Darwin v. 2.0: an interpreted computer language for the biosciences

G. H. Gonnet, M. T. Hallett*, C. Korostensky and L. Bernardin

Department of Computer Science, ETH Zürich, Zürich, Switzerland

Received on June 16, 1999; revised on August 31, 1999; accepted on September 14, 1999

Abstract

Motivation: We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems.

Results: This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs.

Availability: Darwin is made available for most operating systems free of charge from the Computational Biochemistry Research Group (CBRG), reachable at http://cbrg.inf.ethz.ch.

Contact: darwin@inf.ethz.ch

Motivation

Darwin is an easy to use interpreted computer language especially tailored to research in the biosciences. Its purpose is to serve as a biochemists’ workbench where researchers can explore molecular sequence data quickly and easily. The Darwin project began in 1991 and reflects much of the research done in the CBRG (Computational Biochemistry Research Group) at the ETH-Zurich. Broadly speaking, it consists of two parts: the libraries and the kernel.

The libraries correspond closely to what one expects from a software package: a pre-defined set of functions offered by the system. The libraries reflect current and past trends in our research efforts but also incorporate many algorithms from the literature, particularly those related to sequence comparison, phylogenetic tree construction, multiple sequence alignment and secondary structure prediction. The libraries themselves are written in the Darwin language and are therefore easy to read even for novice programmers. We briefly describe the current contents of the libraries in the next section.

The kernel of Darwin is responsible for the lower-level operations in the system: executing commands and libraries, memory management, input/output, communication with the operating system, load balancing, etc. Darwin itself is written in C although this source code is not made publically available. The kernel also contains critical routines, that is, routines which must be performed efficiently due to the number of times they are called or the complexity of the routines themselves. These include (but are not limited to) routines for pairwise alignment, all versus all alignments, and tree construction. Although the kernel is not modifiable, one can execute native code (that is, user designed code written in C, Java, etc.) from within Darwin.

Since Darwin is a computer language, it allows one to go beyond the fixed set of routines offered in the kernel and library. The language itself is a high-level interpreted language equipped with lists, sets, general data structures, and a robust collection of basic mathematical functions allowing the user to quickly prototype new ideas. Darwin programs are relatively fast even when compared with optimized C code. A moderately experienced user of the system will be able to modify existing libraries (written in the Darwin language) when necessary or create new libraries appropriate to whichever problem they are currently exploring. Below is a small example of a Darwin session:

unix: darwin
Darwin: Sequence Searching Facility
Version 2.0, August 1998
(c) E.T.H. Zurich
DB:=ReadDb('SwissProt37');
Peptide file(SwissProt37(54714687), 77977 entries, 28268293 aminoacids)
printf(‘\nIdentification: %s’,
Entry(1)[‘ID’]);
Identification: 100K_RAT
printf(‘Accession Number: %s’,
Entry(1)[‘AC’]);
Accession Number: Q62671;

*To whom correspondence should be addressed.
The above program loads the SwissProt v. 37 dataset (ReadDb), then prints out the identification and accession tags for the first entry. After creating the GCB extended Dayhoff matrices, the first entry is compared against all other entries in SwissProt (AlignOneAll). In this example, the alignment is performed at a PAM distance of 250 (variable DM) and all significant matches are stored in the variable res. A significant match here is defined as any match with a similarity score greater than or equal to 120.1 We search through the 19 such matches for the alignment which induced the highest similarity score.

Although large, the libraries distributed with Darwin are far from complete (computational biology travels simply too fast to make 'keeping up' viable). Users are invited to submit new libraries for inclusion in future releases of the system.

Results

Combining algorithms both from the literature and research local to the CBRG, our system allows a flexibility that no previous system has offered. This flexibility is an absolute necessity as we enter an age where the analysis of complete genomes will be commonplace. We believe that the power of Darwin remains largely untapped although over 400 research groups have experimented with our software.

Below is a brief description of the contents of the Darwin language, libraries and built-in routines. We note, however, that this description is not complete; there are other libraries for many discrete and continuous mathematical optimization problems plus other smaller tools for manipulating sequence data. The manual contains more information on these topics.

1This is a maximum likelihood log-odds score which can be interpreted as meaning that it is 10^{120} more likely the sequences evolved from a common ancestor than a random alignment.

2A patricia tree is a close sibling to the suffix tree, the more common data-structure in the literature.
Protein identification via peptide mass
Darwin contains routines for protein identification by aligning the masses of small collections of peptides after N- or C-terminal digestion against either a nucleotide and peptide dataset (Korostensky et al., 1998).

Phylogenetic tree and multiple sequence alignment construction
Historically, tree construction in Darwin has been based on distance matrices and the system contains various related routines: tree topology construction algorithms [Neighbour joining (Saitou and Nei, 1987), clustering methods (Hillis et al., 1996), amongst others], least squares fits to tree topologies, and local optimization routines. There are now routines for tree construction based on circular orders, a new method developed in Gonnet and Korostensky (2000). Multiple sequence alignments (Gonnet and Benner, 1996) are created relative to a phylogenetic tree and the system includes several methods for scoring the quality of the alignment, including a novel method developed in Gonnet and Korostensky (2000).

Statistics and visualization
This system includes routines for drawing histograms, dot plots and bar graphs. The system can also draw unrooted trees, rooted trees, split trees, and combinatorial graphs. There are a large number of routines for producing random permutations, combinations, distributions and specific biological objects such as sequences, trees and multiple sequence alignments.

A manual is now available (Gonnet and Hallett, 2000) which describes the Darwin language and all of the basic functionality of the language, including the basic commands, constructors, data types, built-in data structures and descriptors for all library functions. Darwin v. 1 suffered from a somewhat scattered and nonintuitive naming scheme for its predefined functions. In order to make Darwin more usable, we have adopted a standardized naming convention (included in the manual). Furthermore, a substantial subset of the manual is available via on-line help from within Darwin and the remainder is available via the WWW (CBRG, 1999). Lastly, a large number of bugs reported by our user base have been fixed.

Availability and contact
Darwin is available free of charge from our WWW server http://cbrg.inf.ethz.ch or via email at darwin@inf.ethz.ch. Interested users are asked to fill out a short form indicating which platform(s) are desired. The system will be emailed shortly after we receive your signed document.

References

3Darwin is available on the following platforms: DEC Alpha/Digital Unix 4.0, SGI Irix 6.x, Sun Sparc Solaris 2.5 and up, HP-UX 10.x, Linux 2.x, Windows '95, Windows NT.