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ABSTRACT

Motivation: The T-cell receptor, a major histocompatibility
complex (MHC) molecule, and a bound antigenic peptide, play
major roles in the process of antigen-specific T-cell activation.
T-cell recognition was long considered exquisitely specific.
Recent data also indicate that it is highly flexible, and one
receptor may recognize thousands of different peptides. Deci-
phering the patterns of peptides that elicit a MHC restricted
T-cell response is critical for vaccine development.

Results: For the first time we develop a support vector
machine (SVM) for T-cell epitope prediction with an MHC type |
restricted T-cell clone. Using cross-validation, we demon-
strate that SVMs can be trained on relatively small data sets
to provide prediction more accurate than those based on
previously published methods or on MHC binding.

Contact: rsimon@mail.nih.gov
Supplementary information:
peptides is available at
LAU203_Peptide.pdf

Data for 203 synthesized
http://linus.nci.nih.gov/Data/

INTRODUCTION

insight into the peptide binding patterns to MHC (Engelhard,
1994; Madden, 1995; Rothbard and Gefter, 1991; Sttk,
1994). Mathematical approaches including binding motifs
(Hammeret al., 1993; Hammer, 1995; Rammenseteal .,
1995; Setteet al., 1989), quantitative matrices (Parlatral.,
1994; Southwoodt al., 1998; Sturniolaet al., 1999), artifi-
cial neural networks (ANNSs) (Brusiet al., 1998; Gulukota
etal., 1997; Milik et al., 1998), and support vector machines
(SVMs) (Donnes and Elofsson, 2002) used to model theseg
interactions have led to an increasingly more refined under-=.
standing of MHC/peptide binding.

MHC binders are not always T-cell epitopes however.
Efforts to predict candidate T-cell epitopes have been util- @
ized ANNs (Honeymaret al., 1998). A full ANN with an
indicator for each amino acid at each position requires 200
input nodes (20 amino acids10 positions). Large ANNs
require very large amounts of data to avoid obtaining poor
predictions resulting from over-fitting a limited set of train-
ing data (Rumelhast al., 1986). The number of weights for
edges joiningn input nodes ta hidden layer nodes is x m.
Hence even with only = 2, a prohibitive amount of data is
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Peptides degraded from foreign or self-proteins bind torequired for properly training a network with 402 parameters. =
major histocompatibility complex (MHC) molecules. The To generate such an extensive amount of data for a single TCR;
MHC—peptide complex can be recognized by T-cell receptis very expensive. Accurate modeling strategies that are moreg
ors and trigger an immune response. Identifying characterefficient in use of TCR proliferation assay data and antigen
istic patterns of immunogenic peptide epitopes can provideecognition data are needed.

fundamental information for understanding disease patho- Inrecentyears, various pattern recognition techniques have
genesis and etiology, and for therapeutics such as vaccirlgeen applied in biology. SVMs are one of the most powerful

development.

new technigues and have been effective in DNA sequence ana-

Due to the complexity of the tri-molecular complex (pep- lysis, protein structure prediction and gene expression pattern
tide, MHC molecule, and T-cell receptor), early studiesdiscovery (Browretal., 2000; Fureytal., 2000; Guyoretal.,
focused on the interaction between peptide and MHC. Struc2002; Hua and Su, 2001; Ziahal., 2000; Dinget al., 2001;
tural studies and systematic binding analyses have providedavalijevskiet al., 2002). SVMs are particularly appealing

*To whom correspondence should be addressed.

for T-cell epitope prediction because of the ability of SVMs
to build effective predictive models when the dimensionality
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Fig. 1. Pairwise comparison of the peptides in positisgdnd negativel{) groups. Pearson correlation coefficients were calculated for all S
pairs in each group using 10 physical factors in 10 positions. e
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of the data is high and the number of observations is limtotal peptides for training and 20% as a test set. Finally 2
D

ited. SVMs are based on a strong theoretical foundation fothe positive and negative groups were combined separatelys
avoiding over-fitting training data and they do not have thein the training and test sets. This procedure was repeated?
problem of the numerous local optimal that limit ANN models independently 10 times. S
(Vapnik, 1995). Each amino acid in a peptide was encoded by ten factors.S

We analyzed our relatively small data set by building aThese orthogonal factors were obtained from 188 physical =

SVM. This is the first time a SVM has been used for T-cell properties of 20 amino acids via multivariate statistical ana- %
epitope prediction. lyses by Scheraga’s group (Kidesteal., 1985). They account %

for 86% of the variance of the 188 physical properties. These %
SYSTEM AND METHODS factors included alpha-helix or bend-structure preference, &
T-cell clone and antigen recognition assay bulk, beta-structure preference, hydrophobicity, normalized &

frequency of double bend, normalized frequency of alpha- %
Melan-A-specific CTL clone LAU203-1.5 was derived from region, and pK-C. This encoding reduces the dimension of <
tumor-infiltrated lymph node cells of a melanoma patient anchredictors by half while enabling structural and biophysical =
antigen recognition was assessed using a chromium-releageoperties to be better represented compared to using aminay
assay as previously described (Valmeiral., 1998). acid indicator variables. Since our peptides are all 10-mers, 3
Peptide synthesis and test the total number of input variables is 100. %

To ensure that the peptides were sufficiently dissimilar for 2

Peptides were synthesized by the simultaneous-multiplége cross-validation to be valid, we calculated the pairwise o
peptide-synthesis methods (Piniéfal., 1994) and charac- pegarson correlation coefficients for all positive peptides and 2
terized using HPLC and mass spectrometry. negative peptides. Figure 1 shows the histograms of the cor-g

LAU203-1.5 is an A0201 restricted T-cell clone (TCC) gjation coefficients in each group. Only 5% in the positive

from tumor-infiltrated lymph node cells of a melanoma gayp and 1% in the negative group have correlations larger =
patient. 203 synthetic peptides were selected based on regian 0.6.

ults using single- and multiple-amino acid-substitutions and

combinatorial peptide library experiments with a chromium . .

release antigen recognition assay (Rubio-Gaad@y., 2002). Training a support vector machine

These peptides were tested against the LAU203-1.5 clon€VM training was performed usin§vMlight (version 4.0)

using the same assay. A peptide with percentage specific lys{doachim, 1999). There were 100 input variables, which rep-

higher than 10% was considered positive. resent the ten positions in the peptide. The class values were
o set to 1 for positive peptides andl for negative peptides.

Training and test data sets The threshold to predict positive or negative peptide was set

Due to the imbalance of two classes in the data set (36 stinto 0 by default.

ulatory peptides and 167 non-stimulatory peptides), we first For two group classification, SVM separates the classes

divided the data into positive and negative groups. Then iwith a surface that maximizes the margin between them.

each group random sampling was used to select 80% of thi¢ is an approximate implementation of the Structural Risk
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Minimization induction principle, which attempts to minim- A*0201 peptide-binding based predictions
ize with the generalization error for independent data rathesyFpE|TH| is a profile based method to predict MHC bind-
than minimizing the mean square error for the training sefng peptides (Rammenset al., 1999). Thirteen different

(Vapnik, 1995). _ _ MHC class | types of blndlng peptides can be predicted.
SVM classification of a sample with a vectoof predictors |t js publicly available through a website (http://syfpeithi.

is based on: bmi-heidelberg.com/Scripts /IMHCServer.dll/EpPredict.htm).
A*0201 was used to predict all 203 melanoma clone LAU203-
o . 1.5 peptides. The threshold between binders and non-binders
f) = S|gn( Z vieik(xi, ) + b) was optimized.

SVMHC is based on SVM to predict the binding of
peptides to MHC type | molecules (Dénnes and Elofsson,
2002). It contains prediction for 26 MHC class | type
from the MHCPEP database and 6 MHC class | types;
kenel function is used. If (x) is positive, then the sample is from the SYFPEITHI database. It can be publicly accessedfIJ
predicted to be in class-1; otherwise class-1. The sum- (http://www.shc.su.se/svmhc/). 8201 was used to predict =
mation is over the set of ‘support vectors’ that define the all 203 melanoma clone LAU203-1.5 peptides. The threshold%

boundary between the classes. Support vegtas associ-
ated with a class labef that is eitherr1 or—1. The{a;} and between binders and non-binders was kept as zero by defaulta’

b coefficients are determined by ‘learning’ the data.
For each training set consisting of 80% of the observaRESULTS

tions, a fully specified linear SVM was developed. This SVM gince identifying stimulatory (positive) peptides is of greatest 5
model was then applied to the 20% test set. During learngoncern, sensitivity and positive predictive value (PPV) were £
ing on the 80% training set, leave-one-out cross-validatiofysed to evaluate the models. Sensitivity is the portion of all 3
was employed to automatically optimize the relative misclaspositive peptides that are correctly identified. PPV is the prob- 2
sification costs for the two classes and to optimize the tunlnglb,“ty that a peptide predicted to be positive actually does
parameter that reflects the trade-off between the training errefijmulate the TCC. Sensitivity indicates the ability of the
and class separation. This leave-one-out process only utilizeglassifier to detect real epitopes whereas PPV reflects the effi
data from the 80% training set. ciency of the method. A classifier with low PPV will result in
Training and testing were repeated ten times for randomlyne generation of numerous non-stimulatory peptides for theS.
determined training/test set partitions. The final indexes wer@ext rounds of testing.
averaged over the ten replicates. Table 1 shows the performance of the SVM for the 10 test ©
o - sets. The average cross-validated sensitivity and PPV werex
ANN and Decision Tree Classifiers 76.3 and 71.6%, respectively, for the 10 test sets. An aver-S
The same training/test set partitions used for SVM anaaged ROC curve (Swets, 1988) was also determined based ofy
lyses were also used for building and evaluating ANN andapplying SVM models to the 10 different test sets (Table 2).
Decision Tree classifiers. The same input vector encoding wabhe area under the averaged ROC curve was 0.919 (Fig. 2). 3
also used. The neural network analysis was performed using ANN models were optimized by modifying the learning g
the Neuroshell 2 software package (Ward Systems GroupJate and momentum. The optimized models gave an averagg
We chose a feed-forward architecture with three layers (singleensitivity of 55.0% and PPV of 81.7% on the 10 test setsg’
hidden layer). There were 100 neurons in the input layer an@Table 2). Decision tree classifiers gave an average sensitivityg,
two neurons in the hidden layer. Each SVM training set wa®f46.3% and PPV of 86.7% for the same ten test sets (Table 2);
separated into training set and control set @ to 1ratio. The In order to compare with other MHC-binding based predic-
control set was used for controlling ANN training. The ANN tions, we applied both SYMHC and SYFPEITHI to predict
production set was the same as the SVM test set. The learadl 203 synthetic peptides of melanoma clone LAU203-1.5.
ing rate and momentum were both set to 0.1, and the learningor SVMHC based on training data from the SYFPEITHI
epoch was 2000. The threshold to predict positive or negativdatabase, the sensitivity was 30.6% and PPV was 45.8%.
peptide was set to 0 by default. For SVMHC based on training data from the MHCPEP data-
The classification trees were generated using the Classificdase, the sensitivity was 38.9% and PPV was 45.1%. For
tion and Regression Tree approach (Breinehral., 1984) SYFPEITHI, the sensitivity was 86.1% and PPV was 34.8%
implemented in S-plus 2000 software. The predictors were th€Table 2).
same as the SVM input. The responses were set to 1 for pos-Among the 203 synthesized peptides, 105 peptides were
itive peptides and O for negative peptides. We used the sanmredicted with high scores using the score matrix based
data sets generated for SVM. Ten-fold cross-validation withirapproach (Zhaet al., 2001) and were selected as positive
each training set was used for optimally pruning the trees. peptides for synthesis. None of the remaining 98 unrelated

where the kernel functiok( , ) measures the similarity of

O
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g
its two vector arguments. For linear SVM, the inner product 3
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Table 1. Cross-validation of SVM models in the 10 test sets (42 peptides) 10
Test Set Sensitivity PPV 08 -
1 4/8 a4/7
2 718 719
3 718 719
4 5/8 5/6 06
5 6/8 6/7 2
6 5/8 5/6 g
7 6/8 6/11 ® o4
8 5/8 5/8
9 8/8 8/13 o
10 8/8 8/11 g
0.2 7 S
: o
. — svm a
Table2. Comparison of SVM performance to other methods e Score Matrix °
0.0 T T T T g
Method Sensitivity PPV 0-0 0-2 04 - _0'6 08 1.0 =
SVM 0.763 0.716 1-specificity 5
ANN 0.550 0.817 >
Decision tree 0.463 0.867 Fig. 2. ROC comparison of SVM to score matrix based approach. §
Score matrif 1.000 0.343 &
SYFPEITHI 0.863 0.348 =
SVMHC (af 0.306 0458 " their next splits. It is easy to over-fit decision tree classifiers §

SVMHC (b 0.389 0.451 . o N
(oF and such models require large training sets. The Classifica-3

aThe analysis was based on an approach using a Z-matrix as describede{Zthao tion and Reg_rGSSic_m _Tree me'_[h_OdOIOQy that _We used emp|0yS§
2001). cross-validation within the training set to optimally prune the

STJ‘;&P;\I’T":'*I";‘;?:A;’QS trained based ori0201 restricted MHC binding data from  tree and avoid over-fitting. Nevertheless, the optimal decision
¢The SVM model was trained based ori0®01 restricted MHC binding data from tree clas§|f|er h_ad asen$|t|V|ty cons@erably lessthanthe S_VM-
MHCPEP database. Selection of input variables, a suitable kernel, and optimal

peptides was significantly recognized by TCR and all of themIearnlng parameters play key roles in developing SVMs. We

. . . examined different types of input variables for predicting
were predicted to have relative low scores. This translated t CR epitopes. We first used indicators for the 20 amino acids @

sensitivity and t?e PPV of_the score matrix based approaﬁgI present or 0 absent) at each position of the 10-mer pep-
to 100 and 34.3%, respe_ctlvely (Table 2). The area under t ide. The second set of variables we evaluated was based on§
ROC curve was 0.833 (Fig. 2). use of the amino acid substitution matrices such as Blossumgs
(Henikoff and Henikoff, 1992) or PAM (Dayhoét al., 1978).
DISCUSSION In this case, each amino acid was encoded by numerical values
The ANN and decision tree classifiers had slightly better positrepresenting its distance from Alanine. Both types of inputs g
ive predictive values than the SVM but their sensitivities weregave considerably poorer results than using the ten principal 5
substantially lower. The ANN model had many more parametfactors as inputs.
ers than the SVM and probably requires a larger number of We found that the simple linear kernel performed bestin our 7,
training peptides for equivalent performance. The ANN modeldata set, compared to the polynomial and radial basis kernelg
was more difficult to fit and optimize because of the numberfunctions. This is not surprising since the VC dimension is %
of parameters. Although the threshold distinguishing stimudower with a linear kernel (Vapnik, 1995) and hence general- 1,
latory and non-stimulatory peptides can be shifted to increasization performance with limited training data is likely to be §
the sensitivity, the specificity and the PPV will suffer corres-better.
ponding decreases. For our data set, the ratio of the numbersOften the tuning parameters for SVM learning are chosen
of peptides in two classes is about 1:5. A small reduction ofomewhat arbitrarily. We used a leave-one-out cross-
specificity will lead to a much larger reduction of PPV. validation imbedded in the training set to select the tun-
Decisiontree classifiers are attractive because they are easilygy parameters optimally. Leave-one-out cross-validation
interpretable. There are many kinds of decision tree classifiersyas employed to optimize the two tuning parameters:
with considerable arbitrariness in the criteria for determining(i) the relative misclassification costs for the two classes and
the variables and cut-points used for splits. Decision tree clagii) the trade-off between the training error and class separa-
sifiers are data-greedy; each split partitions the data into didion. This cross-validation was performed entirely within the
joint subsets which are then analyzed separately to determirteaining set.
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TCR ligands are not always high affinity MHC binders, andthan Thr. Previous report had showed that replacing a Thr
only a fraction of the potential MHC-binding peptides is a with a Met at the second position of gp100 epitope g209-217
T-cell epitope for a specified TCR. Approaches to identify ITDQVPFSV) altered the binding affinity of the peptide to
T-cell epitopes based on the prediction of which peptidegshe HLA-A2 molecule and led to an increased recognition
would be good binders for specific MHC molecules are notof the MHC—peptide complex by the TCR (Parkhuestl.,
accurate, since a functional T-cell response requires adequat®96). On the other hand, substitution with polar residues
MHC—peptide binding as well as proper interaction of theSer, Thr, and Asn at position 2 would yield negative SVM
MHC—peptide ligand with a specific TCR. The comparisonsscores. Residues at position 4—8 were suggested to be primar-
clearly show our SVM approach to predict T-cell epitopes isily involved in TCR recognition (Parkhurst al., 1996). Gly,
superior to the publicly available methods such as SVMHCthe simplest amino acid with no side chain, was the only amino
and SYFPEITHI (Table 2). acid to be allowed at position 6 in order to keep the peptide

Previously, we reported a novel approach using biometrit¢o be predicted positive, while at the same position the non-£
score matrix combined with combinatorial peptide librariespolar residue Proline was the least favored one and yieldecé
to predict T-cell epitope candidates (Zhetaal., 2001). That the lowest negative SVM score. Hydrophobic residues wereg
approach is based on a simple linear model under the assumfavored at position 5 (lle, Phe, Ala, Val) and 7 (Ala, lle, Leu,
tion of independent contribution of side chains of amino acidval), while replacing Leu with hydrophobic residues Phe or
within the peptide whereas the assumption of largely indeille at position 8 would lead to 1.5- to 2-fold increase of SVM
pendent contributions of individual amino acids to stimulationscores. At position 4, Arg, Ser, and Thr doubled the SVM
seems to be a reasonably good approximation. Interactions stores compared to Ala in the template.
adjacent amino acids also exist and their effect may not always Finally, in order to help interpret the SVM predictions for
be predicted on the basis of individual substitutions (Leggatthe single residue substitutions of the synthetic decapeptid
etal., 1998; Hemmeet al., 1999, 2000). In addition, physico- (EAAGIGILTV), we calculated the Pearson correlation coef-
chemical characteristics of individual amino acids can changécients for each of the 494 physical properties listed in
the HLA binding register. SVMs provide a framework for the public database (http://www.genome.ad.jp/dbget/a\aindexf\r
more sophisticated models that can take into account the intehtml) against the SVM scores of 20 mutants in each position. 2.
actions among the numerous factors that may influence T-ceBeveral physical properties were highly correlatet£ 0.7)
recognition, and thereby accelerate the process of findinwith positions 4, 5, 6, 7, 9, and 10. For example, we found
T-cell epitopes. Comparison of ROCs between SVM approackhat position 9 was highly correlated with van der Waals para-
and score matrix based approach clearly indicates the SVivheter RO and position 7 was correlated with partial specific
model greatly improves the prediction accuracy (Fig. 2 androlume. Positions 5 and 7 were all correlated with normal-
Table 2). ized frequency of beta-sheet while position 6 was negatively

Antigenic synthetic decapeptide Melanddss  correlated with normalized relative frequency of helix end.
(EAAGIGILTV) was predicted to be a T-cell epitope by our  Our results suggest that SVMs can be effectively used for<
SVM model. It was strongly stimulatory, being among the predicting T-cell epitopes. Using physical property factors 5
peptides with highest percentage of specific lysis. Weindid to encode the candidate peptides enables SVM classifiers t@
silico single amino acid substitution at all positions and usedachieve good performance with modest amounts of synthess
the SVM model to predict the activity of the mutated pep-ized peptide training data. This makes for an efficient processér
tides. For A0201, position 2 and 9/10 are considered to beof prediction and synthesis of additional peptides becauses
the putative MHC anchors (Rammensgeal., 1995). Sub- positive peptides are most informative. The SVM predictor &

(]
stitution of Thr in position 9 with hydrophobic residues Phe,can be used to provide information about the nature of the,

Leu and lle yielded the highest SVM scores while substitu-tri-molecular complex of peptide, MHC molecule and TCR. 2
tion of Val increased the SVM score slightly. At position 10, Further investigations of the use of SVM for T-cell epitope
hydrophobic residues Val, Leu, and lle were the only ones t@rediction are warranted as a potentially efficient and power-,
keep the SVM unchanged; other substitutions would lead tdul method for defining candidate autoantigens, finding the §
either a reduced positive SVM score or even a negative SVMntigenic targets and molecular mimics in complex infectious
score. This is somewhat consistent with th&201 binding  organisms, and developing vaccines for infectious diseases
motif. When we examined the score matrix generated fronand cancers.

combinatorial peptide library data, the above three residues
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