of this work were conceived while the author
was attending workshops on gene recognition at the Aspen
Center for Physics. This work is supported by the National
Institutes of Health (GM-56529-01).

References
Abernethy,N. (1999–present). The Molecular Biology Ontol-

ogy Working Group. http://smi-web.stanford.edu/projects/
bio-ontology/: Stanford University.

Altman,R.B. and Abernethy,N.F. (1997) Standard representation
of the literature: combining diverse sources of ribosomal data.
In Gaasterland,T., Karp,P., Karplus,K., Ouzonis,C., Sander,C.
and Valencia,A. (eds), Proceedings of the 5th International
Conference on Intelligent Systems for Molecular Biology vol. 5,
American Association for Artificial Intelligence, Menlo Park,
CA, pp. 15–24.

Altman,R.B., Dunker,A.K., Hunter,L. and Klein,T., (eds) (2000)
Pacific Symposium on Biocomputing. vol. 5, World Scientific,
Singapore.

Aronoff,M. and Rees-Miller,J., (eds) (2000) The Handbook of
Linguistics. Blackwell, Oxford.

Baclawski,K., Cigna,J., Kokar,M., Mager,P. and Indurkhya,B.
(2000) Knowledge representation and indexing using the Uni-
fied Medical Language System. In Altman et al., 2000, (ed.), pp.
490–501.

Baclawski,K., Futrelle,R., Hafner,C., Pescitelli,M.J., Fridman,N.,
Li,B. and Zou,C. (1993) Data/knowledge bases for biolog-
ical papers and techniques. In Chu,W.W., Cardena,A.F. and
Taira,R.K. (eds), Proceedings of the NSF Scientific Database
Projects National Science Foundation, Washington, DC, pp. 23–
28.

Bellahsene,Z. (1997) Extending a view mechanism to support
schema evolution in federated database systems. In Hameurlain
and Tjoa, 1997, (ed.), pp. 573–582.

Blaschke,C., Andrade,M.A., Ouzounis,C. and Valencia,A. (1999)
Automatic extraction of biological information from scientific
text: protein-protein interactions. In Lengauer et al., 1999, (ed.),
pp. 60–67.

Bourne,P., Berman,H.M., Watenpaugh,K., Westbrook,J. and
Fitzgerald,P.M.D. (1997) The macromolecular Crystallographic
Information File (mmCIF). Meth. Enzymol., 277, 571–590.

Bugrim,A., Boyce,S., Yao,G., Slomczynski,J., McDonald,A.,
Feng,B., Wise,W.B., Ellis,L., Tipton,K. and Kazic,T. (2000–
present). The Agora. http://www.ibc.wustl.edu/biognosis/agora
interface/html/agora entrance.html/: Institute for Biomedical
Computing, Washington Univesity.

Chaudhri,V.K. and Lowrance,J.D. (1999–present). Generic Knowl-
edge Base Editor. http://www.ai.sri.com/∼gkb: SRI.

Chen,I.-M.A., Kosky,A.S., Markowitz,V.M. and Szeto,E. (1997)
Constructing and maintaining scientific database views. Pro-
ceedings of the 9th Conference on Scientific and Statistical
Database Management IEEE Computer Society Press, Rockville
MD, pp. 237–248.

Clark,P.E. (1999–present). Some Ongoing KBS/Ontology
Projects and Groups. http://www.cs.utexas.edu/users/mfkb/
related.html: University of Texas at Austin.

Craven,M. and Kumlien,J. (1999) Constructing biological knowl-
edge bases by extracting information from text sources. In
Lengauer et al., 1999, (ed.), pp. 77–86.

Date,C.J. (1990) An Introduction to Database Systems. vol. I. 5th
edn, Addison-Wesley, Reading MA.

Dombrowski,E.G., Snyder,W.A. and Heckathorn,H.M. (1994)
Metadata management and the VISTA system. In Nunamaker,
Jr, J.F. and Sprague, Jr, R.H. (eds), Proceedings of the Twenty-
Seventh Annual Hawaii International Conference on System Sci-
ences vol. 3, IEEE Computer Society Press, Los Alamitos CA,
pp. 418–427.

Eco,U. (1984) Semiotics and the Philosophy of Language. Indiana
University Press, Bloomington IN.

Ellis,L.B.M. and Wackett,L.P. (1995) A microbial biocatalysis
database. Soc. Indus. Microbiol. News, 45, 167–173.

Ellis,L.B.M. and Wackett,L.P. (1995–present). University of
Minnesota Biocatalysis/Biodegradation Database. http://www.
labmed.umn.edu/umbbd/index.html: University of Minnesota.

Elmagarmid,A., Rusinkiewicz,M. and Sheth,A., (eds) (1999) Man-
agement of Heterogeneous and Autonomous Database Systems.
Morgan Kaufmann, San Francisco.

Futrelle,R.P. (1997) Distributed intelligent systems for a knowledge-
based scientific literature, Unpublished manuscript, privately
circulated.

Genome Data Base Staff, (1996) Genome Data Base. http://
gdbwww.gdb.org/.

Goble,C., Crowther,P. and Solomon,D. (1994) A medical terminol-
ogy server. In Karagiannis, 1994, (ed.), pp. 661–670.

Hameurlain,A. and Morvan,F. (1996) Parallel relational database
systems: why, how, and beyond. In Wagner and Thoma,
1996, (ed.), pp. 302–312.

Hameurlain,A. and Tjoa,A.M., (eds) (1997) Database and Expert
Systems Applications. 7th International Conference, DEXA ’97.
Lecture Notes in Computer Science, 1308, Springer, Berlin.

Hammer,J., Garcı́a-Molina,H., Nestorov,S., Yerneni,R., Breunig,M.
and Vassalos,V. (1997) Template-based wrappers in the TSIM-
MIS system. In Association for Computing Machinery, (ed.),

1142

Semiotes: a semantics for sharing

SIGMOD ’97, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data pp. 532–535.http:
//info.acm.org/pubs/contents/proceedings/mod/253260/: Associ-
ation for Computing Machinery.

Hammer,J. and McLeod,D. (1999) Resolution of representational
diversity in multidatabase systems. In Elmagarmid et al.,
1999, (ed.), pp. 91–118.

Harris,Z., Gottfried,M., Ryckman,T., Mattick, Jr, P., Daladier,A.,
Harris,T. and Harris,S. (1989) The Form of Information in
Science: Analysis of an Immunology Sublanguage. Reidel,
Dordrecht.

Houstis,C., Paptheodorou,T.S., Verykios,V., Floratos,A. and El-
magarmid,A. (1994) BIND: a Biomedical INteroperabile
Database system. In Karagiannis, 1994, (ed.), pp. 671–679.

Huemer,C., Quirchmayr,G. and Tjoa,A.M. (1997) A meta message
approach for electronic data interchange (EDI). In Hameurlain
and Tjoa, 1997, (ed.), pp. 377–386.

Humphreys,K., Demetriou,G. and Gaizauskas,R. (2000) Two appli-
cations of information extraction to biological science journal ar-
ticles: enzyme interactions and protein structures. In Altman et
al., 2000, (ed.), pp. 502–513.

IUCr Working Party on Crystallographic Information (1999–
present). Macromolecular Crystallographic Information File.
http://ndbserver.rutgers.edu/mmcif/: Rutgers University.

James,R.C. and Beckenbach,E.F. (1968) James and James Mathe-
matics Dictionary. van Nostrand-Reinhold, Princeton, NJ.

Karagiannis,D. (ed) (1994) Database and Expert Systems Appli-
cations, 5th International Conference, DEXA ’94. Proceedings
Lecture Notes in Computer Science, 856, Springer, Berlin.

Karp,P.D., Chaudhri,V.K. and Thomere,J. (1999–present). XOL:
an XML-based Ontology Exchange Language. Approxi-
mately http://www-smi.stanford.edu/projects/bio-ontology/xol.
doc: Stanford University.

Kashyap,V. and Sheth,A. (1999) Semantic similarities between
objects in multiple databases. In Elmagarmid et al., 1999, (ed.),
pp. 58–89.

Kazic,T. (1995) Chemical information: how do we get it and what
do we do with it? In Collier,H. (ed.), Proceedings of the 1995
International Chemical Informatics Conference, Nı̂mes, France
Infonortics, Ltd, Calne, UK, pp. 48–61.

Kazic,T. (2000–present). Glossa, Semiotes, and Related Files. http:
//www.ibc.wustl.edu/biognosis/technologies/semiotes/: Institute
for Biomedical Computing, Washington Univesity.

Kazic,T., Yao,G., Bugrim,A. and Slomczynski,J. (2000–
present). Glossa Semiotes. http://www.ibc.wustl.edu/biognosis/
technologies/reprints/semiote list.ps: Institute for Biomedical
Computing, Washington Univesity.

Kent,R.E. (1999–present). Ontology Markup Language, version 0.2.
http://wave.eecs.wsu.edu/CKRMI/OML.html: Wayne State Uni-
versity.

Knowledge Systems Laboratory, (1999–present). Current
Projects. http://www-ksl.stanford.edu/currentproj.html: Stan-
ford University.

Lakoff,G. (1987) Women, Fire, and Dangerous Things : What
Categories Reveal about the Mind. University of Chicago Press,
Chicago.

Lee,Y.-W. and Yoo,S.I. (1994) Semantic query optimization in
OODB systems. In Karagiannis, 1994, (ed.), pp. 651–660.

Lehnert,W. (2000) Information Extraction. http://www-nlp.cs.
umass.edu/nlpie.html: University of Massachusetts, Amherst.

Lengauer,T., Schneider,R., Bork,P., Brutlag,D., Glasgow,J.,
Mewes,H.-W. and Zimmer,R., (eds) (1999) Proceedings of the
7th International Conference on Intelligent Systems for Molec-
ular Biology American Association for Artificial Intelligence,
Menlo Park, CA.

Li,C., Yerneni,R., Vassalos,V., Garcia-Molina,H., Papakonstanti-
nou,Y., Ullman,J. and Valiveti,M. (1997) Capability based
mediation in TSIMMIS. In Association for Computing
Machinery, (ed.), SIGMOD ’98, Proceedings of the ACM
SIGMOD International Conference on Management of Data pp.
564–566 http://info.acm.org/pubs/contents/proceedings/mod/
276304/: Association for Computing Machinery.

Message Understanding Conference,, (ed) (1992) Fourth Message
Understanding Conference, (MUC-4): Proceedings of a Confer-
ence held in McLean, Virginia, June 16–18, 1992 Morgan Kauf-
mann, San Mateo CA.

Meyer,B. (1990) Introduction to the Theory of Programming
Langauges. Prentice-Hall, Hemel Hempstead, Hertfordshire,
UK.

Mihaila,G.A., Raschid,L. and Tomasic,A. (1998) Equal time
for data on the Internet with WebSemantics. In Schek,H.-J.,
Saltor,F., Ramos,I. and Alonso,G. (eds), Advances in Database
Technology—EDBT ’98, 6th International Conference on Ex-
tending Database Technology Lecture Notes in Computer Sci-
ence, 1377, Springer, Berlin, pp. 87–101.

Missier,P., Rusinkiewicz,M. and Jin,W. (1999) Schema integration:
past, present, and future. In Elmagarmid et al., 1999, (ed.), pp.
119–155.

Murray-Rust,P. (1995) SGML Experiment Collaborative Hy-
perGlossary. http://www.cryst.bbk.ac.uk/glossary/sgml/cml-0.5/
doc/cml/cml.html, Birkbeck College, London.

Naqvi,S. and Tsur,S. (1989) LDL: A Logical Language for Data
and Knowledge Bases. Computer Science Press, Rockville MD.

Nelson,S.J., Fuller,L.F., Earlbaum,M.S., Tuttle,M.S., Sherertz,D.D.
and Olson,N.E. (1993) The semantic structure of the UMLS
metathesarus. In Frisse,M.E. (ed.), Sixteenth Annual Symposium
on Computer Applications in Medical Care: A Conference of the
American Medical Informatics Association McGraw-Hill, New
York, pp. 649–653.

O’Keefe,R.A. (1990) The Craft of Prolog. MIT Press, Cambridge
MA.

Ounis,I. and Chevallet,J.-P. (1996) Using conceptual graphs in a
multifaceted logical model for information retrieval. In Wagner
and Thoma, 1996, (ed.), pp. 812–823.

Papakonstantinou,Y., Gupta,A., Garcia-Molina,H. and Ullman,J.
(1995) A query translation scheme for rapid implementation
of wrappers. In Ling,T.W., Medelzon,A.O. and Vieille,L. (eds),
Fourth International Conference on Deductive and Object-
Oriented Databases, DOOD ’95 Lecture Notes in Computer
Science, 1014, Springer, Berlin.

Proteometrics, Inc., (1999–present). The BIOpolymer Markup
Language Home Page. http://204.112.55.140/BIOML/index.
html: Proteometrics, Inc.

Ram,S. (1991) Heterogeneous distributed database systems. Com-
puter, 24, 7–9.

1143

T. Kazic

Rindflesch,T.C., Tanabe,L., Weinstein,J.N. and Hunter,L. (2000)
EDGAR: extraction of drugs, genes and relations from the
biomedical literature. In Altman et al., 2000, (ed.), pp. 514–525.

Ritter,O. (1994) The integrated genomic database (IGD). In
Suhai,S. (ed.), Computational Methods in Genome Research
Plenum Press, New York, pp. 57–73.

Salton,G., Allan,J. and Buckley,C. (1993) Approaches to passage
retrieval in full text information systems. In Korfhage,R., Ras-
mussen,E. and Willet,P. (eds), SIGIR 93: Proceedings of the Six-
teenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval Association for Com-
puting Machinery, New York, pp. 49–58.

Schulze-Kremer,S. (1996–present). Ontology Editor by Stef-
fen Schulze-Kremer. http://igd.rz-berlin.mpg.de/∼www/prolog/
oe.html: Max-Planck Institute for Molecular Genetics.

Seo,D.-Y., Lee,D.-H, Moon,K.-S., Chang,J., Lee,J.-Y. and Han,C.-
Y. (1997) Schemaless representation of semistructured data
and schema construction. In Hameurlain and Tjoa, 1997, (ed.),
pp. 387–397.

Sheth,A.P. and Larson,J.A. (1990) Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Comput. Surv., 22, 183–236.

Sowa,J.F. (1984) Conceptual Structures: Information Processing in
Mind and Machine. Addison-Wesley, Reading MA.

Sowa,J.F. (1998) Knowledge Representation: Logical, Philosophi-
cal, and Computational Foundations. PWS Publishing, Boston,
MA.

Stapley,B.J. and Benoit,G. (2000) Biobibliometrics: information
retrieval and visualization from co-occurrences of gene names
in medline abstracts. In Altman et al., 2000, (ed.), pp. 526–537.

Sterling,L. and Shapiro,E. (1986) The Art of Prolog. MIT Press,
Cambridge MA.

Swedish Institute of Computer Science, (1999–present). SICS
Quintus Prolog Manual. http://www.sics.se/isl/quintus/qp/frame.
html: Swedish Institute of Computer Science.

The FlyBase Consortium, (1999) The flybase database of the
Drosophila genome projects and community literature. Nucleic
Acids Res., 27, 85–88.

The FlyBase Consortium, (1999–present). FlyBase. http://fly.ebi.ac.
uk:7081/docs/lk/controlled-vocabulary.txt: European Bioinfor-
matics Institute.

Thomas,J., Milward,D., Ouzounis,C., Pulman,S. and Carroll,M.
(2000) Automatic extraction of protein interactions from scien-
tific abstracts. In Altman et al., 2000, (ed.), pp. 538–549.

Topaloglou,T., Kosky,A. and Markowitz,V. (1999) Seamless inte-
gration of biological applications within a database framework.
In Lengauer et al., 1999, (ed.), pp. 272–281.

Wagner,R.R. and Thoma,H., (eds) (1996) Database and Expert
Systems Applications. Seventh International Conference, DEXA
’96. Lecture Notes in Computer Science, 1134, Springer, Berlin.

Wu,X. (1996) An architecture for interoperation of distributed het-
erogeneous database systems. In Wagner and Thoma, 1996, (ed.),
pp. 688–697.

1144

