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Abstract
Motivation: The sizes of protein domains observed in
the 3D-structure database follow a surprisingly narrow
distribution. Structural domains are furthermore formed
from a single-chain continuous segment in over 80% of
instances. These observations imply that some choices
of domain boundaries on an otherwise uncharacterized
sequence are more likely than others, based solely on
the size and segment number of predicted domains. This
property might be used to guess the locations of protein
domain boundaries.
Results: To test this possibility we enumerate putative
domain boundaries and calculate their relative likelihood
under a probability model that considers only the size
and segment number of predicted domains. We ask, in
a cross-validated test using sequences with known 3D
structure, whether the most likely guesses agree with the
observed domain structure. We find that domain boundary
predictions are surprisingly successful for sequences up to
400 residues long and that guessing domain boundaries in
this way can improve the sensitivity of threading analysis.
Availability: The DGS algorithm, for ‘Domain Guess by
Size’, is available as a web service at http://www.ncbi.
nlm.nih.gov/dgs. This site also provides the DGS source
code.
Contact: bryant@ncbi.nlm.nih.gov

Introduction
A number of areas of comparative sequence analysis
can be aided by knowledge of domain boundaries. Fold
recognition, in particular, may require that a target se-
quence be parsed into autonomously folding domains,
likely to resemble a domain previously seen in the 3D-
structure database. Comparative sequence analysis often
identifies domain boundaries. However, if a sequence
has no apparent similarity to other sequences, no internal

∗To whom correspondence should be addressed.

repeats, and/or no regions of low complexity, one may
have little clue as to the locations of domains. Predictors
in the CASP3 competition, for example, faced this situ-
ation for three of the 11 fold-recognition targets where
successful threading predictions were made (Marchler-
Bauer and Bryant, 1999; Moult et al., 1999; Murzin,
1999).

If the lengths of protein domains were fixed and domains
were always formed from a single-chain continuous
segment it would be a simple matter to predict domain
boundaries: one need only break the sequence into pieces
of the appropriate length. The size of protein domains is
not fixed, of course, but neither are all domain lengths
equally likely. It has already been seen that protein domain
length follows a narrow distribution, and furthermore that
domains identified in the 3D-structure database most often
contain a single-chain continuous segment (Islam et al.,
1995; Sowdhamini et al., 1996; Jones et al., 1998). Thus,
while one can not expect to perfectly predict the locations
of domain boundaries based on size and segment numbers
alone, one can expect that some guesses will be better than
others.

Here we ask whether guessing domain boundaries based
on the size and segment number of predicted domains can
be accurate enough to be useful. We construct a likelihood
function based on empirical distributions of domain length
and segment number, as observed in the 3D-structure
database. For test sequences, we then enumerate candidate
domain boundaries and calculate their relative likelihood,
to give a ranked list of alternative domain boundary
predictions. Using a cross-validated test with sequences
from the 3D-structure database we find that this method
is surprisingly successful. For two-domain proteins in
the test set, for example, one of DGS’s top two guesses
is accurate to a resolution of ±20 residues in 57% of
cases. Using threading targets from CASP3 as examples,
we show that domain boundaries guessed by DGS can
improve threading predictions.
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Methods
To determine domain-size distributions we select
a training set of sequence-dissimilar chains with
a known 3D structure. Structure data are taken
from the Protein Data Bank (Berman et al., 2000;
http://www.rcsb.org/pdb/). Chains are grouped by
single-linkage clustering based on a BLAST p-value
(Altschul, 1997) of 10−7 or less and a set of 1236
group representatives selected automatically, based on
completeness and resolution (Matsuo, Bryant, 1999; http:
//www.ncbi.nlm.nih.gov/Structure/VAST/nrpdb.html).
This chain set contains 1882 domains, based on the do-
main definitions used for structure neighboring in Entrez
(Wang et al., 2000; http://www.ncbi.nlm.nih.gov/Entrez/).
Domain definitions in Entrez are based on structural
compactness. A chain is split any number of times, at
points between secondary structure elements, whenever
the ratio of intra- to inter-domain contacts exceeds a
threshold (Madej et al., 1995).

Domain guess by size calculates the likelihood of
alternative partitions of a sequence into one or more
domains, and ranks the alternative guesses accordingly:

L(n, L , S|c) = p(n|c)p(L , S|n, c). (1)

Here p(n|c) is the probability that a chain of length c will
have n domains. We estimate p(n|c) empirically, from the
frequency of chains in the training set having one, two,
and three (or more) domains, for discrete length intervals.
The term p(L , S|n, c) gives the probability that n domains
will have lengths L and numbers of segments S, given
that the lengths of the individual domains in vector L are
constrained to sum to c. These two terms are multiplied to
give the likelihood of observing a set of n domains with
individual lengths L and segment numbers S, given chain
length c.

In DGS we enumerate a discrete list of possible domain
boundaries. Across this list we estimate p(L , S|n, c) from
empirical distributions for the length and segment number
of individual domains, as observed in the training set:

p(L , S|n, c) =
∏
L ,S

p(l)p(s)/
∑[∏

L ,S

p(l)p(s)

]
. (2)

The term p(l) gives the probability of observing length l
for an individual domain. This is estimated as the fraction
of domains in the training set whose length falls within a
discrete length interval containing l. The term p(s) gives
the probability that an individual domain will be formed
from s-chain continuous segments. This is estimated from
the fraction of domains in the training set formed from
a single-chain continuous segment (83.6%), two chain-
continuous segments (14.7%), or three (or more) chain-
continuous segments (1.7%). In DGS we ignore the

chance that a domain may be formed from more than three
segments. The product is taken over the n domains whose
lengths and segment numbers are given by L and S. The
sum in the denominator of equation (2) is taken across all
the domain boundary guesses we consider. For n = 1 there
are no alternative boundary locations, and p(L , S|1, c) is
equal to 1 by definition.

Figure 1 illustrates the domain-boundary enumeration
algorithm implemented in DGS. Alternative partitions are
explored using a ‘step’ size, here 20 residues. Based
on the step size, all possible domain boundaries are
constructed for all possible numbers of segments. For
example, for a protein of length 100, with step size
20, the possible boundaries for partition into three-chain
continuous segments are (20,40), (20,60), (20,80), (40,60),
(40,80), (60,80). Next, the segments are labeled according
to the domain to which they are assigned. For three
segments the possible labels are just (1,2,1) and (1,2,3).
Label (1,2,1) indicates a partition into two domains, the
first split by insertion of the second, and label (1,2,3)
indicates a partition into three domains. Other labels may
be ignored since they place a domain segment adjacent
to itself (implying a smaller number of segments) or are
simply a synonymous renaming of domains. Finally, each
boundary placement is labeled in each possible way and
the likelihood calculated as described by equation (1).

Domain guess by size is written in C. The program
uses domain number, domain size, and domain segment-
number counts to dynamically calculate p(n|c), p(l) and
p(s), using the specified step size to set the width of
length-interval bins. For the web service these data are
updated with successive Entrez updates (Wang et al.,
2000). Domain guess by size returns the 25 guesses
with the greatest likelihood, using a simple display to
indicate domain boundaries and the assignment of chain-
continuous segments to domains. The step size may be
specified by the user, but we find that step sizes of
less than 10 are not useful, since the top 25 guesses
will in this case be very similar to one another and
the run times very long. We note that for efficiency the
program ignores alternative partitions with exceedingly
low

∏
L ,S p(l) p(s) (i.e. guesses with exceedingly large

or small domains), excluding them from numerator and
denominator in equation (2).

Results
The sizes of the 1882 sequence-dissimilar domains in the
training set are tabulated in Figure 2. This distribution
peaks at around 100 residues and is relatively narrow.
This size distribution has the same within-sampling error
for single- and multi-domain proteins, and in DGS we
therefore combine these data to estimate domain-length
probabilities. These data suggest that longer proteins will
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Domain 1
segment 1 length 40

Domain 2
domain length 40

Domain 1
 segment 2 length 20

Step 1:  Choose possible domain boundaries. For chain length 100, with 2 boundaries:

           L  =  p( n=2 | c=100 )     x     p ( l1=40+20, s1=2, l2=40, s2=1 | n=2, c=100 )

Probability of 2 domains for
chain length 100

Probabilty of 2 domains with lengths
(60,40) and segment numbers (2,1)

(20, 40)

(20, 60)

(20, 80)

(40, 60)

(40, 80)

(60, 80)

Step 2:  Choose possible domain labels for each segment. For boundaries (40, 80):

Step 3:  Calculate likelihood for each combination. For boundaries (40, 80), label (1, 2, 1):

(1, 2, 1)

(1, 2, 3)

Fig. 1. The domain boundary enumeration algorithm implemented in DGS. All possible segment boundaries are first constructed, according
to the specified step size (a). All possible labels for the segments are then computed (b). Lastly, the length and segment number for each
domain is tabulated and the likelihood of observing a set of domains with these lengths and segment numbers is calculated as per equation (1),
(c). The figure shows a hypothetical sequence of length 100 with alternative partitions using a step size of 20 residues.

tend to have more domains, and this is shown directly in
Figure 3, where we tabulate domain-number frequencies
for the 1236 chains in the training set.

A principal component analysis of global sequence char-
acteristics such as average hydrophobicity, helix propen-
sity and sheet propensity shows that only the length of the
protein is correlated with the number of domains per chain
and that these other factors do not improve prediction of
domain boundaries (not shown). Domain definitions other
than those used in Entrez (Wang et al., 2000) lead to sim-
ilar size distributions (Islam et al., 1995; Sowdhamini et
al., 1996; Jones et al., 1998), suggesting that the method
used to identify domains in a 3D structure will not greatly
affect results shown below.

To test DGS we use a cross-validation procedure,
dividing the training set of 1882 domains into 10
sequence-dissimilar groups. The program was run on the
chains in each group, using size and segmentation data
from the other nine groups to calculate relative likeli-
hood. Here, the results from all 10 groups are examined
together. A prediction is considered a ‘success’ when all
domain boundaries fall within the step size (±20 residues)
of the domain boundaries given in Entrez. For domain

predictions with more than a one-chain continuous seg-
ment, those segments must also be labeled correctly, as
belonging to the same domain.

Figure 4 summarizes the overall success rate of DGS
as a function of length. Figure 5 shows separately the
success rate for one-domain, two-domain, and three-
domain proteins. One may see that DGS does well for
shorter proteins, especially single-domain proteins. Its top
guess, that these are single-domain proteins, is very often
correct. Domain guess by size can also predict the domain
boundaries of many two-domain proteins, including a few
with very complicated domain organizations (one protein
had two domains, one of which was split twice and the
other split once, i.e. a 12121 organization). Domain guess
by size has only a small chance of correctly guessing
domain boundaries for three-domain proteins, however,
and we therefore make no attempt to guess partitions with
more than three domains. For the test set as a whole, one
of the top 10 guesses by DGS was correct for more than
50% of sequences under 400 residues in length.

To critically examine DGS’s performance with two-
domain proteins we may compare its success rate to that
of a trivial method, guessing that the domain boundary
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Fig. 2. Domain length distributions as observed in the 3D-structure
database, according to the number of domains per chain. Data
are from the non-redundant domain set described in Methods.
An interval width of 20 residues is used to tabulate the number
of domains of each length. The quantity p(l) in equation (2) is
estimated as the frequency for the length interval nearest the actual
sequence length, in the distribution for all domains. The total
numbers of observations are 840 1-domain chains (68%), 246 2-
domain chains (20%), and 150 chains with 3-(or more) domain
chains (12%).
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Fig. 3. The fraction of chains with 1, 2, and 3 (or more) domains per
chain, as a function of chain length. Data are from the non-redundant
set of chains with known 3D-structure as described in the text.
A length-interval width of 40 residues is used to tabulate domain
number frequency. The quantity p(n|c) in equation (1) is estimated
as the frequency for the length interval nearest the sequence length.
We assign p(n|c) = 0 for domain numbers greater than 3. The total
numbers of observations are as given in the caption to Figure 2.
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Fig. 4. Domain guess by size success rate as a function of sequence
length. Each prediction is classified as a success if all predicted
domain boundaries are within 20 residues of the boundaries
observed in the 3D-structure. Success rates for the top prediction
and the best of the top 10 predictions are shown separately. The
test employs the non-redundant domain set and cross-validation
procedure described in the text.
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Fig. 5. Domain guess by size success rate as a function of sequence
length, for 1-, 2- and 3- domain proteins. Success rate is based on the
best of the top-10 predictions. Data and cross-validation procedures
are as described in the text. We note that for chain lengths under
roughly 500 residues a partition indicating one domain spanning the
entire chain is always included in the top 10. The reported success
rate for 1-domain proteins is slightly below 100%, however, since
the Entrez domain definitions occasionally exclude small aglobular
segments at the N - or C- termini. If this occurs, and the excluded
aglobular segment is longer than 20 residues, the partition spanning
the entire chain is counted as a failure.
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is located at the midpoint of a sequence. Among the 246
two-domain proteins in the test set a domain boundary is
located at the midpoint (±20 residues) in 20 cases (8%).
This defines the success rate of the trivial method. For
partition into two domains DGS usually generates two
equally likely boundaries as its best guess (one offset left
of the midpoint and the other offset the same distance to
the right). For the 246 two-domain proteins in the test
set one of these guesses is correct (±20 residues) in 140
cases (57%). Picking either guess at random one would
expect to succeed in 140/2 = 70 cases (28%), a more
than 3-fold improvement over the trivial method. For two-
domain proteins, partition into domains of unequal size
is very frequent, and it appears that DGS predicts this
effect. One of the top 10 guesses by DGS is correct in
151 cases (61%). The further improvement is due in part
to guesses of discontinuous domains: 109 of these 246
proteins contain domains with more than one continuous
segment, partitions the trivial method cannot predict.

Three CASP3-fold recognition targets were multi-
domain proteins where domain boundaries were not
identified by comparative sequence analysis, by our
‘team’ and most others. These are CASP3 targets 44, 63
and 83 (Moult et al., 1999; Murzin, 1999). Targets 63 and
83 are two-domain proteins, and we find that one of the
top two domain boundary guesses by DGS is close to that
identified by structure–structure comparison. Target 44
has a complicated four-domain architecture; DGS cannot
predict four domains, but its second-best guess corre-
sponds to the first plus part of the second domain. To find
out whether guessed domain boundaries can improve fold
recognition we have performed threading calculations
(Panchenko et al., 1999) for these targets, using both
the complete target sequence and domain subsequences
from DGS’s top-two guesses. In Table 1 we list some of
the results. The table compares measures of threading
model accuracy (Marchler-Bauer and Bryant, 1997) for
the structurally similar template identified with lowest
p-value (Bryant and Altschul, 1995), using a domain as
guessed by DGS, with the corresponding values for the
complete target sequence.

Examining Table 1, one may see that model accuracy
generally improves when the target is partitioned into
domains. For target 44 domain 1, and target 63 domain 2,
contact specificity increases to 70% and 50%, respectively,
from random values below 10%. For target 83 domain
1, contact specificity remains above 40%, and the other
measures (such as ARms) indicate that model accuracy
is good and essentially unchanged when threading the
domain subsequence guessed by DGS, as compared with
threading the complete target sequence. Perhaps a more
interesting trend is also apparent in Table 1. For all
targets the threading p-value decreases significantly when
threading domain subsequences guessed by DGS. For

Table 1. Threading results for three CASP3 targets, with and without guesses
of domain boundaries by DGS

Target DGS Tmplt P-val ARms A%Id Shft CSpc

T44 None 1eps-3 0.13 6.0 19.6 1.4 9.7
T44-1 1–140 1eps-3 0.004 2.9 21.7 0.8 70.3

T63 None 1hjp-1 0.23 10.8 12.2 — 3.5
T63-2 61–138 1hjp-1 0.03 4.9 12.8 1.0 49.6

T83 None 1lmb4 0.14 2.5 26.7 0.2 48.0
T83-1 1-80 1lmb4 0.04 2.7 27.4 0.2 41.2

The target column gives the CASP3 target identification code (Moult
et al., 1999). The numeric domain identifier indicates the DGS domain
used in the calculations, −1 for the N -terminal domain, −2 for the
C-terminal domain. The DGS column indicates the domain boundary
guessed by DGS, or None for the complete target sequence. Complete
sequence lengths are 347, 138 and 156 residues for targets 44, 63 and
83, respectively. The Tmplt column gives the Protein Data Bank code
for the structure used as a threading template. Numeric codes −1 and
−3 identify a domain of that structure; definitions of compact domains
for templates may be retrieved electronically using Entrez
(http://www.ncbi.nlm.nih.gov/Entrez/). The p-val column gives the
threading p-value, the probability that a shuffled version of the target
(or target domain) sequence would score equally well (Bryant and
Altschul, 1995). The ARms column gives the root mean square
residual of the threading model with respect to the true structure of the
target, in Angstroms. The A%Id column gives the percentage of
identical residues in the threading alignment. The Shft column gives
the average shift error of the threading alignment in residues, using
structural superpositions by the VAST algorithm as the standard of
truth (Gibrat et al., 1996; Marchler-Bauer and Bryant, 1997). No value
can be calculated for target 63 because the threading alignment with
1hjp-1 did not contain any of the target residues that VAST aligns with
1hjp-1. The CSpc column gives the contact specificity of the threading
model, the percentage of predicted contacts present in the true
structure of the target (Marchler-Bauer and Bryant, 1997).

target 44 domain 1, the p-value is perhaps low enough
to make a confident prediction of a model based on this
template. For target 63 domain 2, and target 83 domain 1,
p-values remain in the ‘twilight zone’, but they are lower
than for other templates, and these models would likely
have been examined in analysis of threading results.

CASP3 predictions, using the threading method we
consider here were relatively successful (Panchenko et al.,
1999), and our ‘team’ was assigned ‘first place’ in overall
fold recognition by the CASP3 assessor (Murzin, 1999).
We made no predictions for targets 44 and 83, however,
since threading with the complete target sequence did not
indicate significant similarity to any available template
structure. We made a prediction for target 63, based on
threading the complete target sequence; this prediction
was (perhaps fortuitously) based on a template struc-
turally similar to the target, but model accuracy was low,
as seen in Table 1 for threading with the complete target
sequence. We emphasize that we present no blind pre-
diction results using domain partitions guessed by DGS.
The above retrospective analysis of threading results for
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CASP3 targets suggests, however, that guessing domain
boundaries can improve fold recognition, and that DGS
might well have improved some predictions for CASP3.

Discussion
Domain guess by size calculates the relative likelihood of
alternative domain partitions using only tables containing
the numbers of domains per chain, domain lengths, and
numbers of chain continuous segments per domain. This
algorithm is as successful as it is only because the domain
length and segment number distributions are narrow, such
that a small number of guesses is likely to include
the approximate locations of domain boundaries. It is
far from clear, however, why protein domain sizes are
constrained to a narrow distribution, or why domains
are most often composed of a single-chain continuous
segment. This phenomenon has been noted by others, and
several possible explanations have been offered (Berman
et al., 1994; Trifonov, 1994).

The simplest possible explanations involve physical
requirements for stable and/or rapid protein folding.
Stability derives in part from burial of hydrophobic
residues, and a certain minimum domain size is required.
Rapid folding may at the same time favor small domains,
and the balance of these effects may account for the
observed narrow distribution. Other possible explanations
involve the interactions with the molecular chaperones
that catalyse protein folding in vivo (Hartl, 1996; Bukau
and Horwich, 1998). Present-day proteins have co-evolved
with the chaperone systems, and selection for efficient
interaction with chaperones may somehow have favored
certain domain sizes. An intriguing explanation involves
the mechanism of genetic recombination. Domains may
have evolved as recombinational units, whose size is
constrained to lengths where DNA can easily form a flat
circle, 275–300 bp, almost exactly corresponding to the
observed peaks of protein domain size (Trifonov, 1994).

Whatever the explanation, the data would seem to
speak clearly. Domain sizes and segment numbers are
constrained enough so that these two factors alone are
sufficient to make reasonable guesses about protein
domain organization, for proteins less than about 400
residues long. In certain contexts, such as fold recognition
calculations, these guesses may sometimes be accurate
enough to be useful.
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