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ABSTRACT

Motivation: Characterization of a protein family by its dis-
tinct sequence domains is crucial for functional annota-
tion and correct classification of newly discovered proteins.
Conventional Multiple Sequence Alignment (MSA) based
methods find difficulties when faced with heterogeneous
groups of proteins. However, even many families of pro-
teins that do share a common domain contain instances
of several other domains, without any common underlying
linear ordering. Ignoring this modularity may lead to poor
or even false classification results. An automated method
that can analyze a group of proteins into the sequence do-
mains it contains is therefore highly desirable.

Results: We apply a novel method to the problem of
protein domain detection. The method takes as input
an unaligned group of protein sequences. It segments
them and clusters the segments into groups sharing the
same underlying statistics. A Variable Memory Markov
(VMM) model is built using a Prediction Suffix Tree (PST)
data structure for each group of segments. Refinement is
achieved by letting the PSTs compete over the segments,
and a deterministic annealing framework infers the number
of underlying PST models while avoiding many inferior
solutions. We show that regions of similar statistics
correlate well with protein sequence domains, by matching
a unique signature to each domain. This is done in a
fully automated manner, and does not require or attempt
an MSA. Several representative cases are analyzed. We
identify a protein fusion event, refine an HMM superfamily
classification into the underlying families the HMM cannot
separate, and detect all 12 instances of a short domain in
a group of 396 sequences.

Contact: jill@cs.huji.ac.il; tishby @ cs.huji.ac.il

*To whom correspondence should be addressed.

1 INTRODUCTION

Numerous proteins exhibit a modular architecture, con-
sisting of several sequence domains that often carry
specific biological functions (reviewed in Bork, 1992;
Bork and Koonin, 1996). For proteins whose structure
has been solved, it can be shown in many cases that
the characterized sequence domains are associated with
autonomous structural domains (e.g. the CyH> zinc
finger domain). Characterization of a protein family by
its distinct sequence domains (also termed ‘modules’)
either directly or through the use of domain ‘motifs’,
or ‘signatures’, is crucial for functional annotation and
correct classification of newly discovered proteins. In
many cases the underlying genes underwent shuffling
events that have led to a change in the order of modules in
related proteins. In other cases a certain module appears
in many proteins, adjacent to different modules. A global
alignment that ignores the modular organization of pro-
teins may fail to associate a protein with other proteins
that carry a similar functional module but in a different
relative sequence location. Also, ignoring the modularity
of proteins may lead to clustering of non-related proteins
through false transitive associations’. Thus, ideally, clus-
tering of proteins into distinct families should be based
on characterization of a common sequence domain or a
common signature and not on the entire sequence, allow-
ing a single sequence to be clustered into several groups.
For this, an unsupervised method for identification of the
domains that compose a protein sequence is essential.
Many methods have been proposed for classification of
proteins based on their sequence characteristics. Most of
them are based on a seed Multiple Sequence Alignment
(MSA) of proteins that are known to be related. The MSA

For example, assume that proteins A and B have distinct single domains,
and that protein C contains both domains. An algorithm may falsely deduce,
since A and B are homologous to C, that A and B are homologous to each
other.
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can then be used to characterize the family in various
ways: by defining characteristic motifs of the functional
sites (as in Prosite, Hofmann et al., 1999), by providing a
fingerprint that may consist of several motifs (PRINTS-S,
Attwood et al., 2000), by describing a multiple alignment
of a domain using a Hidden Markov Model (HMM)
(Pfam, Bateman et al., 2000), or by a position specific
scoring matrix (BLOCKS, Henikoff et al., 2000). All the
above techniques, however, rely strongly on the initial
selection of the related protein segments for the MSA,
usually hand crafted by experts, and on the quality of
the MSA itself. Besides being in general computationally
intractable, when remote sequences are included in a
group of related proteins, establishment of a good MSA
ceases to be an easy task and delineation of the domain
boundaries proves even harder. This becomes nearly
impossible for heterogeneous groups where the shared
motifs are not necessarily abundant, nor in linear ordering.
It is highly desirable to complement these methods with
efficient automatic generation of sequence signatures
which can guide the classification and further analysis of
the sequences. This need is especially emphasized in view
of the large-scale sequencing projects, generating a vast
amount of sequences that require annotation.

Unsupervised segmentation of sequences, on the other
hand, has become a fundamental problem with many im-
portant applications such as analysis of texts, handwriting
and speech, neural spike trains and indeed bio-molecular
sequences. The most common statistical approach to this
problem is currently the HMM. HMMs are predefined
parametric models and their success crucially depends
on the correct choice of the state model. In the common
application of HMMs the architecture and topology of
the model are predetermined and the memory is limited
to first order. It is rather difficult to generalize these
models to hierarchical structures with unknown a-priori
state-topology (for an attempt see Fine et al., 1998).

An interesting alternative to the HMM was proposed in
Ron et al. (1996) in the form of a sub-class of probabilistic
finite automata, the Variable Memory Markov (VMM)
sources. While these models can be weaker as generative
models, they have several important advantages: (i) they
capture longer correlations and higher order statistics of
the sequence; (ii) they can be learned in a provably optimal
sense using a construction called Prediction Suffix Tree
(PST); (Ron et al., 1996; Buhlmann and Wyner, 1999);
(iii) they can be learned very efficiently by linear time
algorithms (Apostolico and Bejerano, 2000); (iv) their
topology and complexity are determined by the data;
and, specifically in our context (v) their ability to model
protein families has been demonstrated (Bejerano and
Yona, 2001).

In this work we apply a powerful extension of the
VMM model and the PST algorithm, recently developed

for stochastic mixtures of such models (Seldin et al.,
2001), that are learned in a hierarchical way using a
Deterministic Annealing (DA) approach (Rose, 1998).
Our model can in fact be viewed as an HMM with a VMM
attached to each state, but the learning algorithm allows a
completely adaptive structure and topology both for each
state and for the whole model. The approach we take is
information theoretic in nature. The goal is to enable a
short description of the data by a (soft) mixture of VMM
models, when the complexity of each model is controlled
by the data via the Minimum Description Length (MDL)
principle (see Barron et al., 1998, for a review).

In effect we cluster regions of the input sequences into
groups sharing coherent statistics. We grow a PST model
for each group of segments, as complex as the group is
statistically rich. We then refine this division by letting
the PSTs compete over the segments. Embedding the
competitive learning in a DA framework allows us to try
and infer the correct number of underlying sources, and
avoid many local minima. The output of our algorithm
is a set of PST models, each of which has specialized in
recognizing a certain protein region. The models can then
be used to detect these regions in any protein.

In Seldin e al. (2001) we tested the algorithm on a
mixture of interchanged running texts in five different
European languages. The model was able to identify both
the correct number of languages and the segmentation of
the text sequence between the languages to within a few
letters precision. Note that the segmentation there was
not based on conserved regions (say, a few sentences,
each repeating several times with minor variations), but
rather based on the conserved statistics of running text
segments in each language. In this paper we turn to
observe statistical conservation in the context of protein
sequences.

There are clear advantages to our approach compared to
the common methods used for protein sequence segmen-
tation. The method is automatic, there is no need for an
alignment, the motifs themselves need not be few, abun-
dant, or in linear ordering. When a signature is identified
in a protein, its statistical significance can be quantita-
tively evaluated through the likelihood the model assigns
to it. Given a group of related sequences the computational
scheme we propose facilitates the segmentation of these
sequences into domains through the use of the resulting
statistical signatures, at times surpassing the susceptibility
of single whole-domain HMMs. By characterizing protein
families using these modular signatures it is possible to
assign functional annotations to proteins that contain these
modules, independent of their order in the protein. The de-
tection of functional domains can then be used to define
families and super-family hierarchies.

In Section 2 we outline the algorithm (a detailed
description can be found in Seldin et al., 2001). We then
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turn in Section 3 to analyze promising results obtained
for three exemplary diverse protein families (Pax, Type II
DNA Topoisomerases and GST) and compare these with
an alignment based approach. We conclude in Section 4
with a discussion and some directions for future work.

2 ALGORITHM OUTLINE

Several works precede the approach we follow in this
paper. Learning a single VMM from a group of sequences
using a PST model is defined in Ron et al. (1996).
Strong theoretical results backing this approach when the
underlying source exhibits Markovian-like properties are
given in Ron et al. (1996) and Buhlmann and Wyner
(1999). Equivalent algorithms of optimal linear time and
space complexity for PST learning and prediction are
proven in Apostolico and Bejerano (2000). In Bejerano
and Yona (2001) partial groups of unaligned sequences
from diverse protein families are each used as training
sets. Resulting PSTs are shown to distinguish between
previously unseen family members and unrelated proteins,
in sensitivity matching that of an HMM trained on an
MSA of the input sequences, while being much faster.
Also noted there (see Figures 5 and 6 of Bejerano and
Yona, 2001), when plotting the prediction along every
residue of a protein sequence, is a correlation between
protein domains and regions the family PST recognizes
best within family members. That observation motivated
the current work.

The algorithmic approach we take extends PST learning
from single source modeling to several competing models,
each specializing in regions of coherent statistics. Due to
scope limitations we only outline it below.

2.1 Prediction suffix tree modeling

Consider a statistical model T assigning a probability to
a protein sequence X = xj...x;, Vx; € X the alphabet of
amino acids. The higher Pr(x) is the more we are con-
fident that x belongs to the family of proteins 7" models.
Treating xp, ..., x; as a sequence of dependent random
variables, PST modeling is built around the Markovian

approximation Pr(X) = ]_[lj:lPT(lexl...xj,l) ~

]_[ljzl Pr(xj|sufr(xy...x;_1)) where the equality fol-
lows from applying the chain rule, and sufy (xy...x;_1)
is the longest suffix of x; ... x;_; memorized by T during
training. A PST T (Figure 1) is thus a data structure
holding a set of short context specific probability vectors
of the form Py (Xj|xj_q4 ... x;_1). These short patterns of
arbitrary lengths are collected from the training sequences
regardless of relative sequence positions of the different
instances of each pattern.

In Seldin er al. (2001) we define an MDL based
variant of PST learning which is non-parametric and
self-regularizing. It allows the PST to grow to com-

(.05,.4,.05,.4,.1)

(.05,.5,.15,.2,.1)

(.1,.1,.35,.35,.1)

(.05,.25,.4,.25,.05) @/

Fig. 1. An example of a PST over the alphabet ¥ = {a, b, ¢, d, r}.
The string inside each node is a memorized suffix and the adjacent
vector is its probability distribution over the next symbol. (e.g.
since sufy(bacara) = ra, the probabilities Pr(?|bacara) =
{0.05, 0.25, 0.4, 0.25, 0.05} for {a, b, c, d, r} respectively).

plexity proportional to the statistical richness in the
sequences it models. As an input it takes a collection
of protein sequences {xi,...,X,}, and a set of weights
vectors {wy, ..., w,}, where the jth entry of w;, denoted
0 < w;; <1, measures the degree of relatedness we
currently assign between the jth element of x;, x;;, and
the model we wish to train. For example, in order to
train a PST only on specific regions in the proteins assign
w;j = 1 to those regions and w;; = 0 elsewhere.

2.2 Protein sequence segmentation

The relatedness between a PST model and a sequence
segment is defined as the probability the model assigns to
the segment (how well it predicts it). In order to partition
the sequence between k = 1, ..., m known PST models,
we assign sequence segments from {x;} to models in
proportion to the relatedness between a segment and each
of the competing models. The nm resulting vectors {u_)f.‘ Yik
constitute a soft partitioning of {x;} between the models
Vi, j: Xk wf‘/. = 1). We may then retrain each model &

with its new set of weights {IDf.‘},'. This soft clustering
(data repartitioning followed by model retraining) can be
iterated until convergence to a set of PSTs, each modeling
a distinct group of sequence segments®.

Clearly the quality of the solution we converge to
depends on the number of models, and their initial
settings. Both issues are solved by iterative refinement.
We begin with a single model 7 trained over the whole
set {x;} (with Vi, j : u)l(.)j = 1). We then split Ty into two
identical replicas 77, 7> and randomly perturb both, to
differ slightly. We then iterate repartitioning and training,
splitting again when the models converge. Models that
lose all grip on the data (%; ; wfj = 0) are eliminated.

Finally, a resolution parameter § > 0 is introduced
and is gradually increased from a low initial value. The

* A similar iterative loop is used in soft clustering of points in R" to k
Gaussians.
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Input: the set of unaligned sequences {x; }

I SetVi, j: w{; =1 and train PST Ty
2. Set: B = Bo, Mprev =0, T = {Tp)}
3. Repeatuntil B = Bip:
(a) While [T] > mprev
i. Set: mprey = 7|
ii. Splitin two and perturb all PSTs in 7°
iii. Repeat until convergence:
A. Repartition the data into {mf}hk:l T
according to the PSTs predictions
B. Retrain a new set of PSTs 7
using the new partitioning
iv. Remove all empty models from 7°
(b) Increase

Output: the final set of PST models 7°

Fig. 2. The segmentation algorithm.

parameter B controls the hardness of the soft partition of

sequence segments between the models. As § increases,

segments separate more and more into distinct models.
Formally we set

. P(T}) &P St (xij)

w:. =
0T P (Ty) ST

where S7,(x;;) < 0 is a log-likelihood measure of
relatedness between model k and symbol x;;, and P (7%)
corresponds to the relative amount of data assigned to
model k in the previous segmentation. As 8 increases it
induces a sharper distinction between the highest scoring
S7,(xij) and the other models, for each x;;. This DA
procedure can avoid many local minima and generally
yields better solutions than some other optimization
algorithms (see Rose, 1998). A high-level pseudocode
and a schematic description of the algorithm are given in
Figures 2 and 3 respectively. See Seldin et al. (2001) for
more details.

3 RESULTS

Recall from Figure 2 that the input to the segmentation
algorithm is a group of unaligned sequences in which
we search for regions of one or more types of conserved
statistics. The different training sets were constructed
using the Pfam (release 5.4) and Swissprot (release 38,
Bairoch and Apweiler, 2000) databases. Various sequence
domain families were collected from Pfam. In each Pfam
family all members share a domain. An HMM detector
is built for that domain based on an MSA of a seed
subset of the family domain regions. The HMM is then
verified to detect that domain in the remaining family

o | |
Soft Clustering
partition Reﬁn'ément Annéaling
data : :
Split Increase
models B
train i i
models ; ;

Fig. 3. Schematic description of the algorithm.

members. Multi-domain proteins therefore belong to as
many Pfam families as there are different characterized
domains within them. In order to build realistic, more
heterogeneous sets, we collected from Swissprot the
complete sequences of all chosen Pfam families. Each
set now contains a certain domain in all its members,
and possibly various other domains appearing anywhere
within some members.

Given such a set of unaligned sequences our algorithm
returns as output several PST models (Figure 2). The
number of models returned is determined by the algorithm
itself. Each such PST has ‘survived’ repeated competi-
tions by outperforming the other PSTs on some sequence
regions. In practice two types of PSTs emerge for protein
sequence data: models that significantly outperform
others on relatively short regions (and generally perform
poorly on most other regions)—these we call detectors.
And models that perform averagely over all sequence
regions—these are ‘noise’ (baseline) models and we can
discard them automatically. We now turn to analyze the
detectors—in which sequences do they outperform all
other models and what is the correlation between detected
regions and protein domains?

Several interesting results can come out of the analysis:
First and foremost, a signature for the common domain or
domains. Signatures for other domains that appear only in
some proteins, may also appear. A signature may exactly
cover a domain, revealing its boundaries. And when the
Pfam HMM detector cannot model below the superfamily
level, we may try to outperform it and subdivide into the
underlying biological families.

Three of the Pfam-based sets we ran experiments on
have been chosen to demonstrate examples covering all
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the above cases. The three, very different, domain families
are the Pax proteins, the type I DNA Topoisomerases and
the glutathione S-transferases. At the end of the section we
also compare our results to an MSA-based approach.

Ten independent runs of the (stochastic) segmentation
algorithm, implemented in C++, were carried out per
family. On a Pentium III 600 MHz Linux machine clear
segmentation was usually apparent within an hour or two
of run time.

Recall that each PST detector we examine is run over
all complete sequences in the set it was grown on in order
to determine its nature. In our experiments the signature
left by each PST was the same between different runs, and
between different proteins sharing the same domain(s). We
therefore present only the output of all detector PSTs on
representative sequences in a particular run.

3.1 The Pax family

Pax proteins (reviewed in Stuart et al., 1994) are eukary-
otic transcriptional regulators that play critical roles in
mammalian development and in oncogenesis. All of them
contain a conserved domain of 128 amino acids called the
paired or paired box domain (named after the Drosophila
paired gene which is a member of the family). Some
contain an additional homeobox domain that succeeds
the paired domain. Pfam nomenclature names the paired
domain ‘PAX’.

The Pax proteins show a high degree of sequence con-
servation. One hundred and sixteen family members were
used as a training set for the segmentation algorithm, as
described above. In Figure 4 we superimpose the predic-
tion of all resulting PST detectors over one representative
family member. This Pax6 SS protein contains both the
paired and homeobox domains. Both have matching signa-
tures. This also serves as an example where the signatures
exactly overlap the domains. The graph of family mem-
bers not having the homeobox domain contains only the
paired domain signature. Note that only about half the pro-
teins contain the homeobox domain and yet its signature
is very clear.

3.2 DNA topoisomerase I1

Type I DNA topoisomerases are essential and highly con-
served in all living organisms (see Roca, 1995, for a re-
view). They catalyze the interconversion of topological
isomers of DNA and are involved in a number of mech-
anisms, such as supercoiling and relaxation, knotting and
unknotting, and catenation and decatenation. In prokary-
otes the enzyme is represented by the Escherichia coli gy-
rase, which is encoded by two genes, gyrase A and gy-
rase B. The enzyme is a tetramer composed of two gyrA
and two gyrB polypeptide chains. In eukaryotes the en-
zyme acts as a dimer, where in each monomer two distinct
domains are observed. The N-terminal domain is similar
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Fig. 4. Paired/PAX + homeobox signatures. We superimpose the log
likelihood predictions log Py (x) (Section 2.1) of all four detector
PSTs generated by the segmentation algorithm, and an exemplary
baseline model (dashed), against the sequence of the PAX6 SS
protein. The title holds the protein accession number. At the
bottom we denote in Pfam nomenclature the location of the two
experimentally verified domains. These are in near perfect match
here with the high scoring sequence segments.

in sequence to gyrase B and the C-terminal domain is sim-
ilar in sequence to gyraseA (Figure 8). In Pfam 5.4 ter-
minology gyrB and the N-terminal domain belong to the
‘DNA _topoisoll” family®, while gyrA and the C-terminal
domain belong to the ‘DNA _topoisoIV’ family!l. Here we
term the pairs gyrB/topoll and gyrA/topol V.

For the analysis we used a group of 164 sequences
that included both eukaryotic topoisomerase II sequences
and bacterial gyrase A and B sequences (gathered from
the union of the DNA topoisoll and DNA _topoisolV
Pfam 5.4 families). We successfully differentiate them
into sub-classes. Figure 5 describes a representative of the
eukaryotic topoisomerase II sequences and shows the sig-
natures for both domains, gyrB/topoll and gyrA/topolV.
Figures 6 and 7 demonstrate the results for representatives
of the bacterial gyrase B and gyrase A proteins, respec-
tively. The same two signatures are found in all three
sequences, at the appropriate locations. Interestingly, in
Figure 6 in addition to the signature of the gyrB/topoll
domain another signature appears at the C-terminal
region of the sequence. This signature is compatible with
a known conserved region at the C-terminus of gyrase B,

§ Apparently this family has been sub-divided in Pfam 6 releases.

1 The name should not be confused with the special type of topoisomerase 1T
found in bacteria, that is also termed topoisomerase IV, and plays a role in
chromosome segregation.

I Corresponding to the Pfam ‘DNA_gyraseB_C’ family.
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Fig. 5. Eukaryotic topoisomerase II signature. The legends in
Figures 5-7 are equivalent to that of Figure 4, plotting the
predictions of all detectors and a single baseline model.
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Fig. 6. Bacterial GyrB/topoll
signature.

Fig. 7. Bacterial GyrA/topolV
signature.

that is involved in the interaction with the gyrase A
molecule.

The relationship between the E.coli proteins gyrA and
gyrB and the yeast topoisomerase II (Figure 8) provides
a prototypical example of a fusion event of two proteins
that form a complex in one organism into one protein
that carries a similar function in another organism. Such
examples have led to the idea that identification of such
similarities may suggest the relationship between the
first two proteins, either by physical interaction or by
their involvement in a common pathway (Marcotte et al.,
1999; Enright et al., 1999). The computational scheme we
present can be useful in search for these relationships.

Yeast topoisomerase II
(Pfam: topoll+topolV, see Fig. 5)

\

E. coli gyrase B
(Pfam: topoll+Gyr, see Fig. 6)

\ |

E. coli gyrase A
(Pfam: topolV, see Fig. 7)

-

Fig. 8. Fusion event Illustration. Adapted from Marcotte et al.
(1999). The Pfam domain names are added in brackets, together
with a reference to our results on a representative homolog.
Compare the PST signatures in Figures 5-7 with the schematic
drawing above. It is clear that the eukaryotic signature is indeed
composed of the two prokaryotic ones, in the correct order, omitting
the C-terminus signature of gyrase B (short termed here as ‘Gyr’).

3.3 The glutathione S-transferases

The Glutathione S-Transferases (GST) represent a major
group of detoxification enzymes (reviewed in Hayes
and Pulford, 1995). There is evidence that the level of
expression of GST is a crucial factor in determining the
sensitivity of cells to a broad spectrum of toxic chemicals.
All eukaryotic species possess multiple cytosolic GST
isoenzymes, each of which displays distinct binding
properties. A large number of cytosolic GST isoenzymes
have been purified from rat and human organs and, on
the basis of their sequences they have been clustered into
five separate classes designated class alpha, mu, pi, sigma,
and theta GST. The hypothesis that these classes represent
separate families of GST is supported by the distinct
structure of their genes and their chromosomal location.
The class terminology is deliberately global, attempting to
include as many GSTs as possible. However, it is possible
that there are sub-classes that are specific to a given
organism or a group of organisms. In those sub-classes
the proteins may share more than 90% sequence identity,
but these relationships are masked by their inclusion in
the more ‘global’ class. Also, the classification of a GST
protein with weak similarity to one of these classes is
sometimes a difficult task. In particular the definition of
the sigma and theta classes is imprecise. Indeed in the
PRINTS database only the three classes, alpha, pi, and mu
have been defined by distinct sequence signatures, while in
Pfam all GSTs are clustered together, for lack of sequence
dissimilarity.

Three hundred and ninety six Pfam family members
were segmented jointly by our algorithm, and the results
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were compared to those of PRINTS (as Pfam classifies
all as GSTs). Five distinct signatures were found (not
shown due to space limitations): (1) A typical weak
signature common to many GST proteins that contain
no sub-class annotation. (2) A sharp peak after the end
of the GST domain appearing exactly in all 12 out of
396 (3%) proteins where the Elongation Factor 1 Gamma
(EF1G) domain succeeds the GST domain. (3) A clear
signature common to almost all PRINTS annotated alpha
and most pi GSTs. The last two signatures require more
knowledge of the GST superfamily. (4) The theta and
sigma classes are abundant in nonvertebrates. As more
and more of these proteins are identified it is expected
that additional classes will be defined. The first evidence
for a separate sigma class was obtained by sequence
alignments of S-crystallins from mollusc lens. Although
these refractory proteins in the lens probably do not
have a catalytic activity they show a degree of sequence
similarity to the GSTs that justifies their inclusion in
this family and their classification as a separate class of
sigma (Buetler and Eaton, 1992). This class, defined in
PRINTS as S-crystallin, was almost entirely identified
by the fourth distinct signature. (5) Interestingly, the last
distinct signature, is composed of two detector models,
one from each of the previous two signatures (alpha +
pi and S-crystallin). Most of these two dozens proteins
come from insects, and of these most are annotated to
belong to the theta class. Note that many of the GSTs in
insects are known to be only very distantly related to the
five mammalian classes. This putative theta sub-class, the
previous signatures and the undetected PRINTS mu sub-
class are all currently further investigated.

3.4 Comparative results

In order to evaluate our findings we have performed
three unsupervised alignment driven experiments using
the same sets described above: an MSA was computed
for each set using Clustal X (Linux version 1.81, Jean-
mougin et al., 1998). We let Clustal X compare the level
of conservation between individual sequences and the
computed MSA profile in each set. Qualitatively these
graphs resemble ours, apart from the fact that they do not
offer separation into distinct models.

As expected this straightforward approach yields less.
We briefly recount some results (showing but one graph
due to space limitations): the Pax alignment did not clearly
elucidate the homeobox domain existing in about half the
sequences. As a result, when we plot the graph comparing
the same PAX6 SS protein we used in Figure 4 against
the new MSA in Figure 9, the homeobox signal is lost in
the noise. For type II topoisomerases the picture is slightly
better. The Gyrase B C-terminus unit from Figure 6 can be
discerned from the main unit, but with a much lower peak.
However, the clear sum of two signatures we obtained for
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Fig. 9. Pax MSA profile conservation. We plot the Clustal X
conservation score of the PAX6 SS protein against an MSA of
all Pax proteins. While the predominant paired/PAX domain is
discerned, the homeobox domain (appearing in about half the
sequences) is lost in the background noise. Compare with Figure 4
where the same training set and plotted sequence are used.

the eukaryotic sequences (Figure 5) is lost here. In the last
and hardest case the MSA approach tells us nothing. All
GST domain graphs look nearly identical precluding any
possible subdivision. And the 12 (out of 396) instances
of the EF1G domain are completely lost at the alignment
phase.

4 DISCUSSION

In this paper we have described a novel algorithm for
detecting regions of conserved statistics within a group of
sequences. We employed competitive learning to model
the data using a mixture of PST models, governed by MDL
considerations. Model refinement was achieved through a
DA framework. We then demonstrated the capabilities of
the algorithm in the proteins realm, by analyzing its output
on three diverse protein groups.

We briefly recount the advantages of the proposed
method: It is fully automated; it does not require or attempt
an MSA of the input sequences; it handles heterogeneous
groups well and locates domains appearing only a few
times in the data; by nature it is not confused by different
module orderings within the input sequences; it appears to
seldom generate false positives; and it is shown to surpass
HMM clustering in at least one hard instance.

Obviously no tool is without limitations. Highly similar
statistical sources we wish to separate, domains we wish
to detect that hardly appear in the data or very short
domains may prove hard to segment. Indeed a few
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sequences in nearly all groups presented above went
unnoticed, as well as a GST family characterized in
PRINTS. It seems that our segmentation algorithm can
best be used in conjuncture with current alignment-based
methods. The segmentation can first be applied to separate
heterogeneous groups of proteins into groups sharing
similarities. Those groups can then be profiled by HMMs
or similar tools, using our signatures as guides to the
alignment and domain boundaries.

In our opinion this tool may suggest a new perspective
on protein sequence organization at large. Statistical con-
servation is unlike conventional sequence conservation.
Regions may be statistically identical while completely
dissimilar from an alignment point of view (running
text in natural language is a good example, as we have
demonstrated in Seldin ef al., 2001). We hope that this
new, much more flexible notion of sequence conservation
will eventually help better understand the constraints
shaping the world of known proteins.

With this in mind, we are currently examining our
results, striving to improve our understanding of the
limitations inherent in segmenting protein data. Intriguing
further applications of this new tool in the context of
proteins include trying to refine existing classifications,
looking for fusion events and composing a comprehensive
library of detectors. Applications to other bio-sequences,
DNA in particular, are also forthcoming.
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