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Abstract
Motivation: Efficient, accurate and automatic clustering
of large protein sequence datasets, such as complete
proteomes, into families, according to sequence similarity.
Detection and correction of false positive and negative
relationships with subsequent detection and resolution of
multi-domain proteins.
Results: A new algorithm for the automatic clustering
of protein sequence datasets has been developed. This
algorithm represents all similarity relationships within the
dataset in a binary matrix. Removal of false positives
is achieved through subsequent symmetrification of the
matrix using a Smith–Waterman dynamic programming
alignment algorithm. Detection of multi-domain protein
families and further false positive relationships within
the symmetrical matrix is achieved through iterative
processing of matrix elements with successive rounds
of Smith–Waterman dynamic programming alignments.
Recursive single-linkage clustering of the corrected matrix
allows efficient and accurate family representation for
each protein in the dataset. Initial clusters containing
multi-domain families, are split into their constituent
clusters using the information obtained by the multi-
domain detection step. This algorithm can hence quickly
and accurately cluster large protein datasets into families.
Problems due to the presence of multi-domain proteins are
minimized, allowing more precise clustering information
to be obtained automatically.
Availability: GeneRAGE (version 1.0) executable binaries
for most platforms may be obtained from the authors on
request. The system is available to academic users free of
charge under license.
Contact: ouzounis@ebi.ac.uk

Introduction
The enormous growth of public sequence databases and
continuing addition of fully sequenced genomes has cre-
ated many challenging problems in the field of bioinfor-

∗To whom correspondence should be addressed.

matics. Large scale protein sequence comparison is in-
creasingly becoming an effective way to extract useful bi-
ological information from genome sequences. Due to the
increasing sizes of protein databases, methods of this kind
need to be as accurate, efficient and automatic as possi-
ble. Accurate prediction of protein function necessitates
the identification of ‘paralogous’ proteins within genomes
and ‘orthologous’ proteins between genomes. Clustering
algorithms are designed to take sequence databases and
assign each protein to a family. Some measure of similar-
ity is needed to assign homologous proteins to families.

Many methods exist that can cluster sequences accord-
ing to similarity (or distance) information. However, most
of these methods are either too computationally intensive
or require too much manual input to be usable for large
databases, such as genomic protein databases. Many such
techniques do not take into account the problems asso-
ciated with clustering databases containing multi-domain
proteins. We believe that multi-domain proteins are suf-
ficiently common in genome databases to merit explicit
algorithmic treatment.

One of the most widely used methods to detect sim-
ilarities between proteins for clustering purposes is the
detection of homologues using single-sequence similar-
ity search algorithms such as BLAST (Altschul et al.,
1997), FASTA (Pearson and Lipman, 1988) and Smith–
Waterman (Smith and Waterman, 1981). These search
algorithms can detect homologous groups of proteins
in a protein database, by comparing every sequence in
the database with every other. This type of all-against-
all analysis forms the basis for many of the available
clustering applications.

Other methods to determine similarity relationships
between proteins involve multiple alignment procedures.
These methods can also produce excellent information
for clustering purposes, but tend to be significantly more
CPU intensive than single-sequence alignment proce-
dures. Newer breeds of search tools such as PSI-BLAST
(Altschul et al., 1997) and HMM-based methods (e.g.
SAM-T98; Karplus et al., 1998) have improved the
detection of remote homologues. These types of search
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tools generally involve the detection of homologous
intermediate proteins that provide a common link between
remote homologues. However, they are generally slower,
due to the iterative implementation of the algorithm. This
makes them less desirable to use for the clustering of large
datasets. For this type of genomic sequence clustering, we
believe that local-alignment search tools are sufficient for
the production of accurate clustering information.

Results from sequence comparison programs can be
used to create a list of all hits with their associated simi-
larity scores and statistical values. Clustering approaches
can then be employed to create clusters from these data.

Finally, a number of similarity detection approaches
are based not on primary sequence, but on comparison of
protein structures in three-dimensional (3D) fold-space
(Holm and Sander, 1993). The detection of 3D structure
similarities may imply some remote functional relation-
ships. It has been shown that certain proteins sharing as
little as 15% sequence identity can have almost identical
3D structures (Hubbard et al., 1999). These approaches
can effectively detect remote homologues that lie in the
‘twilight-zone’ of sequence homology. Sophisticated
methods for pair-wise comparisons of protein structures
have been developed and can be used in the generation of
protein fold clusters (Holm and Sander, 1996).

This approach is limited by the relatively sparse amount
of 3D structural data for known proteins. Accurate struc-
ture prediction could be of enormous value for the clus-
tering of gene-products in a newly sequenced genome (for
which there will probably be no 3D information; Jones,
1999).

Clustering techniques
Clusters are built by associating each protein sequence
with a list of detected neighbouring sequences, where
the distance measure is a score, or probability value,
obtained from the initial sequence comparisons. Sequence
space in this way may be represented as a graph whose
vertices represent the sequences. Vertices may be linked
by weighted directional edges. The edges are weighted to
represent the degree of similarity between two vertices as
determined from the initial similarity searches. Strongly
connected sets of vertices should then represent clusters of
related proteins in sequence space (Tatusov et al., 1997).

The thresholds for defining an edge in this graph (e.g.
a BLAST E-value cut-off) control how conservative the
clusters will be. A lower expectation value means less
relationships will be detected, but noise will be reduced
to a minimum (high precision, low recall). A higher (more
permissive) expectation value allows more relationships to
be detected; however, this increases the risk of detecting
false relationships (high recall, low precision). It is
essential that the correct balance between conservative and
permissive association be reached.

Remote homologues
The clustering of proteins into families involves two
fundamental issues. The first of these issues is how to
generate clusters given that not all hits will be detected
by the similarity search stage. Remote homologues may
form a separate cluster that cannot be linked to a sister
cluster of similar proteins, due to the inability of the search
algorithms to find a remote homology relationship. It is
sometimes possible to link these two clusters together if
conserved residue information is taken into account. This
is a similar approach to sequence comparison tools such as
PSI-BLAST and SAM-T98 (Altschul et al., 1997; Karplus
et al., 1998, respectively).

This procedure can enhance the detection of remote
homologues by as much as 70% in the case of the
PDB40D database (Park et al., 1997), with an error rate
of approximately 1%. However, because this database
decomposes proteins into domains, the multi-domain
problem is not addressed.

Multi-domain proteins
The second issue in sequence clustering involves multi-
domain proteins. These proteins contain two or more
separate domains that may be similar to different sets of
unrelated clusters (Figure 1). If such a protein cannot be
determined to be a multi-domain protein then the two
clusters will be artefactually linked. In this case the multi-
domain protein is technically a member of both sets of
clusters; however, the two clusters may not be related.

In order for clustering to work effectively, the presence
of multi-domain proteins must be detected and explicitly
recorded. Once detected, clusters containing these proteins
can be broken down into separate clusters.

System and methods
The GeneRAGE algorithm is written in ANSI C, and
developed on a Sun Ultra 10 Workstation. The code
has been ported to the following operating systems:
Solaris, Compaq Tru64 UNIX, SGI IRIX, AIX and Linux.
An SMP parallel implementation of the code is also
available (based on the POSIX Pthread standard), and
has been tested in Linux, SGI IRIX and Compaq Tru64
multiprocessor environments. The minimum hardware
requirements for the clustering of small genomes (< 6000
proteins) is 32MB RAM and sufficient disk space to store
the sequence database and search results.

Algorithm
Initial steps
An ‘all-against-all’ sequence similarity search is under-
taken to determine significant similarity relationships
within a query database of size n proteins. In this analysis
the BLASTp package was used to determine similarity
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relationships between proteins, below a specified E-value
cut-off (1 × 10−10). All query sequences were filtered
using the CAST algorithm (Promponas et al. submitted)
prior to searching, to mask compositionally biased regions
in these proteins. The filtering of sequences using the
CAST algorithm reduces noise in the sequence similarity
search, and makes E-values more reliable for sequence
clustering.

BLAST v2.0 was chosen for this analysis, as it is
relatively fast and sufficiently accurate to provide a solid
basis for genome sequence clustering. It is possible,
however, to use other search tools for this step, if more
distant homology relationships are required. A bit-wise
matrix (T ) of size n × n elements is constructed from
these pair-wise similarity relationships. Each bit in the
matrix represents either the presence (‘1’) or absence (‘0’)
of significant similarity between any two proteins in the
database.

Symmetrification of the matrix
To facilitate clustering, the first step used was the symmet-
rification of the similarity matrix T . This condition has
been previously used in sequence comparison (Rivera et
al., 1998). We implemented this condition as follows: for
every element of the matrix Ti, j check:

If : ∀Ti, j : Ti, j = Tj,i

⇒ Then: Skip; else

If : ∀Ti, j : Ti, j �= Tj,i

⇒ Then: A Smith–Waterman dynamic programming
alignment is used to determine if this is a false pos-
itive/false negative assignment (Pearson, 1996). If a
significant Z -score (e.g. Z > 10), obtained with a
further 100 rounds of randomized alignments, is detected
between proteins i and j , then the matrix is corrected by
setting:

Ti, j = Tj,i = 1.

This situation represents a false negative case at the search
step that is rectified at the symmetrification step.
Otherwise, if no significant similarity is detected (e.g.
Z ≤ 10) the matrix is corrected by setting:

Ti, j = Tj,i = 0.

This situation represents a false positive case at the search
step that is eliminated at this step.
When this procedure is complete, matrix T satisfies the
symmetrical properties of a sequence similarity matrix:

Now : ∀Ti, j : Ti, j = Tj,i .

Detection of multi-domain proteins
The detection of multi-domain proteins from the query
database is important to allow accurate clustering of
the matrix. Multi-domain proteins are detected by the
following simple, yet effective protocol. If two proteins
a and b hit a common protein c, does protein a hit protein
b? In other words, does the transitivity criterion hold?

If : Ta,c = Tc,a = 1

and
If : Tb,c = Tc,b = 1

⇒ Then: check

If : Ta,b = Tb,a = 1

If this is not the case then c may be a multi-domain protein
(Figure 2). The algorithm works as follows.

• For each protein c in matrix T , collect the set Sc of all
proteins that exhibit significant similarity to protein c,
from matrix T .

• For every pair of proteins (a, b) in set Sc, look up
matrix T to check if any similarity exists between
them.

If : Ta,b = Tb,a = 1

⇒ Then: Skip; else

If : Ta,b = Tb,a = 0

Confirm that no significant similarity exists by per-
forming an additional Smith–Waterman dynamic pro-
gramming alignment between a and b. If significant
sequence similarity is detected (e.g. Z > 10), this is a
false negative case that is corrected by setting Ta,b =
Tb,a = 1. In this case Ta,c = Tc,a = 1 and Tb,c =
Tc,b = 1 already holds, therefore a, b and c belong to
the same family. If no significant similarity is detected
(e.g. Z ≤ 10), mark protein c as a candidate multi-
domain protein, composed of two domains a′, b′ with
similarity to a and b respectively.

Another important application for this technique is the de-
tection of fusion proteins across genomes (Enright et al.,
1999). In these cases, proteins a and b represent compo-
nent proteins in one genome and protein c represents a
multi-domain composite protein in another genome with
two domains a′ and b′ similar to a and b respectively. The
fusion detection algorithm (called DifFuse) is a variant of
GeneRAGE, where the second dynamic programming test
is performed between entries of two databases (Enright et
al., 1999).
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Fig. 1. The multi-domain problem in sequence clustering. Graphs
representing sequence relationships in a hypothetical case for a
multi-domain protein family. Vertices represent sequences and
edges represent homology relationships between these sequences.
Color indicates membership into a specific family. In case (1), if
sequence A is not detected as a multi-domain protein, then all
sequences A–G may be considered as members of a single family by
virtue of their relationship to the intermediate sequence A. In case
(2), sequence A has been succesfully detected as a multi-domain
protein, and two distinct fully connected clusters have been detected
and protein A has been re-assigned on the basis of its domain
structure.

Single linkage clustering
The processed matrix is recursively clustered by beginning
a clustering operation for each row of the matrix. If a
protein corresponding to this row i of matrix T is not
already clustered, then a new cluster is created containing
sequence i . New sequences are added to this cluster by
processing across row i of the matrix and recursively sub-
clustering each protein that is hit by protein i . As the
clustering procedure descends through each row of the
matrix, more and more proteins are added to each cluster.

At this stage, multi-domain proteins are clustered
separately from single-domain families. When the initial
clustering operation is complete, multi-domain family
information from the second step of the algorithm is used
to split clusters. Clusters that are deemed to contain two
separate families linked by one or more multi-domain
proteins are split into their constituent families. Multi-
domain proteins can hence be members of more than
one cluster. Finally, all clustering information (including
multi-domain information) is represented in a clusters
table. Additionally, for genome comparison studies, a
similarity table is created for further analysis (Figure 2).

BLASTp

Query Genome
vs 

Query Genome

RAGE

Symmetrify_matrix()

∀ M(i,j):

Does:  M(i,j) = M(j,i) ?

Smith-Waterman
Z-score 1

Detect_Multi_Domain()

C

A B

Smith-Waterman
Z-score 2

Cluster_matrix()

Single Linkage 
Clustering

Results:

etc...

Paralogue Table:

Cluster Assignments:

A    A :B:D

B    A :A:D

C    E

1 A

1 A

1 B

1 D

2 C

2 E

Sequence 
Similarity Matrix

BLAST E-Value Cut-off

Fig. 2. Schematic representation (flowchart) of the algorithm. All
n × n similarities within the query database detected using BLAST
are stored in matrix T . For all non-symmetrical hits, a Smith–
Waterman comparison is used to resolve false hits. The multi-
domain detection algorithm identifies cases of the form depicted
in the inset, where proteins a and b exhibit similarity to protein
c but not to each other, by checking matrix T (which is further
confirmed by an additional Smith–Waterman comparison). Both
Smith–Waterman runs are executed an additional 100 times, with
randomization of the sequences, and a Z -score is obtained: if the
Z -score is higher than a threshold, the similarity is accepted as
significant. A recursive single-linkage clustering operation is then
performed on the corrected matrix T , to obtain a similarity table
and a table of cluster assignments.

Results
To evaluate the performance of the algorithm, the com-
plete genome of the archaeal methanogen Methanococcus
jannaschii was analysed using GeneRAGE. This par-
ticular genome was chosen because of our extensive
experience with this organism and the availability of up-
dated manual annotations for all genes. The initial genome
self-comparison using BLASTp (Altschul et al., 1997)
took approximately 20 min running in parallel on four
workstations (using htBLAST, A. Enright, unpublished).
Symmetrification, multi-domain detection and clustering
for all 1771 proteins, took 8 min on a two-processor
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R10000 SGI Octane workstation. The analysis was
conducted using a BLASTp E-value of 1 × 10−6 using
the CAST filter (Promponas et al., submitted). Z -score
cut-off values of 10 (symmetrification) and 7 (multi-
domain detection) were used by GeneRAGE. These
values are arbitrarily set by the user—we have set the
above mentioned values based on experimentation and
empirical observations.

Of the original 3391 hits obtained by BLASTp runs,
1026 were considered to be false positives and were
removed, while 889 were considered as false negatives and
were added, during the symmetrification step. The total
number of hits after the processing of the similarity matrix
was 3254.

Most proteins in M.jannaschii (69%) have no par-
alogues in the genome and hence clustered as individual
sequences. Other clusters of varying sizes were formed
from related sequences within the genome. The dis-
tribution of these clusters is illustrated in Figure 3.
Multi-domain proteins detected within the genome were
clustered by their individual domains. Clusters containing
more than three members were analysed to check their va-
lidity (61 clusters). This analysis was performed by taking
each protein in a cluster and examining its corresponding
annotation from the M.jannaschii functions database
(Kyrpides et al., 1996). In addition, multiple alignments
(Thompson et al., 1994) were created to assist in the
evaluation of generated clusters if needed. Of these 61
clusters, 95% (58/61) had manual annotations that were
consistent with that cluster. The other three clusters had
consistent, high quality alignments but conflicting anno-
tations. These cases may represent incorrect annotations,
functionally diverse families or false positive cases.

Multi-domain proteins detected within the context of
this dataset proved to be consistent with the manual
annotations (Kyrpides et al., 1996) and further multiple
alignment analysis (Thompson et al., 1994). One example
is the archaeal ATPase proteins (Koonin, 1997), which
were successfully resolved into three distinct domains
(not shown). Further examples of successful multi-domain
detection include ABC transporter proteins, hydrogenases
and dehydrogenases (not shown). Even domains as short
as CBS (Bateman, 1997) or TPR (Kyrpides and Woese,
1998) were detected and assigned to consistent clusters
within the M.jannaschii genome.

To further examine and validate the multi-domain
detection algorithm, a complex test set containing multi-
domain proteins was used. This set contains multi-domain
relationships that are not present in the M.jannaschii
genome described above. The test set consisted of
13 genes/proteins for aromatic amino acid biosynthesis
(aro operon) from four different genomes. These proteins
consist of single domains, that have fused together in
some genomes, yet remain as separate proteins in other

Fig. 3. The distribution of the family size in the genome of
Methanococcus jannaschii. The family size is shown on the x-axis
(linear) and the number of families on the y-axis (logarithmic).
The majority of the genes are single-copy genes while the largest
families contain up to 17 members.

genomes (Duncan et al., 1987). Figure 4 illustrates the
arrangement of these proteins in four different genomes.
Conventional clustering techniques may fail to cluster
individual proteins from each genome into the correct
clusters. We are not aware of any sequence clustering
technique that can perform the above task automatically at
this level of precision. GeneRAGE successfully detected
the presence of multi-domain proteins in this test set
and divided clusters accordingly (Figure 5). Each cluster
generated hence represented a single functional unit.
The same result can be reproducibly obtained from the
corresponding complete genome sequences.

The algorithm has also been used for the discovery
of novel protein families in archaeal genomes. To this
end, all complete archaeal genomes (four species) were
clustered into families using GeneRAGE. For each family,
all members were compared against the Pfam database
(Bateman et al., 2000), using BLASTp. Families whose
members had no significant homology to any known
family in the Pfam database were submitted, processed
and curated by the Pfam project members. Of these, 294
families were subsequently made available in the Pfam
database release 5 (Bateman et al., 2000).

Discussion
We have described a fast and efficient method for cluster-
ing protein sequences according to similarity. The algo-
rithm has been designed for the clustering of protein se-
quences within and between complete genomes. We be-
lieve, however, that the algorithm also has wide ranging
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Fig. 4. Pictorial representation of the aro cluster in a number of species. In Saccharomyces cerevisiae, the gene YDR127W encodes a
multi-functional protein (Duncan et al., 1987), while in the three other species, the corresponding enzymes are encoded by different,
not necessarily proximal, genes (gene identifiers shown). The equivalent genes are color-coded. Certain genes appear to be absent from
Haemophilus influenzae or M.jannaschii.
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Fig. 5. The result of the automatic clustering and domain detection for the thirteen aro genes shown in Figure 4. GeneRAGE correctly detects
homologous genes, assigns them into clusters and defines the relationships within the set. Sequence identifiers as in Figure 4.

uses in the clustering of protein sequences in general. The
key abstractions made by the algorithm are the represen-
tation and symmetrification of sequence similarity infor-
mation in a matrix, and the subsequent detection of multi-
domain proteins (Figure 2). The symmetrification step is
an important abstraction, as it not only detects false pos-
itive/false negative relationships, but also provides a con-
sistent similarity construct for further processing and anal-
ysis. The storage of similarity information as binary re-
lationships in the matrix makes the algorithm more effi-
cient and less memory intensive. This allows the analy-
sis of much larger sequence datasets (>50 000 sequences).

Given the fully automatic implementation of this code and
its precision, we believe that the algorithm represents a
significant improvement over currently available cluster-
ing techniques.

The multi-domain detection step, although based on a
simple abstraction (Figure 2) is an important advance.
Because multi-domain proteins are detected due to
inconsistencies in the similarity matrix, this step not
only detects multi-domain proteins, but also detects and
corrects further false negative relationships. The precision
of this step has been demonstrated in many cases. The
detection of multi-domain proteins is, however, highly
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dependent on the cut-off scores specified. Multi-domain
proteins containing two domains that are non-similar
are relatively easy to detect. The difficulty lies in the
detection of multi-domain proteins that contain two or
more very similar domains. We are currently investigating
ways of dynamically modifying the cut-off values used in
the multi-domain detection step, allowing more efficient
detection of these cases.

The algorithm is sufficiently general that various meth-
ods can be used at each step. For instance, any similar-
ity search algorithm can be used for the initial step of ho-
mology detection. For the clustering step, different meth-
ods can also be used, such as complete and average link-
age clustering. Further investigation will involve compar-
ison with unsupervised machine learning algorithms for
the clustering of the corrected similarity matrix.
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