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ABSTRACT
Motivation: A major objective of gene regulatory network
modeling, in addition to gaining a deeper understanding
of genetic regulation and control, is the development of
computational tools for the identification and discovery of
potential targets for therapeutic intervention in diseases
such as cancer. We consider the general question of the
potential effect of individual genes on the global dynamical
network behavior, both from the view of random gene
perturbation as well as intervention in order to elicit desired
network behavior.
Results: Using a recently introduced class of models,
called Probabilistic Boolean Networks (PBNs), this paper
develops a model for random gene perturbations and
derives an explicit formula for the transition probabilities
in the new PBN model. This result provides a building
block for performing simulations and deriving other results
concerning network dynamics. An example is provided to
show how the gene perturbation model can be used to
compute long-term influences of genes on other genes.
Following this, the problem of intervention is addressed via
the development of several computational tools based on
first-passage times in Markov chains. The consequence
is a methodology for finding the best gene with which to
intervene in order to most likely achieve desirable network
behavior. The ideas are illustrated with several examples
in which the goal is to induce the network to transition into
a desired state, or set of states. The corresponding issue
of avoiding undesirable states is also addressed. Finally,
the paper turns to the important problem of assessing
the effect of gene perturbations on long-run network
behavior. A bound on the steady-state probabilities is
derived in terms of the perturbation probability. The result
demonstrates that states of the network that are more
‘easily reachable’ from other states are more stable in the
presence of gene perturbations. Consequently, these are
hypothesized to correspond to cellular functional states.
Availability: A library of functions written in MATLAB for

∗To whom correspondence should be addressed.

simulating PBNs, constructing state-transition matrices,
computing steady-state distributions, computing
influences, modeling random gene perturbations, and
finding optimal intervention targets, as described in this
paper, is available on request from is@ieee.org
Contact: is@ieee.org

1 INTRODUCTION
The near-completion of the Human Genome Projects
has revealed that there are 30–40 000 genes in the hu-
man genome (International Human Genome Sequencing
Consortium, 2001; Hogenesch et al., 2001). Genetic and
molecular studies have shown that for many genes each is
linked to other genes both at the level of transcription regu-
lation and at the level of protein interaction. In this new era
of genomic biology, single gene perspectives are becom-
ing increasingly limited for gaining insight into biological
processes. Global, systemic, or network perspectives are
becoming increasingly important for making progress in
our understanding of the biological processes and harness-
ing this understanding in educated intervention for cor-
recting human diseases. The development of high through-
put genomic and proteomic technologies is empowering
researchers in the collection of broad-scope gene informa-
tion. However, it remains a major challenge to digest the
massive amounts of information and use it in an intelligent
and comprehensive manner. The development of system-
atic approaches to finding genes for effective therapeutic
intervention requires new models and powerful tools for
understanding and managing complex genetic networks.

Boolean networks as models of gene regulatory net-
works have received much attention since they were first
introduced approximately thirty years ago (Kauffman,
1969, 1993; Glass and Kauffman, 1973). In this model,
gene expression is quantized to only two levels and the
expression level (state) of each gene is functionally re-
lated to the expression states of some other genes using
logical rules. The formalism of Boolean networks, which
emphasize fundamental, generic principles rather than
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quantitative biochemical details, establishes a natural frame-
work for capturing the dynamics of regulatory networks
and regulation of cellular states, and provides the potential
for the discovery of novel targets for anticancer drugs
(Huang, 1999). Boolean networks have yielded insights
into the overall behavior of large genetic networks (So-
mogyi and Sniegoski, 1996; Szallasi and Liang, 1998;
Wuensche, 1998; Thomas et al., 1995) and allow the study
of large data sets in a global fashion. Perhaps part of the
appeal of Boolean networks lies in the fact that they are
structurally simple yet dynamically complex.

In Shmulevich et al. (2002), we introduced a new class
of models called probabilistic Boolean networks (PBNs),
which are probabilistic generalizations of the standard
Boolean networks that offer a flexible and powerful mod-
eling framework. PBNs share the appealing properties of
Boolean networks in that they incorporate rule-based de-
pendencies between genes and allow the systematic study
of global network dynamics. However, because of their
probabilistic nature, they are able to cope with uncertainty,
which is intrinsic to biological systems. The dynamics
of PBNs can be studied in the probabilistic context of
Markov chains, with standard Boolean networks being
special cases. Owing to this, the rich theory and numerous
tools developed for Markov chains are applicable to the
analysis of PBNs as well. PBNs also provide a natural way
to quantify the relative influence and sensitivity of genes
in their interactions with other genes.

A property of real gene regulatory networks is the
existence of spontaneous emergence of ordered collective
behavior of gene activity. Recent findings provide exper-
imental evidence for the existence of these attractors in
regulatory networks (Huang and Ingber, 2000). Boolean
networks and PBNs also exhibit this behavior, the former
with fixed point and limit cycle attractors (Kauffman,
1993), the latter with absorbing states and irreducible sets
of states (Shmulevich et al., 2002). There is abundant
justification in the assertion that in real cells, functional
states, such as growth or quiescence, correspond to these
attractors (Huang, 1999; Huang and Ingber, 2000). Can-
cer is characterized by an imbalance between cellular
states (attractors), such as proliferation and apoptosis
(programmed cell death).

As supported by Boolean network simulations, attrac-
tors are quite stable under most gene perturbations (Kauff-
man, 1993), as are real cellular states. However, a charac-
teristic property of dynamical systems such as PBNs (and
Boolean networks) is that the activity of some genes may
have a profound effect on the global behavior of the entire
system. That is to say, a change of value of certain genes at
certain states of the network may drastically affect the val-
ues of many other genes in the long-run and lead to differ-
ent attractors. We should emphasize that the dependence
on the current network state is crucial—a particular gene

may exert a significant impact on the network behavior at
one time, but that same gene may be totally ineffectual in
altering the network behavior at a later time.

One of the main goals of developing models such
as PBNs is the identification of potential drug targets
in cancer therapy. A random gene perturbation may
cause the real regulatory network to transition into an
undesirable cellular state, which itself will be stable under
most subsequent gene perturbations. We are then faced
with the challenge of determining which genes would
be good potential candidates for intervention in order
to reverse the effects or force the regulatory network
to transition to another desirable stable state. Thus,
it is important not only to study the effects of gene
perturbation, especially on long-run network behavior, but
also to develop tools for discovering intervention targets.
While we distinguish between random gene perturbation
and intentional gene intervention, in this paper, the PBN
model class allows us to take a unified viewpoint. We
will also make a distinction between so-called transient
and permanent perturbation or intervention. The former
type can be reversed by the network itself while the latter
is unchangeable or fixed. Although for the most part,
we focus on transient perturbation or intervention, this
distinction will be discussed in Section 4.1.

Rather than going in depth to present PBNs, we give
the necessary definitions and notation in Section 2 and
refer the reader to Shmulevich et al. (2002) for a more
detailed treatment. Section 3 is concerned with random
gene perturbation in the context of PBNs. Specifically, it
is shown how the underlying Markov chain reflects this
phenomenon and an explicit state transition probability is
derived in terms of the Boolean functions, their selection
probabilities, and the probability of gene perturbation.
An example showing an application to the computation
of long-term influence of genes is presented for a small
simulated network. Section 4 then discusses the notion
of gene intervention and uses the theory of first passage
times as a tool for deciding which genes are the best
candidates for intervention. Several different strategies for
selecting such genes are discussed and several examples
are given. Finally, in Section 5, we address the question
of sensitivity of the stationary distributions to random
gene perturbations. We rely on some recent results from
perturbation theory of stochastic matrices. Interestingly,
these results relate back to Section 4 in that they are also
given in terms of first passage times and as such reinforce
the conceptual link between perturbation and intervention.

2 PROBABILISTIC BOOLEAN NETWORKS:
DEFINITIONS AND NOTATION

In this section, we give the basic definitions and notation
for PBNs. The reader is referred to Shmulevich et al.
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(2002) for more details. A PBN G(V, F) is defined by
a set of binary-valued nodes V = {x1, . . . , xn} and a
list F = (F1, . . . , Fn) of sets Fi = { f (i)

1 , . . . , f (i)
l(i)} of

Boolean functions. Each node xi ∈ {0, 1} represents the
state (expression) of gene i , where xi = 1 means that gene
i is expressed and xi = 0 means it is not expressed. The set
Fi represents the possible rules of regulatory interactions
for gene xi . That is, each f (i)

j : {0, 1}n → {0, 1} is a
possible Boolean function determining the value of gene
xi in terms of some other genes and l(i) is the number
of possible functions for gene xi (e.g. see Example 1).
We will also refer to the functions f (i)

j as predictors.
Thus, any given gene xi transforms its inputs (regulatory
factors that bind to it), using a rule f (i)

j , into an output,
which is the state or expression of gene xi itself. All
genes (nodes) are updated synchronously in accordance
with the functions assigned to them and this process is then
repeated. At any given time step, one of the predictors for
gene xi is selected randomly from the set Fi , according to
a predefined probability distribution, discussed below.

A realization of the PBN at a given instant of time is
determined by a vector of Boolean functions. If there are
N possible realizations, then there are N vector functions,
f1, f2, . . . , fN of the form fk = ( f (1)

k1
, f (2)

k2
, . . . , f (n)

kn
), for

k = 1, 2, . . . , N , 1 � ki � l(i) and where f (i)
ki

∈ Fi (i =
1, . . . , n). In other words, the vector function (also called
multiple-output function) fk : {0, 1}n → {0, 1}n acts as
a transition function (mapping) representing a possible
realization of the entire PBN. Thus, given the values
of all genes (x1, . . . , xn), fk(x1, . . . , xn) = (x ′

1, . . . , x ′
n)

gives us the state of the genes after one step of the
network given by the realization fk . If the predictor for
each gene is chosen independently of other predictors,
then N = ∏n

i=1 l(i). It should be noted that each

biologically motivated predictor function f (i)
j typically

has many fictitious, or ‘don’t care,’ variables, which do
not affect the output of the function. That is, although the
domain of each predictor is {0, 1}n , i.e. possible states of
all genes, there are only a few input genes that actually
regulate gene xi at any given time, implying that each
predictor is a relatively simple one. The biological and
practical justifications for probabilistically choosing one
of several simple predictors for each gene are discussed in
Shmulevich et al. (2002).

Let f =( f (1), . . . , f (n)) be a random vector taking
values in F1 × · · · × Fn . That is, f can take on all
possible realizations of the PBN. Then, the probability that
predictor f (i)

j is used to predict gene i (1 � j � l(i)) is
equal to

c(i)
j = Pr{ f (i) = f (i)

j } =
∑

k: f (i)
ki

= f (i)
j

Pr{f = fk}. (1)

An approach for obtaining the probabilities c(i)
j from gene

expression data, using the coefficient of determination
(Dougherty et al., 2000; Kim et al., 2000a,b), is discussed
in Shmulevich et al. (2002). The probability that a
particular network realization is selected can be computed
from (1) by defining an N × n matrix K such that
entries in the j th column are integers between 1 and
l( j) and the rows are lexicographically ordered, each one
corresponding to a possible network configuration. That
is, row i corresponds to network realization i and the entry
Ki j specifies that predictor f ( j)

Ki j
should be used for gene

x j . Then, the probability that network i is selected is

Pi = Pr{Network i is selected} =
n∏

j=1

c( j)
Ki j

. (2)

In Shmulevich et al. (2002), it was shown that the
dynamics of PBNs can be modeled by Markov chains,
consisting of 2n states, with the state transition matrix A
given by

A(x, x ′)=
∑

i : f (1)
Ki1

(x1,...,xn )=x ′
1, f (2)

Ki2
(x1,...,xn )=x ′

2,..., f (n)
Kin

(x1,...,xn )=x ′
n

Pi ,

(3)

where A(x, x ′) is the probability of transitioning from
x = (x1, . . . , xn) to x ′ = (x ′

1, . . . , x ′
n).

A method for quantifying the relative influence of genes
on other genes, within the context of PBNs, was presented
in Shmulevich et al. (2002). The influence I j ( f ) of
the variable x j on the function f , with respect to the
probability distribution D(x), x ∈ {0, 1}n , over the n-
dimensional hypercube, is defined as

I j ( f ) = ED

[
∂ f (x)

∂x j

]
, (4)

where ED[·] is the expectation operator with respect to
distribution D, ∂ f (x)

∂x j
= f (x ( j,0)) ⊕ f (x ( j,1)) is the

partial derivative of the Boolean function f , the symbol
⊕ is addition modulo 2 (exclusive OR), and x ( j,k) =
(x1, . . . , x j−1, k, x j+1, . . . , xn), for k = 0, 1. In other
words, (4) gives the influence as the probability (under
the distribution D(x)) that a toggle of the j th variable
changes the value of the function. In the context of PBNs,
the influence of gene xk on gene xi is given by Shmulevich
et al. (2002)

Ik(xi ) =
l(i)∑
j=1

Ik( f (i)
j ) · c(i)

j . (5)

The influence matrix � contains information about influ-
ences between every pair of genes as �i j = Ii (x j ).
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3 RANDOM GENE PERTURBATIONS
Suppose that any gene, out of n possible genes, can get
perturbed with probability p, independently of other genes.
In the Boolean setting, this is represented by a flip of
value from 1 to 0 or vice versa and directly corresponds
to the bit-flipping mutation operator in NK Landscapes
(Kauffman and Levin, 1987; Kauffman, 1993) as well as
in genetic algorithms and evolutionary computing (Gold-
berg, 1989; Altenberg, 1994). For Boolean networks, such
random gene perturbations can be implemented with the
popular DDLab software (Wuensche, 1996). This type of
‘randomization’, namely allowing genes to randomly flip
value, is biologically meaningful. Since the genome is not
a closed system, but rather has inputs from the outside, it is
known that genes may become either activated or inhibited
due to external stimuli, such as mutagens, heat stress, etc.
Thus, a network model should be able to capture this
phenomenon. If p = 0, then the model is reduced to the
PBN described in Shmulevich et al. (2002). If p > 0, then
we have the following situation. With probability (1− p)n ,
the transition from one state to another occurs as usual, by
one of the randomly selected network realizations while
with probability 1 − (1 − p)n , the state will change due to
random bit perturbation(s).

We can frame the random gene perturbations as follows.
Suppose that at every step of the network, we have a
realization of a so-called random perturbation vector γ ∈
{0, 1}n . If the i th component of γ is equal to 1, then
the i th gene is flipped, otherwise it is not. In general,
γ need not be independent and identically distributed
(i.i.d.), but we will assume this for now on for simplicity.
The generalization to the non-i.i.d. case is conceptually
straightforward. Thus, we will suppose that Pr{γi = 1} =
E[γi ] = p for all i = 1, . . . , n. Clearly,

Pr{γ = (0, . . . , 0)} = (1 − p)n.

Let x = (x1, . . . , xn) be the state of the network (i.e.
values of all the genes) at some given time. Then, the next
state x ′ is given by

x ′ =
{

x ⊕ γ, with probability 1 − (1 − p)n

fk(x1, . . . , xn), with probability (1 − p)n ,

(6)
where ⊕ is component-wise addition modulo 2 and
fk(x1, . . . , xn), k = 1, 2, . . . , N , is the transition function
representing a possible realization of the entire PBN. In
other words, Equation (6) states that if no genes are
perturbed, the standard network transition function will be
used, whereas if at least one perturbation does occur, then
the next state will be determined according to the genes
that are perturbed.

An important observation to make here is that for
p > 0, any state of the network becomes in principle

accessible from any other state, due to the possibility of
any combination of random gene perturbations. In fact, we
can say the following.

PROPOSITION 1. For p > 0, the Markov chain corre-
sponding to the PBN is ergodic.

PROOF. Since there are only a finite number of states,
ergodicity is equivalent to the chain being aperiodic and
irreducible. First, by virtue of Equation (6), we can note
that the Markov state transition matrix has no zero entries,
except possibly on the diagonal, the latter corresponding
to the case when there does not exist a network transition
function fk (k = 1, 2, . . . , N ) such that fk(x) = x . This
immediately implies that the chain is irreducible, since all
states communicate. Indeed, let x be such a state (i.e. for
which fk(x) �= x for all k = 1, 2, . . . , N ) and let y �= x
be any other state. The probability of transitioning from
x to y is positive as is the probability of going from y
back to x . Therefore, there is a positive probability that
x is accessible from itself in just two steps. Using the
same reasoning, the process may return to the same state
after any number of steps, except possibly after one step,
implying that the chain is also aperiodic.

The fact that the Markov chain is ergodic implies
that it possesses a steady-state distribution equal to the
stationary distribution, which can be estimated empirically
simply by running the network for a sufficiently long
time and by collecting information about the proportion
of time the process spends in each state. The convergence
rate, however, will surely depend on the parameter p. A
simulation-based analysis of the network involving gene
perturbation may require one to compute the transition
probability A(x, x ′) = Pr{(x1, . . . , xn) → (x ′

1, . . . , x ′
n)}

between any two arbitrary states of the network. We turn
to this next.

THEOREM 2. Given a PBN G(V, F) with genes V =
{x1, . . . , xn} and a list F = (F1, . . . , Fn) of sets Fi =
{ f (i)

1 , . . . , f (i)
l(i)} of Boolean predictors, as well as a gene

perturbation probability p > 0,

A(x, x ′) =
( N∑

i=1

Pi

[ n∏
j=1

(1 − | f ( j)
Ki j

(x1, . . . , xn) − x ′
j |)

])

×(1 − p)n + pη(x,x ′) × (1 − p)n−η(x,x ′) × 1[x �=x ′],

where η(x, x ′) = ∑n
i=1(xi ⊕ x ′

i ) is the Hamming distance
between vectors x and x ′, Pi is given in (2), and 1[x �=x ′] is
an indicator function that is equal to 1 only when x �= x ′.

PROOF. The two terms in Theorem 2 essentially cor-
respond to the two cases in Equation (6). First, consider
the case when no gene is perturbed or equivalently, γ =
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(0, . . . , 0). This occurs with probability (1−p)n . Thus, the
next state is determined via the Boolean functions selected
at that time step. The probability of transitioning from
x = (x1, . . . , xn) to x ′ = (x ′

1, . . . , x ′
n), then, is equal to

the sum of the probabilities of all network realizations fk
such that fk(x1, . . . , xn) = (x ′

1, . . . , x ′
n), k = 1, 2, . . . , N .

Thus, given that no perturbation occurred,

A(x, x ′) =
∑

i :fi (x)=x ′
Pi ,

which, in terms of the individual Boolean functions, can
be expressed as

N∑
i=1

Pi

[ n∏
j=1

(1 − | f ( j)
Ki j

(x1, . . . , xn) − x ′
j |)

]
,

where we treat binary values as real values (cf. Equa-
tion (3)). This is in fact the transition probability when
p = 0, as shown in Shmulevich et al. (2002).

If at least one gene is perturbed, then the transition
probability depends on the number of perturbed genes.
Given that a perturbation did occur, causing a transition
from state x to state x ′, we can conclude that the number
of perturbed genes was η(x, x ′), which is the Hamming
distance between x and x ′. Because γ ∈ {0, 1}n is i.i.d.
with E[γi ] = p, i = 1, . . . , n, the probability that x
got changed to x ′ is equal to pη(x,x ′) × (1 − p)n−η(x,x ′).
It is clear that the fact that at least one perturbation
occurred implies that x and x ′ cannot be equal and so this
expression must be multiplied by 1[x �=x ′].

If the perturbation vector γ is not identically distributed
(i.e. some genes are more likely to get flipped), then
the above transition probabilities become slightly more
complicated, requiring products of individual probabilities
Pr{γi = 1}. It can be seen from Theorem 2 that the
transition probability between two different states cannot
be zero so long as p > 0.

A practical benefit of the randomization afforded by
gene perturbation is that it empirically simplifies various
computations involving PBNs. For example, consider the
computation of influence Ik( f (i)

j ) of gene xk on the

predictor function f (i)
j , as given in Equation (4). The

computation of influence of a gene on the predictor entails
computing the joint distribution D(x) of all the genes used
by that predictor, in order to compute the expectation of
the partial derivatives of the predictors. This distribution,
however, should be consistent with the model itself. For
example, if we wish to quantify ‘long-term’ influence, we
need to obtain the stationary distribution of the Markov
chain corresponding to the PBN. Obtaining these long-
run probabilities, however, may be problematic from an

empirical point of view, since the Markov chain may
consist of a number of irreducible subchains and these
probabilities will depend on the initial starting state. In
other words, depending on where we start the process, we
may end up in different irreducible subchains. Obtaining
long-run behavior directly from the state-transition matrix
A may also be impractical even for moderate sizes of
PBNs, thus requiring simulation-based analysis.

The assumption of random gene perturbation, described
above, solves this problem by ridding us of the dependence
on the initial starting state. Since all states communicate,
according to Proposition 1, the steady-state distribution is
the same as the stationary distribution and by letting the
process run for a sufficiently long time, we can empirically
compute the distribution D(x) simply by keeping track
of the proportion of time each combination of values
of the genes in the domain of the predictor occurs. For
instance, if the predictor is a function of some given three
variables, then we simply have to tabulate the frequency
of appearance of each of the eight combinations of these
three variables to obtain the necessary distribution in order
to compute the influence on that predictor. Let us illustrate
these ideas with an example.

EXAMPLE 1. Consider a PBN consisting of three genes
V = (x1, x2, x3) and the function sets F = (F1, F2, F3),
where F1 = {

f (1)
1 , f (1)

2

}
, F2 = {

f (2)
1

}
, and F3 ={

f (3)
1 , f (3)

2

}
. The function truth tables as well as selection

probabilities c(i)
j are given in Example 1 in Shmulevich

et al. (2002). Let us assume that the initial (starting)
distribution of the Markov chain is the uniform distri-
bution, that is, D(x) = 1/8 for all x ∈ {0, 1}3. Using
this distribution, we can compute the influence matrix
� (see Example 2 in Shmulevich et al. 2002. At the
next time step, however, the distribution of all the states
is no longer uniform. In general, the distribution at a
given time step can be obtained simply by multiplying the
distribution at the previous time step by the state-transition
matrix A. Therefore, if we would like to compute the
influence matrix at an arbitrary time point, we must have
the distribution vector corresponding to that time point.
Similarly, if we would like to compute the long-term
influence (i.e. influence after the network has reached
equilibrium), we must have the stationary distribution
vector. Let us suppose that the perturbation probability
is equal to p = 0.01 and see how the influence matrix
changes over time. That is, for every step of the network,
we will recompute the influence matrix. Let us focus on
the influence of gene x2 on the other three genes (i.e. row
2 of the influence matrix). Figure 1 shows the trajectories
for these three influences for the first 100 time steps.
First, it can be seen that the influences indeed converge
to their asymptotic values. Second, it is worthwhile noting
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Fig. 1. The trajectories of the influences I2(xi ) for i = 1, 2, 3, plotted as a function of the time-steps taken by the PBN given in Example 1.
The gene perturbation probability is equal to p = 0.01.

that the ‘transient’ influence (e.g. first 10 time steps in
this example) can be very different from the long-term
influence. For example, the influence of x2 on x3 is the
lowest at the beginning and is the highest at the end.
The important thing to note here is that the long-term
influences are guaranteed to be independent of the initial
starting state or distribution because a non-zero gene
perturbation probability was used.

4 INTERVENTION
In Section 3, we considered the effects of random gene
perturbations. In a similar vein, one can consider the
effects of deliberately affecting a particular gene by
means of intervention. One of the key goals of PBN
modeling is the determination of possible intervention
targets (genes) such that the network can be ‘persuaded’ if
not forced to transition into a desired state or set of states.
Whereas in Boolean networks, attractors are hypothesized
to correspond to functional cellular states (Huang, 1999),
in PBNs, this role is played by irreducible subchains.
When the probability of perturbation, p, is equal to zero,
a PBN is unable to escape from an irreducible subchain,
implying that the cellular state cannot be altered. When p
becomes positive, there is a chance that the current cellular
state may switch to another cellular state by means of a
random gene perturbation. Clearly, perturbation of certain
genes is more likely to achieve the desired result than that
of some other genes. Our goal, then, is to discover which
genes are the best potential ‘lever points,’ to borrow the
terminology from Huang (1999), in the sense of having

000
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001

1
1

1

1

P4

P3

P2

P1

P2+P4

P1+P3

P2+P4

P1+P31

Fig. 2. State transition diagram corresponding to the PBN in
Example 1.

the greatest possible impact on desired network behavior
so that we can intervene with them by changing their value
(1 or 0) as needed. In addition, we wish to be able to
intervene with as few genes as possible in order to achieve
our goals. To motivate the discussion, let us illustrate the
idea with an example. We will use the PBN given in
Example 1, which is also used in Shmulevich et al. (2002).

Suppose the state transition diagram of the Markov
chain corresponding to the PBN in Example 1 is shown
in Figure 2. For the predictor probabilities given in
Example 1, the probabilities of the four possible network
realizations are: P1 = 0.3, P2 = 0.3, P3 = 0.2, and
P4 = 0.2. Suppose that we are currently in state (111)
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and wish to eventually transition to state (000). Finally, let
us assume, for the moment, that the probability of random
perturbation is zero (p = 0). The question is, with which
of the three genes, x1, x2, or x3, should we intervene such
that the probability is greatest that we will end up in (000).
By direct inspection of the diagram in Figure 2, we can see
that if we make x1 = 0, then with probability P4 = 0.2,
we will transition into (000) whereas if we make x2 = 0
or x3 = 0, then it will be impossible for us to end up in
(000) and with probability 1, we will eventually come back
to (111), where we started. In other words, the network
will be resistant to perturbations of the second or third
genes and will eventually maintain the same state. Thus,
the answer to our question in this rather simple example
is that only by intervening with gene x1 do we have a
chance of achieving our goal. In order for us to be able
to answer such questions in general, we need to develop
several tools.

When p > 0, by Proposition 1, the entire Markov chain
is ergodic and thus, every state will eventually be visited.
Thus, the question of intervention should be posed in the
sense of reaching a desired state as early as possible. For
instance, in the example considered above, if p is very
small and we are in state (111), then it will be a long time
until we reach (000) and setting x1 = 0 is much more
likely to get us there faster. We are, therefore, interested
in the probability Fk(x, y) that, starting in state x , the first
time the PBN will reach some given state y will be at time
k. This is often referred to as the first passage time from
state x to state y. A related measure of interest is the mean
first passage time from state x to state y, defined as

M(x, y) =
∑

k

k Fk(x, y). (7)

This measure tells us how long, on the average, it will take
to get from state x to state y.

It is easy to see that for k = 1, Fk(x, y) = A(x, y),
which is just the transition probability from x to y. For
k � 2, it is also straightforward to show (e.g. Çınlar, 1997)
that Fk(x, y) satisfies

Fk(x, y) =
∑

z∈{0,1}n−{y}
A(x, z)Fk−1(z, y). (8)

Every required entry of the matrix A can be computed di-
rectly using Theorem 2. Let us illustrate this computation
with the same example given above.

Suppose, as before, that p = 0.01. Then, the steady-
state distribution equals [0.0752 0.0028 0.0371 0.0076
0.0367 0.0424 0.0672 0.7310], where the leftmost element
corresponds to (000) and the rightmost to (111). As
expected, the PBN spends much more time in state (111)
than in any other state. In fact, more than 70% of the time
is spent in that state. Let our starting state x be (111) and

the destination state y be (000), as before. The question
with which we concern ourselves is whether we should
intervene with gene x1, x2, or x3. In other words, we would
like to compute Fk((011), (000)), Fk((101), (000)), and
Fk((110), (000)), where the states are written in their
binary representations. We can then assess our results by
plotting

HK0(x, y) =
K0∑

k=1

Fk(x, y)

for the states x of interest and for a sufficiently large K0.
The intuition behind this approach is the following. Since
the events {the first passage time from x to y will be at time
k} are disjoint for different values of k, the sum of their
probabilities for k = 1, . . . , K0 is equal to the probability
that the network, starting in state x , will visit state y before
time K0. As a special case, when K0 = ∞, this is equal to
the probability that the chain ever visits state y, starting at
state x , which of course is equal to 1, since our chains are
ergodic if p > 0. Figure 3 shows the plots of HK0(x, y)

for K0 = 1, . . . , 20 and for the three states of interest,
namely, (011), (101), and (110).

The plots indicate that if we start with state (011), we
are much more likely to enter state (000) sooner than if we
start with states (110) or (101). For example, during the
first 20 steps, we have an almost 25% chance of entering
(000) if we start with (011), whereas if we start with
(110) or (101), we only have about a 5% chance. This,
in turn, indicates that we should intervene with gene x1
rather than with gene x2 or x3. Of course, in this rather
simple example, we could have discerned this by visual
inspection of Figure 2, but for larger networks, this method
provides a tool for answering these kinds of questions.

In biology, there are numerous examples when the
(in)activation of one gene or protein can lead much
quicker (or with a higher probability) to a certain cellular
functional state or phenotype than the (in)activation of
another gene or protein. For instance, let’s use a stable
cancer cell line as an example. Without any intervention,
the cells will keep proliferating. Let us assume that
the goal of the intervention is to push the cell into
programmed cell death (apoptosis). Let us further assume
that we will achieve this intervention with two gene
candidates: p53 and telomerase. The p53 gene is the
most well-known tumor suppressor gene, encoding a
protein that regulates the expression of several genes
such as Bax and Fas/APO1 that function to promote
apoptosis (Miyashita and Reed, 1995; Owen-Schaub et al.,
1995) and p21/WAF1 that functions to inhibit cell growth
(El-Deiry et al., 1993). The telomerase gene encodes
telomerase, which maintains the integrity of the end of
chromosomes (telomeres) in our germ cells, which are
responsible for propagating our complete genetic material
to the following generation, as well as progenitor cells,
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Fig. 3. HK0(x(i), y) for K0 = 1, . . . , 20, for starting states (011), (101), and (110), corresponding to perturbations of first, second, and third
genes, respectively.

which are responsible for replenishing our cells during
the normal cell turnover (homeostasis). In somatic cells,
the telomerase gene is turned off, resulting in telomere
shortening each time the cell divides—a key reason for
the limited life span of our normal cells (Harley, 1991). In
the majority of tumor cells, telomerase is activated, which
is believed to contribute to the prolonged life-span of the
tumor cells (Kim et al., 1994) and worsened prognosis
for the cancer patients (Hiyama et al., 1995; Zhang et al.,
1996). Extensive experimental results indicate that when
p53 is activated in the cells, for example, in response
to radiation, the cells undergo rapid growth inhibition
and apoptosis in as short as a few hours (Lowe et al.,
1993; Kobayashi et al., 1998). In contrast, inhibition of
the telomerase gene also leads to cell growth inhibition,
differentiation, and cell death, but only after cells go
through a number of cell divisions (allowing telomere
shortening), which takes a longer time to occur than via
p53.

Another valuable computational tool is the mean first
passage times given in Equation (7). Intuitively, the best
candidate gene for intervention should be the one that
results in the smallest mean first passage time to the
destination state. Using the same example as above,
we have computed the three mean first passage times
corresponding to the perturbation of genes x1, x2, and
x3. These are equal to 337.51, 424.14, and 419.20,
respectively. Since the first one is the smallest, this again
supports that gene x1 is the best candidate for intervention.

To summarize, we simply generate different states

x (i) = x ⊕ ei , i = 1, . . . , n, where ei is the unit
binary vector with a 1 in the i th coordinate, by perturbing
each of the n genes and compute HK0(x (i), y) for some
desired destination state y and constant K0. Then, the best
gene for intervention is the one for which HK0(x (i), y) is
maximum. That is, given a fixed K0, the optimal gene xiopt

satisfies
iopt = arg max

i
HK0(x (i), y). (9)

Alternatively, by minimizing the mean first passage times,
the optimal gene satisfies

iopt = arg min
i

M(x (i), y). (10)

Another related approach to the one in (9) might be
to first fix a probability h0 and wait until one of the
HK0(x (i), y) reaches it first. Note that due to ergodicity,

for every state x (i), there will always be a K (i)
0 large

enough such that H
K (i)

0
(x (i), y) > h0. In that sense, the

optimal gene for intervention xiopt is one for which

iopt = arg min
i

min
K (i)

0

{K (i)
0 : H

K (i)
0

(x (i), y) > h0}. (11)

At first glance, it might appear as if both approaches, (9)
and (11), will yield the same answer, since Figure 3 seems
to suggest that the plots do not intersect and that if one
of them is maximum for a given K0, it will be the first
to reach any fixed h0 thereafter. While it is true that for
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sufficiently large K0, the plots will not intersect, this is
not in general true for smaller values of K0.

The criteria imbedded in Equations (9) and (11) have
underlying different interpretations. The first aims to
maximize the probability of reaching a particular state
before a certain fixed time while the second aims to
minimize the time needed to reach a certain state with
a given fixed probability. These two approaches are
complementary and may be used in conjunction. Finally,
the approach in (10) based on minimizing mean first
passage times is another simple alternative. We will come
back to mean first passage times in Section 5, when we
discuss sensitivity analysis of PBNs.

4.1 Sets of states, avoidance of states, and
permanent intervention

So far, we have discussed the notion of intervention in
terms of a single starting state and a single destination
state. However, we may often be more interested in the
same types of questions, but concerning sets of states. For
example, two different sets of states may correspond to
different functional cellular states, such as proliferation or
quiescence, much in the same way attractors play this role
in standard Boolean networks (Huang, 1999). In PBNs,
this role is typically played by irreducible subchains
when no perturbations can occur (p = 0). In other
words, once the network enters an irreducible subchain
(cf. attractor), it can’t escape. When the perturbation
probability is positive, there are no longer any irreducible
subchains (see Proposition 1), but the sets of states that
correspond to these irreducible subchains when p = 0
still represent the functional states of the organism that
is being modeled—there is now simply a probability of
escaping due to random perturbations. Those sets of states
that correspond to irreducible subchains when p = 0
could be referred to as implicitly irreducible subchains.
They are essentially ‘islands’ of states and the probability
of perturbation controls the amount of ‘bridges’ between
these islands. When p = 0, there are no bridges, and when
p becomes larger, it becomes easier to ‘travel’ between the
islands.

Going back to the question of intervention, we may be
interested in posing it as follows. Given that we are in a set
of states X , what gene is the best candidate for intervention
if we want to end up in the set of states Y ? The question
may be posed in the sense of either (9), (10), or (11).
Fortunately, the mathematical framework does not really
change when we talk about sets of states. For example, if
X = {x} consists of just one state, but Y is a set comprised
of many states, then the first passage probabilities Fk(x, y)

may simply be summed over all states y ∈ Y and we
can define Fk(x, Y ) = ∑

y∈Y Fk(x, y). Then, the same
approaches as discussed above to find the best gene for
intervention can be used.

The situation when X is comprised of a number of
states is conceptually a bit more complicated, since
now, the starting set of states X , rather than just one
starting state x , represents a type of uncertainty in our
knowledge of the current state of the network. That is,
we may not know exactly in what state the network is
in at a particular time, but we may know that it is in
a certain set of states. This may be relevant not only
from an experimental perspective, as it may be difficult
to determine precisely the current state at a given time,
but perhaps more importantly, we may not be interested in
restricting ourselves just to one state, but rather consider a
whole set of states X that is believed to correspond to the
current functional cellular state.

Consequently, a gene that may be the best candidate for
intervention for one of the starting states in X may not
be the best for another state in X . Therefore, the best we
can do in such a case is to combine the individual results
for all states x ∈ X , but weigh them by their respective
probabilities of occurrence. The latter is furnished by the
steady-state probabilities πx . In other words, we can define

Fk(X, Y ) =
∑

x∈X
∑

y∈Y Fk(x, y) · πx∑
x∈X πx

(12)

to be the first passage probability from a set X to a set Y .
In addition to reaching a desired state or set of states,

we may also be interested in avoiding a state or set of
states. This is quite natural in terms of inducing a network
not to enter into some sets of states corresponding to
unwanted functional cellular states (e.g. proliferation).
This goal is in a sense complementary to what has been
described above in terms of reaching a desired state either
as soon as possible with a given probability or with as
high probability as possible, before a given time. For
example, in Equation (10), our goal was to minimize the
mean first passage time to a destination state. In order to
avoid a destination state, we simply have to maximize the
mean first passage time to that state. So, the underlying
mechanism is quite the same and we will not give a
separate example illustrating the avoidance of states. We
would like to point out, however, that it may be possible
that performing no intervention whatsoever is the best
option, regardless of whether we want to reach or avoid
a state or set of states. In other words, depending on the
network as well as on the starting and destination states or
sets of states, it may be the case that not intervening with
any gene is optimal in terms of the criteria given in (9),
(10), or (11).

In our model, the interventions and perturbations that
we have considered up to this point are in the gene’s ex-
pression state, which is generally a transient phenomenon.
Thus, it could be termed transient intervention or pertur-
bation. That is, the effect on a gene, whether by random
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perturbation or forced intervention, is applied at only
one time point and the network itself is responsible for
determining the values of that gene thereafter. It could
be said that the effect has the potential to be reversed by
the network itself. For example, in Figure 2, if we are in
state (111) and the second gene changes value, resulting
in (101), at the next time step, regardless of where the
network transitions, (110) or (111), the second gene will
always get changed back to 1 again. Since in that example
(111) is an absorbing state, the network will eventually
return to it, and the perturbation or intervention—whatever
the means was of changing the second gene—will have
been ‘compensated’ by the network itself. This inherent
resistance to perturbations is a key factor for stability and
robustness of PBNs.

We can also consider a permanent intervention or
perturbation. In this scenario, a gene changes value and
remains at that value forever. From a genetic perspective,
permanent intervention is achieved through removing a
gene or ‘transplanting’ a gene, as done in gene therapy.
From a network perspective, the permanent intervention
(or perturbation) of a gene essentially reduces the state
space by half, since all the states in which that gene is
not equal to the fixed value cannot appear. The rest of the
genes are predicted as usual, via the Boolean functions
and their selection probabilities c(i)

j remain unaltered. The
Boolean function corresponding to the fixed gene is the
identity function (0 or 1) with selection probability 1.

Permanent intervention by gene manipulation is used
by both nature and humans. It is an efficient way to
generate mutations and also hoped to be an efficient
way for correcting mutations (therapy). Perhaps the best
example for the first scenario is viral infection. Let us use
Simian Virus 40 (SV40) as an example. SV40 virus was
discovered in the 1950s during the development of vaccine
for poliovirus (Carbone et al., 1997). It was found that
SV40 could transform monkey kidney cells and develop
tumors when injected into rodents (Abrahams and Van
der Eb, 1975). SV40 was not believed to cause tumor in
human cells, however, SV40 DNA was found in some
human brain tumors in recent years (Kouhata et al., 2001)
suggesting that SV40 may have a tumorigenic effect in
humans too, although with a long latent period.

Extensive research has been carried out to elucidate how
SV40 causes cancer in mouse cells. Though SV40 does
not have a big genome, one of the most important proteins
encoded by SV40 is large T-antigen. Large T-antigen
interacts with host cell molecules and triggers a series
of events that are beneficial for the viral replication and
bad for the host cells. For example, T-antigen inactivates
the functions of p53 (Zhu et al., 1991; Bargonetti et
al., 1992), which may be the key mechanism for the
tumorigenic effect of SV40 T-antigen. We should point out

that SV40 T-antigen also interacts with other molecules
such as retinoblastoma (Rb DeCaprio et al., 1988)—an
important protein the activation of which inhibits DNA
synthesis. From a network perspective, the permanent
mutation caused by SV40 T-antigen may permanently
alter the dynamics of the network, causing it to shift into
a set of states associated with tumorigenesis. To further
prove that T-antigen itself is sufficient to cause this effect,
T-antigen was ‘transplanted’ into the mouse brain using a
tissue-specific transgenic mouse model (second scenario,
man-made event). As expected, brain tumors were found
in many of the transgenic mice (Brinster et al., 1984).
Since SV40 DNA was detected in some human brain
tumors, one cannot help but to speculate that SV40 may
be causing human brain tumors too.

From the point of view of man-made intervention, it may
be that permanent rather than transient intervention is the
only way to reach a desired set of states. That is, it may
be the case that the network is so resistant to transient
intervention of any gene, that it will be extremely unlikely
for the network to ever reach (or avoid) the desired
states. Permanent intervention, though less desirable as it
introduces permanent changes to the network, may be the
only alternative to reach a set of states with a sufficiently
high probability. The question, as before, is what genes
are the most likely ‘lever points’ for controlling the global
behavior of the network.

For example, based on what is known, p53 is one
such gene. This is clearly demonstrated by the fact that
p53 gene deletion or mutation (permanent perturbation)
is one of the most frequent genetic changes in cancers
(Hollstein et al., 1991). Removing p53 genes from mouse
through embryonic stem cell gene knock-out technology,
researchers generated the p53 null mice. The mouse
can be born normally and develop into adult normally,
but develop cancers in most of the mice at 4.5 months
(Donehower et al., 1992). So p53 may be an important
lever gene for regulation of homeostasis—a delicate
balance between cell growth and cell death. Thus, it may
not be surprising that p53 is often selected as a therapeutic
target for permanent intervention. In cultured cells, the
introduction of p53 back to p53-null cells leads to cell
growth inhibition or cell death (El-Deiry et al., 1993).
Thus one properly chosen lever gene has the potential
to lead the network into a specific implicitly irreducible
subchain (cf. attractor in standard Boolean networks).
p53 gene is also being used in gene therapy, where the
target gene (p53 in this case) is cloned into a viral vector
(adenovirus vector is a common one). The modified virus
serves as a vehicle to transport p53 gene into the tumor
cells to generate a permanent intervention (Swisher et al.,
1999; Bouvet et al., 1998).
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5 SENSITIVITY OF STATIONARY
DISTRIBUTIONS TO GENE
PERTURBATIONS

In this section, we briefly address the question of sensi-
tivity of the stationary distributions to random gene per-
turbations, as discussed in Section 3. This is an important
issue because it characterizes the effect of perturbations
on long-term network behavior. It is clear that whatever is
meant by sensitivity, it will no doubt depend on the proba-
bility of random perturbation, p. The general question is:
if we perturb the transition probabilities, how much will
the stationary distributions, or equivalently, the limiting
probabilities change? This question has generally been
addressed in the area known as perturbation theory of
stochastic matrices and dates back to Schweitzer (1968).
If A and Ã = A − E are the original and ‘perturbed’
Markov matrices, where E represents the perturbation,
and π and π̃ are their respective stationary distributions,
then most results are of the form

‖π̃ − π‖ � κ‖E‖, or∣∣∣∣π j − π̃ j

π j

∣∣∣∣ � κ j‖E‖,

for some matrix norm ‖ · ‖, and κ , κ j are called condition
numbers and are used as measures of sensitivity. Recently,
a new approach to measure the sensitivity of the Markov
chain to perturbations, in terms of mean first passage
times, has been proposed by Cho and Meyer (2000). This
approach has the advantage in that it does not require
computing or estimating the condition numbers. The result
is given in the following Theorem.

THEOREM 3 (CHO AND MEYER, 2000). Let A and
Ã = A − E be transition probability matrices for two ir-
reducible Markov chains with respective stationary distri-
butions π and π̃ . Denote by ‖E‖∞ the infinity-norm of E,
which is the maximum over the row sums

∑
j |E(i, j)|. Let

M(x, y) = ∑
k k Fk(x, y) denote the mean first passage

time from state x to state y in the chain corresponding to
A. Then, the relative change in the limiting probability for
state y is

|πy − π̃y |
πy

� 1

2
‖E‖∞ max

x �=y
M(x, y).

Cho and Meyer (2000) also showed that their bound is
tight in the sense that there always exists a perturbation E
that attains the bound. Let us now consider this result in
the context of random gene perturbations.

THEOREM 4. Given a PBN G(V, F) with an existing
steady-state distribution, let πy be a limiting probability
of state y when p = 0 (no perturbations) and let π̃y be the

limiting probability of the same state when 0 < p < 1/2.
Then,

|πy − π̃y |
πy

� (1 − (1 − p)n) max
x �=y

M(x, y).

PROOF. The perturbation matrix E from Theorem 3
can be expressed directly from Theorem 2 as follows. Let
E(x, x ′) be the entry in E corresponding to the transition
probability from x to x ′, for x, x ′ ∈ {0, 1}n . Also, let

A(x, x ′) =
N∑

i=1

Pi

[ n∏
j=1

(1 − | f ( j)
Ki j

(x1, . . . , xn) − x ′
j |)

]

denote the transition matrix when p = 0 (see Shmulevich
et al. 2002) and Ã(x, x ′) denote the transition matrix given
in Theorem 2, where a non-zero perturbation probability is
assumed. In other words,

Ã(x, x ′) = A(x, x ′) × (1 − p)n + pη(x,x ′)

×(1 − p)n−η(x,x ′) × 1[x �=x ′]. (13)

Then, E(x, x ′) = A(x, x ′) − Ã(x, x ′) and for each row of
E , we have∑
x ′

|E(x, x ′)| =
∑

x ′
|A(x, x ′) × (1 − (1 − p)n)

− pη(x,x ′) × (1 − p)n−η(x,x ′) × 1[x �=x ′]|
�

∑
x ′

(|A(x, x ′) × (1 − (1 − p)n)|

+ |pη(x,x ′) × (1 − p)n−η(x,x ′) × 1[x �=x ′]|).
(14)

First, we observe that since
∑

x ′ A(x, x ′) = 1, the first
term of the summation in (14) is simply equal to (1− (1−
p)n). Next, we have∑

x ′
|pη(x,x ′) × (1 − p)n−η(x,x ′) × 1[x �=x ′]|

=
∑
x ′ �=x

pη(x,x ′) × (1 − p)n−η(x,x ′), (15)

where we can remove the absolute value symbols since
each summand is positive. Since the summation in Equa-
tion (15) is taken over all possible values of x ′ except
x ′ = x , the Hamming distance η(x, x ′) ranges from 1 to
n. As there are

(n
k

)
states x ′ that are Hamming distance k

from x (i.e. |{x ′ : η(x, x ′) = k}| = (n
k

)
), Equation (15) can

be rewritten as

∑
x ′ �=x

pη(x,x ′) × (1 − p)n−η(x,x ′) =
n∑

k=1

(
n

k

)
pk(1 − p)n−k

= 1 − (1 − p)n. (16)
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Thus, every row of E satisfies∑
x ′

|E(x, x ′)| � 2(1 − (1 − p)n)

and so
‖E‖∞ � 2(1 − (1 − p)n) (17)

as well.
Using (17) together with Theorem 3 gives the desired

result.

Theorem 4 allows us to bound the sensitivity of the
limiting probabilities of any state of the PBN, relative to
the probability of random gene perturbation. The mean
first passage times M(x, y) can be computed in a straight-
forward way by using the recursive formula in (8). The
same type of analysis as above may be conducted between
two PBNs with different perturbation probabilities p1 <

p2 and the relative sensitivity of the limiting probabilities
can be expressed in terms of p1, p2, and the mean first
passage times. One important implication of Theorem 4 is
that if a particular state of a PBN can be ‘easily reached’
from other states, meaning that the mean first passage
times are small, then its steady-state probability will be
relatively unaffected by perturbations. Such sets of states,
if we hypothesize them to correspond to some functional
cellular states, are thus relatively insensitive to random
gene perturbations.

6 CONCLUSION
The complex interplay of the elements in a genetic
regulatory network implies that any individual element or
group of elements exerts an effect on the entire network.
The extent of this effect depends on the nature of the
relationships between the elements as well as on the
state of the network. This paper is concerned with two
related questions. Given the possibility of a random gene
perturbation with a certain probability, to what extent do
such perturbations affect the long-term behavior of the
entire network? Alternately, given a desire to elicit certain
behavior from the network, what genes would make the
best candidates for intervention so as to increase the
likelihood of this behavior?

The first question has been addressed by constructing
an explicit formulation of the state-transition probabilities
in terms of the Boolean functions and the probability of
perturbation, and then deriving a bound on the steady-
state probabilities, given in Theorem 4. In concordance
with intuition, an interesting implication of this theorem
is that the steady-state probabilities of those states of the
network to which it is easy to transition from other states,
in terms of mean first-passage times, are more resilient
to random gene perturbations. The first passage times
provide a conceptual link with the second question in that

they furnish the means by which we develop the tools for
finding the best candidate genes for intervention.

The problem of capturing long-run network behavior for
large-size networks is difficult owing to the exponential
increase of the state space. Matrix-based methods quickly
become prohibitive. We plan to focus on effective strate-
gies for obtaining steady-state behavior through simula-
tion and efficient data structures. Alternately, it may be im-
portant to be able to select relatively small sub-networks,
out of a large network, that function more or less indepen-
dently of the rest of the network. Such a small sub-network
would require little or no information from the outside.
Algorithms for efficiently finding such sub-networks, in-
ferred from real gene-expression data, along with a formal
representation for performing such reductions, will be part
of future work.
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