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ABSTRACT
Motivation: Microarray techniques provide a valuable way of
characterizing the molecular nature of disease. Unfortunately
expense and limited specimen availability often lead to stud-
ies with small sample sizes.This makes accurate estimation of
variability difficult, since variance estimates made on a gene
by gene basis will have few degrees of freedom, and the
assumption that all genes share equal variance is unlikely to
be true.
Results: We propose a model by which the within gene vari-
ances are drawn from an inverse gamma distribution, whose
parameters are estimated across all genes. This results in a
test statistic that is a minor variation of those used in standard
linear models. We demonstrate that the model assumptions
are valid on experimental data, and that the model has
more power than standard tests to pick up large changes in
expression, while not increasing the rate of false positives.
Availability: This method is incorporated into BRB-ArrayTools
version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html).
Supplementary material: ftp://linus.nci.nih.gov/pub/
techreport/RVM_supplement.pdf
Contact: wrightge@mail.nih.gov

1 INTRODUCTION
Microarray technology allows a scientist to view the expres-
sion of thousands of genes from an experimental sample
simultaneously. By observing changes in expression levels
across multiple samples, it is possible to generate and test
a multitude of hypotheses relating gene expression to other
characteristics of the samples. One of the primary goals of
microarray analysis is to identify genes whose expression level
varies between different classes of samples. Testing whether
a single observed quantity varies across different classes of
observations is a problem that is well understood, but the
volume of information available on each sample creates new
analysis challenges.

∗To whom correspondence should be addressed.

In modeling gene expression we use a linear model frame-
work. This model is very versatile and can be applied to a
large number of different experimental designs. Further, other
familiar tests such as the t-test, paired t-test and F -test, and
Analysis of Variance (ANOVA) are actually special cases of
the more general linear model. Kerr and Churchill (2001)
suggested the application of ANOVA to the red and green log
intensity values as an alternative to the use of log ratios. But
even at the level of log ratio data, use of an ANOVA-type
model can provide a very powerful framework for evalu-
ating multiple competing factors that might influence gene
expression.

One question that arises when fitting a linear model to
microarray data is how to estimate residual error. One
approach is to form a single linear model that pools the residual
sum of squares across all genes into a single variance estimate.
This method makes the assumption that once all of the factors
included in the model have been taken into account, all genes
are equally variable. In practice we find that this is not an
accurate assumption. It is impossible to take into account all
sources of biological variation in a single linear model. Those
factors that have not been taken into account will vary from
gene to gene and be incorporated into the residual, leading
to large differences in the residual variance across genes. A
second approach is to form a separate linear model for each
gene and estimate the gene-specific residual variance using
only the data from that gene. This method has the disadvant-
age that there is no information shared between genes. If the
sample size is small, there may be very few degrees of free-
dom available to estimate the residual variance, leading to
statistical tests with low power.

We propose a hybrid approach in which it is assumed that
the variance of the residuals change from gene to gene, but
represent random selections from a single distribution. By
observing the residual sum of squares within each gene, we
estimate the form of this distribution. Then for an individual
gene we adjust the observed residual sum of squares in light
of the distribution. By sharing the variance estimate across
multiple genes, we can form a better estimate for the true
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RVM for detection of differential gene expression

residual variance of a given gene and effectively boost the
residual degrees of freedom. The test statistics produced by
this shared variance model are very similar in form to those
for standard linear models, meaning that this model can be
easily implemented using standard statistical packages.

2 MODEL FORMULATION
We will denote by yij the normalized expression values for
sample i and gene j . How the expression values are actually
formulated will depend on the application. If we wish to fol-
low the methodology of Kerr and Churchill, then the yij will
represent normalized log intensity values of a single channel.
Alternatively, the yij can represent the normalized log-ratios
of a 2-color array, or normalized log signal for Affymetrix
GeneChipTM Arrays.

The type of model we wish to consider is the following:

yij = x′
iβj + εij . (1)

The xis are vectors of design variables specific to the samples,
the βj s are vectors of unknown coefficients that are specific
to particular genes, and the εij s are unobserved residuals with
mean 0 and unknown variance. The xis represent the charac-
teristics of the samples that we wish to correlate with gene
expression. The residuals εij encompass both the array meas-
urement error as well as biological variability of the gene
across samples.

In practice, the investigator is often interested in identifying
differences in gene expression between two or more classes, in
which case the x′

i will be vectors of class indicators. However,
this model is not restricted just to class comparison problems.
For example, it may be reasonable to consider fitting a regres-
sion of gene expression against time, in which case xi could
be the continuous variable representing elapsed time.

Let n denote the number of samples, m denote the number of
genes, and k denote the dimension of each xi and βj . We use X

to denote the n×k dimensional design matrix whose columns
are xi , and make the additional simplifying assumption that
X is of full rank. For X not of full rank it is always possible to
reparametrize the model into a lower dimensional model with
X of full rank.

The crux of our model is in the handling of the εij s. We
assume that for each gene j ,

εij ∼ NID(0, σ 2
j ) (2)

with the σ 2
j s being random variables themselves with an

inverse Gamma distribution. That is

σ−2 ∼ G(x; a, b) ≡ xa−1 exp(−x/b)

�(a)ba
(3)

for some unknown parameters a and b. This choice of the
Inverse-Gamma distribution as a prior distribution of variance
is a standard choice in Bayesian analysis due to its compu-
tational convenience, but as we will show later, it models

true variance structure of microarray data surprisingly well.
We will refer to the linear model described above as the
Randomized Variance Model, or RVM.

This use of a distribution for σ is similar to a model sug-
gested by Baldi and Long (2001) with some exceptions. First,
our analysis is frequentist in perspective rather than Bayesian.
Second, we consider the more general case of linear models
while Baldi and Long concentrated on a 2-class distinction.
Third, we make the assumption that the a and b parameters
in the distribution of σ 2

j , are the same for all genes and show
how they can be estimated from the data. Finally, we make
no assumptions about a prior distribution for βj . This was a
conscious decision. The distribution of β depends on how the
genes on the array were chosen. A significant proportion of the
genes on the array are likely to have constant expression across
samples. Any prior distribution on the mean structure would
have to include a singular component at zero, and any hypo-
thesis tests on β would be heavily dependent on the choice of
prior.

3 HYPOTHESIS TESTING FOR β

Hypothesis tests for βj will be performed on a gene by gene
basis. Therefore in this section and the next, we will sup-
press the j subscript and concern ourselves with tests of a
single gene. In these sections we will also make the temporary
assumption that the parameters a and b are known constants.
In a later section we will show how to use the full set of data to
estimate values for a and b and argue that the substitution of
these estimates for the true values will not invalidate the tests.
For the sake of brevity, mathematical proofs of all claims have
been omitted, but are available in the supplementary materials.

Following the standard framework of hypotheses on linear
models, we wish to test the hypothesis H0 : β ∈ ω, where
ω is a linear subspace of Rk . We will use r ≡ k − dim(ω)

to denote the number of linear constraints imposed by ω. In
class comparison problems, the subspace is likely to be that
all of the components of β are equal (indicating that all classes
have the same average expression). In that case r will be equal
to the number of classes minus 1. In regression problems, the
constraint will be that some of the components of β are equal
to zero, meaning that change in the respective component of
xi has no effect on gene expression.

In standard linear models in which there is no distribution
for σ , the maximum likelihood estimate for β over Rk is
given by

β̂ ≡ (X′X)−1X′y (4)

and the maximum-likelihood estimate under ω, iŝ̂β ≡ (X′
ωXω)−1X′

ωy, (5)

where Xω represents the design matrix X projected into the
subspace ω.

To test the hypothesis H0 : β ∈ ω against the alternative
H1 : β ∈ Rk , we would consider the respective sum of square
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residuals,

ŜS = ‖y − X′β̂‖2 and ̂̂
SS = ‖y − X ′̂̂β‖2 (6)

and then the likelihood ratio test statistic would be

F = n − k

r

̂̂
SS − ŜS

ŜS
, (7)

which under H0 has an F distribution with r and n−k degrees
of freedom.

If we repeat this type of analysis under the RVM assump-
tion of a distribution for σ 2, expressed in Equation (3) we

obtain the same maximum likelihood estimates, β̂ and ̂̂β, for
β within Rk and ω, respectively, but there is a change in the
likelihood ratio test statistic. The residual sum of squares in
the denominator of the F is replaced with

S̃S = ŜS + 2b−1 (8)

and the number of degrees of freedom in the denominator
changes from n − k to n − k + 2a. Thus the adjusted statistic
becomes

F̃ = n − k + 2a

r

( ̂̂
SS − ŜS

S̃S

)
, (9)

which under H0 will have F distribution with r and n−k+2a

degrees of freedom (see supplementary material).
To interpret this change, it is useful to consider

σ̂ 2 = ŜS

n − k
and σ̃ 2 = S̃S

n − k + 2a
, (10)

which are the maximum likelihood estimates for σ 2 under the
standard linear model and under RVM. After some algebra we
find that

σ̃ 2 = (n − k)̂σ 2 + 2a(ab)−1

(n − k) + 2a
. (11)

ab is the mean value for σ−2 under its distribution, so (ab)−1

could be thought of as an estimate of σ 2 based on the shared
variance distribution, and σ̃ 2 as a weighted average of this
and the sample variance for the specific gene. The degree to
which each of these is weighted depends on the number of
samples and the parameter a. The larger the sample size, the
more confident we will be in σ̂ 2, our sample estimate of σ 2.
On the other hand, large values for a will indicate a highly
peaked inverse gamma distribution, making it more likely that
the true σ 2 is close to (ab)−1. The increase in the degrees of
freedom from n − k to n − k + 2a indicates the additional
information about σ 2 provided by the distribution. Again, a
larger value for a represents a more informative distribution
and so more certainty about σ̃ 2 as an estimate of σ 2, that in
turn translates to more degrees of freedom.

4 APPLICATION TO t AND F TESTS AND
ANOVA

A very common problem in microarray analysis is that of
determining genes that are differentially expressed between
two or more tissue varieties. To represent this in our frame-
work, we set k equal to the number of groups, and set
the pth component Xj to an indicator of membership of
sample j in variety p. Just as our hypothesis tests for the
linear model under the RVM assumption was similar to the
standard tests for linear models, so also are our tests for dif-
ferences across varieties of similar form to the t- and F -tests
that are often used.

For testing between two varieties, with sample means
µ̂1, µ̂2; sample variances σ̂ 2

1 , σ̂ 2
2 ; and sample sizes n1, n2

the standard test statistic is

t = µ̂1 − µ̂2

σ̂pooled
√

1/n1 + 1/n2
, (12)

where

σ̂ 2
pooled = (n1 − 1)̂σ 2

1 + (n2 − 1)̂σ 2
2

n1 + n2 − 2
(13)

and this has a t-distribution with n − 2 degrees of freedom.
In the case of the RVM model, we would consider

t̃ = µ̂1 − µ̂2

σ̃
√

1/n1 + 1/n2
, (14)

where

σ̃ 2 = (n − 2)̂σ 2
pooled + 2b−1

(n − 2) + 2a
. (15)

This would still have a t-distribution, but the degress of
freedom increase to n − 2 + 2a.

For testing k > 2 varieties, it is common to consider the
following F -test statistic involving mean sums of squares
(MSS):

F = MSS(between varieties)

MSS(within varieties)
, (16)

which under the null hypothesis has an F -distribution with
k − 1 and n − k degrees of freedom. The RVM model in this
case will be identical with the exception that

M̃SS(within varieties)

≡ (n − k)MSS(within varieties) + 2b−1

(n − k) + 2a
(17)

replaces MSS(within varieties), and the degrees of freedom
for the denominator of the F -statistic becomes n − k + 2a,
instead of n − k.

For more complicated ANOVA models, such as Latin square
designs, interaction effects, or other fixed effect models, the
tests in the case of RVM are identical to those in the classical
ANOVA case, with the exceptions that the residual mean sum
of squares is increased by the amount 2b−1 and the residual
degrees of freedom are increased by 2a.
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5 ESTIMATION OF a, b
In the previous sections we assumed complete knowledge of
a and b. In practice a and b must be estimated. However,
unlike σj and βj , the values a and b are assumed constant
across genes, so it is possible to use the data from all genes
to form an estimate. This means that our estimates of these
parameters can be based on thousands of data points and so
can in principle be extremely accurate. For this reason we
can substitute estimated values for a and b in the above tests
without invalidating them.

To estimate a and b we consider σ̂ 2
j = ŜSj /(n − k) the

empirical estimates of σ 2
j . It can be shown (see supplemental

material) that under the assumptions of RVM,

ab(̂σ 2
j ) ∼ F(n−k),2a . (18)

Therefore, we can estimate the parameters a and b by fitting
an F -distribution to the observed σ̂ 2

j .
Although computationally simpler, we recommend against

using a method of moments estimator. The higher moments
of the F -distribution are infinite, and so such an estimator
will be unstable. Instead we recommend numerically maxim-
izing the likelihood under the F -distribution with respect to a

and b. This provides more accurate estimates for a and b, and
while computationally intensive is not overly so, since this
estimation needs to be performed only once for the entire data
set.

In Sections 3 and 4, all analyses are performed on a gene by
gene basis, so any correlations between genes does not affect
the results. However, the estimation of a and b are performed
across genes and so correlations in individual variance estim-
ates will influence estimates of a and b. Still, provided that
the correlation is not extreme, maximum-likelihood estimates
are consistent with the correlation acting only to increase the
variability of the estimate.

6 SIMULATION RESULTS
To evaluate the tests presented, we generated 2000 simulated
data sets, of the expressions of 6000 genes from 2 groups of
5 samples each. For each gene, a random σ 2

j value was chosen
from an inverse gamma distribution with a = 3, b = 1. The
σ 2

j values were chosen separately for each data set. Independ-
ent, normally distributed random numbers with mean 0 and
variances σ 2

j were then assigned as gene expression values.
We chose the values a = 3, b = 1 because estimates of
a and b in actual microarray data were found to be in the
vicinity of these values. For 3000 of these genes, an amount
between 0.1 and 2.0 was added to the expression of samples
from the first group (150 genes at every 0.1 units between
0.1 and 2.0). These 3000 genes would represent genes that
were truly differentially expressed between the two groups.
The remaining 3000 genes would represent non-differentially
expressed genes. This procedure was then repeated for an
additional 2000 data sets, with 10 samples per group.

Table 1. Parameter estimates in simulation

Method of
moments

Maximum
likelihood

5 samples a 3.12 ± 0.57 3.00 ± 0.086
per group b 1.01 ± 0.33 1.00 ± 0.034

(ab)−1 0.333 ± 0.004 0.333 ± 0.004

10 samples a 3.01 ± 0.141 3.00 ± 0.068
per group b 1.00 ± 0.051 1.00 ± 0.026

(ab)−1 0.333 ± 0.003 0.333 ± 0.003

Table 2. Observed type 1 error in simulation

Variance
model

P < 0.01 P < 0.005 P < 0.001

5 samples Individual 0.00998 0.00498 0.00098
per group Pooled 0.01963 0.01377 0.00687

Random 0.00999 0.00499 0.00100

10 samples Individual 0.01003 0.00496 0.00099
per group Pooled 0.0336 0.0255 0.0145

Random 0.00996 0.00496 0.00099

For each gene in each data set, we tested for mean dif-
ferences between sample groups according to three different
one-sided t-tests. For the first t-test, a pooled variance estim-
ate across the 6000 genes included in the data set was used,
and the t-statistic was assumed to have infinite degrees of free-
dom. For the second t-test, the variance estimate was made
separately within each gene, and n − 2 degrees of freedom
were used. For the final t-test, we estimated a and b from the
observed residual variances for the data set and then used the
modified t-test presented in equation (14).

Table 1 shows the mean and standard deviations of the estim-
ates for a and b over the 4000 simulations, first by method
of moments and then by maximum likelihood. We observe
that both estimates were unbiased, but the maximum likeli-
hood estimate had less variability than the method of moments
estimate. We also observed that there was a strong inverse
correlation between our estimates of a and of b, such that
(ab)−1 was estimated with extreme accuracy even within the
method of moments estimation. In light of equation (11), the
estimation of b is important only insofar as ab−1 is estim-
ated accurately. Therefore, any error in our statistic through
inaccurate estimation of a and b will really be through the
mis-estimation of a.

Table 2 shows the proportion of false positives (i.e. non-
differentially expressed genes that the test declared to be
differentially expressed) for each of the tests at different levels.
We observe that both the RVM test, and the t-test with the
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Fig. 1. Detection power for P < 0.001 level test by true mean
difference for 5 samples/group in simulation.

Fig. 2. Detection power for P < 0.001 level test by true mean
difference for 10 samples/group in simulation.

variances estimated within individual genes, appear to have
the proper false-positive rates. However, using a single value
for all variances results in an excessive false-positive rate. This
is due to the fact that highly variable genes may exhibit large
fold-differences even when they are not actually differentially
expressed. When these fold differences are then divided by the
relatively small pooled residual variance estimate, they will
appear significant.

Figures 1 and 2 show the power for detecting true differences
between groups according to the RVM t-test and the standard
t-test in which the variances were computed individually for
each gene. The X-axis represents the true difference between
the means of the two groups, and the Y -axis shows the pro-
portion of such genes that were found to be significant with

P < 0.001. Power estimates for the test in which the variance
was pooled across genes were not included since this test
failed to control type one error and so was not comparable
to the other tests. We observe that the RVM t-test generally
performed better than the standard t-test, particularly when
there was a large difference between the two groups and a
very small p-value was required for significance. The differ-
ence was less prominent when there were 10 samples in each
group than when there were 5 samples in each group. This
is due to the fact that as sample size increases, the RVM test
statistic approaches the standard t-statistic.

7 EXPERIMENTAL RESULTS
Although the RVM test performed well in simulations in
which the model assumptions held exactly, we needed to
determine how well the model assumptions hold in actual
data. To check this, we looked at two different sets of data.
The first set (referred to as the DLBCL data set) came from
Rosenwald et al. (2002) and included 7399 genes meas-
ured on 274 Lymphoma samples which were divided into
three groups (ABC, GCB, Type 3) according to their gene
expression values. The second set (referred to as the BRCA
data set) from Hedenfalk et al. (2001) included 3226 genes
measured on 22 breast cancer samples, which were also
divided into three classes (Sporadic, BRCA-1 and BRCA-2)
according to their mutational status. These data sets can be
downloaded from (http://llmpp.nih.gov/DLBCL) and (http://
research.nhgri.nih.gov/microarray/ NEJM_Supplement).

The primary assumption of the RVM model is that the
within group variance is distributed according to an inverse
gamma distribution. This choice of distribution was made
purely for computational convenience, and there is no intrinsic
reason why the gene variances should follow this distribu-
tion. Since we are unable to observe the true within group
variances directly to determine whether they were inverse
gamma distributed, we instead observed the sample variances
to determine the extent to which they could be fitted to the
F -distribution described in equation (18), as should be the
case if the true variances followed the inverse gamma distri-
bution. We found that in both data sets, the distribution of
the observed residuals was virtually indistinguishable from
the corresponding F -distributions with fitted a and b (Figs 3
and 4). Other data sets have also been investigated (data not
shown) and in each case the F -distribution appears to be a
very good fit to the observed residuals.

In order to check the relative type 1 and type 2 errors
of the various tests, we restricted ourselves to the DLBCL
data, and in particular the 83 ABC patients and 134 GCB
patients. With such a large sample size we can determine
with great accuracy which genes were truly differentially
expressed between these two groups and the size of the dif-
ference. By selecting small subsets of these groups, we can
determine the extent to which the various methods can detect
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Fig. 3. Histogram of sample variances within DLBCL data set.
Line represents theoretical sample variance distribution according
to Equation (16).

Fig. 4. Histogram of sample variances within BRCA data set.
Line represents theoretical sample variance distribution according
to Equation (16).

the differentially expressed genes in small samples, while
controlling the number of non-differentially expressed genes
found to be significant. We repeatedly took sub-samples of
size 10 (5 GCB, 5 ABC) and 20 (10 GCB, 10 ABC) and cal-
culated for each gene the p-value for the difference between
the samples observed for the two sets. This was repeated 2000
times, and the proportion of times the gene was found to be
significant at p < {0.001, 0.005, 0.01} was recorded.

To avoid having subsets in which no data for a gene was
available, we excluded all those that were missing values in
more than 20% of the total data. This resulted in 6027 genes
which were used to estimate parameters a and b for each

Table 3. Parameter estimates in experiemental data

Method of
moments

Maximum
likelihood

5 samples a 2.67 ± 0.843 2.45 ± 0.355
per group b 1.53 ± 0.681 1.45 ± 0.374

(ab)−1 0.282 ± 0.041 0.283 ± 0.040

10 samples a 2.51 ± 0.318 2.45 ± 0.216
per group b 1.43 ± 0.283 1.45 ± 0.248

(ab)−1 0.288 ± 0.029 0.288 ± 0.029

sub-sampling of the data. The results of this estimation are
indicated in Table 3. We notice that the variability of the
estimates was larger in the experimental data than it was in
simulation. This is likely due to the fact that there is correla-
tion between genes, which will act to increase the variability
of the estimates. Additionally, the experimental data had
some missing values, which may have also contributed to
the increased variability. However, even with the increased
variability, estimates of ab−1 remained very consistent, while
errors in the estimates of a would generally be less than 0.5
and so would alter the number of degrees of freedom of the
final statistic by less than 1.

A t-test was performed on the full data set (83 ABC,
134 GCB patients) to determine those genes that were truly
differentially expressed between the two groups. The 1621
genes that had a p-value less than 0.001 were declared
to be differentially expressed and used to compute power,
while the 2916 genes that had a p-value greater than 0.05
were declared non-differentially expressed and used to com-
pute the false-positive rates. The remaining 1490 genes were
on the borderline between differentially expressed and non-
differentially expressed, and so were not used in either the
power or false positive rate calculations. In order to consider
the effect of true fold-difference in our ability to detect genes,
we calculated for each gene the mean log ratio within the ABC
and GCB subtypes on the total data , then used the difference
between these two means rounded to the nearest 0.1.

The results of this analysis are similar to what we found in
the simulation. The false positive rates of the t-test and ran-
dom variance tests are very close to the desired values in both
the 10-sample and 20-sample subsets, while the pooled vari-
ance model had a much larger rate of false-positives than was
desired, indicating that this test was unacceptable (Table 4).
Again we also observe that the RVM model performs much
better than the t-test in identifying those genes with large true
fold differences between classes (Figs 5 and 6).

8 DISCUSSION
Analysis of microarray data clearly indicates that all genes are
not equally variant within a sample. Therefore, some method
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Table 4. Observed type 1 error in experimental data

Variance
model

P < 0.01 P < 0.005 P < 0.001

5 samples Individual 0.0095 0.0047 0.00091
per group Pooled 0.0212 0.0150 0.00745

Random 0.0095 0.0046 0.00092

10 samples Individual 0.0102 0.0051 0.000998
per group Pooled 0.0213 0.0152 0.00749

Random 0.0103 0.0051 0.00102

Fig. 5. Detection power for P < 0.001 level test by true mean
difference for 5 samples/group in experimental data.

Fig. 6. Detection power for P < 0.001 level test by true mean
difference for 10 samples/group in experimental data.

of estimating an individual gene’s variability must be taken
into account when determining statistical significance. While
directly estimating the variance within each gene works well
for large samples, when the sample size is small such an estim-
ate can be imprecise, resulting in a test of low power. We have
proposed a model through which information from the entire
set of genes is used to influence the variance estimate of a
single gene, while still allowing the differences in gene vari-
ances. This model can be applied to any linear regression
framework and so is very versatile.

This model has the advantage that it is very simple to
implement, requiring only slight modifications to tests that
are already available in most statistical packages. We have
demonstrated that the underlying assumption of our model,
that the within gene variances are distributed according to an
inverse gamma distribution, appears to be correct in actual
experimental data. As a result, our model correctly controls
type 1 error in these experimental situations. Our method has
greater power than does the standard t-test in detecting genes
with large fold differences. Since these are the genes that
are most likely to be of biological interest, we feel that this
new method provides an easily implemented improvement to
standard techniques where genes are analyzed individually.

We have not addressed the issue of interpretation of the
RVM p-values in light of the large number of comparisons
possible. We recommend using the RVM p-values in the
context of a larger framework that controls the number or pro-
portion of false discoveries, such as the method of Benjamini
and Hochberg (1995), or the multivariate permutation tests of
Korn et al. (2003). The latter method is permutation based and
the RVM p-values can be used while avoiding the assump-
tion that the errors have Gaussian distributions. The RVM
t-statistics can also be used in the SAM procedure (Tusher
et al., 2001) for controlling the false discovery rate as an
alternative to the somewhat ad hoc relative difference stat-
istic. The relative difference is the difference in class means
for a gene divided by a constant plus the within-gene estimate
of residual standard deviation. Our Equations (14) and (11)
suggest an alternative with a stronger theoretical basis, but the
permutational framework of SAM can still be used.
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