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ABSTRACT
Motivation: The analysis of structure, pathways and
flux distributions in metabolic networks has become an
important approach for understanding the functionality of
metabolic systems. The need of a user-friendly platform
for stoichiometric modeling of metabolic networks in silico
is evident.
Results: The FluxAnalyzer is a package for MATLAB R©
and facilitates integrated pathway and flux analysis for
metabolic networks within a graphical user interface.
Arbitrary metabolic network models can be composed by
instances of four types of network elements. The abstract
network model is linked with network graphics leading
to interactive flux maps which allow for user input and
display of calculation results within a network visualization.
Therein, a large and powerful collection of tools and
algorithms can be applied interactively including metabolic
flux analysis, flux optimization, detection of topological
features and pathway analysis by elementary flux modes
or extreme pathways. The FluxAnalyzer has been applied
and tested for complex networks with more than 500 000
elementary modes. Some aspects of the combinatorial
complexity of pathway analysis in metabolic networks are
discussed.
Availability: Upon request from the corresponding author.
Free for academic users (license agreement). Special
contracts are available for industrial corporations.
Supplementary information: http://www.mpi-magdeburg.
mpg.de/projects/fluxanalyzer
Contact: klamt@mpi-magdeburg.mpg.de

INTRODUCTION
One of the primary results derived from the huge amount
of genomic and biochemical data currently produced is the
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reconstruction of biochemical networks. Consequently,
methods for analyzing functionality and regulation of
metabolic networks are rapidly gaining in importance.
Mathematical modeling and simulation of biological
systems seems to be an approach capable of coping
with the complexity of such networks and to study their
behavior and capabilities in silico (Kremling et al., 2000;
Covert et al., 2001). Modeling of cellular (sub)systems
is not a new approach but it is becoming more attractive
and the number of applications is growing rapidly. Virtual
representations of cellular systems are not only useful
for a system-level understanding of cellular processes
(Kitano, 2002) but also for searching for promising
targets of manipulations, e.g. in the pharmaceutical or
biotechnological industry (Wiechert, 2002).

Diverse platforms have been developed for modeling
cellular systems, including those for simulating metabolic
networks on the basis of kinetic descriptions, for instance,
GEPASI (Mendes, 1997) or JARNAC (Sauro, 2000), and
those for whole cell modeling like E-CELL (Tomita et al.,
1999). However, analysis of the underlying stoichiometry
of a metabolic network has been considered only to a
minor extent.

Here, we present the FluxAnalyzer, a comprehen-
sive and user-friendly graphical interface for analyzing
metabolic networks at steady state. Studying the cellular
metabolism by the use of quasi-stationary assumptions
has frequently been used for quantifying metabolic fluxes
(metabolic flux analysis) and for structural (topological)
network analysis including pathway analysis. Applica-
tions can be found in ‘pure’ microbiology studies (e.g.
Nuño et al., 1997), in metabolic engineering and biotech-
nology (Stephanopoulos et al., 1998; Wiechert, 2001;
Schuster et al., 2002) and for system-level analysis of
biochemical networks (e.g. Edwards and Palsson, 2000;
Schuster et al., 2000; Stellling et al., 2002; Papin et al.,
2002).
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PRINCIPLES OF STRUCTURE, PATHWAY, AND
FLUX ANALYSIS IN METABOLIC NETWORKS
Metabolite balancing: the fundamental relation
For analyzing a biochemical or, more general, stoichio-
metric network, its structure has to be expressed by the sto-
ichiometric matrix N consisting of m rows corresponding
to the substances (metabolites) and q columns correspond-
ing to the stoichiometric coefficients of the metabolites in
each reaction. Furthermore, a vector r denotes the net reac-
tion rates (mmol/(gDW h), DW = dry weight) and vector
c describes the metabolite concentrations (mmol/gDW).

If biomass synthesis is considered, then the stoichiomet-
ric matrix also contains a ‘biosynthesis’ column quantify-
ing the cumulative efflux of metabolites into the biomass
(mmol metabolite/gDW). The corresponding element of
vector r is then the growth rate µ.

Due to the high turnover of metabolite pools one often
assumes pseudo-steady state (c(t) constant) leading to the
fundamental Metabolite Balancing Equation:

dc(t)
dt

= 0 = N r (1)

Flux distributions r satisfying (1) lie in the null space
of N (Heinrich and Schuster, 1996) and are able to
balance all metabolites. They maintain homeostasis and
are therefore meaningful for the long-term perspective of
metabolism. The great advantage of Equation (1) is that
the (mostly not available or uncertain) parameters and
molecular mechanisms of the reactions are not involved.

Example network ‘SMALLNET’
For illustration throughout this paper, we use a simple
network ‘SMALLNET’ (Figure 1) involving 4 metabolites
(A, B, C, D), 8 reactions (R1–R7 and cumulative biomass
synthesis) and two macromolecular biomass components.
The latter two are considered to be assembled from the
metabolites:

Biomass component 1 : BC1[g] = 2[mmol]A + 1[mmol]C
Biomass component 2 : BC1[g] = 1[mmol]C + 3[mmol]D

The stoichiometric matrix of this network then reads:

N =



1 −1 0 −1 0 0 0 0.8
0 1 −1 0 0 0 0 0
0 0 0 1 −1 1 0 1
0 0 1 0 1 −1 1 1.8


 (2)

The first seven columns correspond to reactions R1–
R7. As indicated in Figure 1, reactions R1, R4, R6 and
R7 are reversible. The last column of N corresponds to
biomass synthesis and results from the assumed biomass
composition of 0.4 gBC1/gDW and 0.6 gBC2/gDW.
Accordingly, changing the biomass composition would
lead to an alteration of these entries.

Metabolic flux analysis
The aim of Metabolic Flux Analysis (MFA) is to determine
preferably all components of the flux distribution r in a
metabolic network during a certain stationary growth ex-
periment (scenario). Typically, some measured or known
rates must be provided to calculate unknown rates. Ac-
cordingly, r and N are partitioned into the known (rb, Nb)

and unknown part (rn, Nn). Rearranging (1) gives the cen-
tral equation for MFA describing a flux scenario:

0 = Nr = Nnrn + Nb rb Nnrn = −Nb rb (3)

A detailed description of how to further proceed with (3)
is given elsewhere (van der Heijden et al., 1994a,b; Klamt
et al., 2002) and involves the Penrose pseudo-inverse of
N#

n. The rank of Nn determines whether scenario (3) is
redundant and/or underdetermined. Redundant systems
can be checked on inconsistencies. In underdetermined
scenarios, only some elements of rn (or none at all) are
uniquely calculable, which need to be found by an analysis
of the null space of Nn.

Figure 1 shows a simple non-redundant and underdeter-
mined flux scenario in SMALLNET where rb consists of
R1, R2, µ and rn of R3–R7, whereof R3, R4, R7 are cal-
culable (discussed further below).

Structural network analysis
Whereas MFA focuses on a single flux distribution,
techniques of Structural (Stoichiometric, Topological)
Network Analysis (SNA) address general topological
properties, overall capabilities, and the inherent pathway
structure of a metabolic network. Basic topological
properties are, for example, conserved moieties (Hein-
rich and Schuster, 1996). Flux Balance Analysis (FBA;
Edwards and Palsson, 2000) searches for single optimal
flux distributions (mostly with respect to the synthesis of
biomass) fulfilling (1) and additionally reversibility and
capacity restrictions for each reaction.

Metabolic Pathway Analysis (MPA) searches for
meaningful structural and functional units in metabolic
networks. The two most promising, very similar ap-
proaches are based on convex analysis and use the sets
of elementary flux modes (EFMs; Schuster et al., 1999,
2000) and extreme pathways (EPs, Schilling et al., 2000),
respectively. Both sets span the space of feasible steady-
state flux distributions by non-decomposable routes, i.e.
no subset of reactions involved in an EFM or EP can
hold the network balanced using non-trivial fluxes. MPA
can be used to study e.g. routing, flexibility/redundancy
(Papin et al., 2002; Stellling et al., 2002) and functionality
of metabolic networks. It enables the identification of
futile cycles and all (sub)optimal pathways with respect
to product/biomass yield (Schuster et al., 2000). EFMs
are also useful for calculability studies in metabolic flux
analysis (Klamt et al., 2002).
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FluxAnalyzer: exploring metabolic networks

 

Fig. 1.The network project of ‘SMALLNET’ constructed by the FluxAnalyzer. Left: interactive flux map displaying a flux scenario (unknown
rates are denoted by ‘###’). Right: network composer.

BASIC SETUP OF THE FLUXANALYZER:
NETWORK PROJECTS AND INTERACTIVE
FLUX MAPS

The development of the FluxAnalyzer was motivated by
the fact that, although flux analysis and, to a slightly lesser
extent, structure and pathway analysis are well-known
frameworks for analyzing metabolic networks, there is a
lack of a software tool which integrates these techniques
in a comprehensive and user-friendly graphical interface.
The FluxAnalyzer is a package for the commercial
program MATLAB R© (Mathworks Inc.; www.mathworks.
com), a widely-used platform for complex computations.

As the structural setup shows (Figure 2), the FluxAna-
lyzer provides a toolbox for studying user-created network
projects. Each network project contains at first an abstract
(symbolic) network model constructed by the interactive
declaration of network elements. Furthermore, network
graphics visualizing the metabolic network (metabolic
maps) must be provided by the user. Automatic layout
of networks, particularly metabolic, using a symbolic
network description is complex and does not always lead
to a representation as desired. Therefore, the FluxAna-
lyzer gives the user the option to design and annotate his
own network graphic(s) by external graphic programs
or to use network representations such as provided by
KEGG (http://www.genome.ad.jp/kegg/kegg2.html) or
BioPath (http://biopath.fmi.uni-passau.de). Arbitrary

MATLAB

FluxAnalyzer

Toolbox

User Interfaces

functions for analysis of
structure and fluxes

Algebraic Routines
and Functions

Network Projects
(defined/created by the user)

embedded in a menu

Flux Maps
Interactive

in metabolic networks
Network Graphics

Abstract
Network Model

(External Source)

Fig. 2. Structural setup of the FluxAnalyzer.

numbers of metabolic maps in a variety of graphic file
formats can be incorporated in a network project. After
loading the network project into the FluxAnalyzer, each
network graphic serves as a background in a MATLAB
figure. Thereon, text boxes can easily be placed, e.g.
at the associated pathway, referring to abstract network
elements. These text boxes facilitate intuitive display and
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user input of reaction rates and biomass composition in a
network visualization. For the linkage of network graphics
with the abstract network model by user interfaces we
introduce the term interactive flux maps. Figure 1 depicts
the network project of SMALLNET assembled by the
FluxAnalyzer.

For analyzing network projects the toolbox of the
FluxAnalyzer comprises various algorithms and functions
which can conveniently be started by a pull-down menu
within the flux maps.

BUILDING NETWORK PROJECTS
For composing an abstract network model of an arbitrary
(bio)chemical reaction system, the FluxAnalyzer provides
four types of network elements: metabolites, reactions,
biomass constituents and assembly routes. Each type owns
a set of properties (Table 1), which has to be defined
upon declaration of a new instance of this type. The set
of properties of all types except metabolite comprises
also variables defining style (editable/non-editable) and
position (conveniently defined via a crosshair) of the
element’s text box occurring in one of the flux maps. A
text box will always correspond to its assigned network
element and allows user input as well as output of
calculated results directly on the network graphics.

The network structure can be managed, edited and
stored by the network composer (Figure 1, right). Type-
specific input masks (see web-site) allow to define, modify
or delete network elements any time during a session
of a network project. The user-defined symbolic reaction
equations internally generate the stoichiometric matrix N.

Actually, the element types metabolite and reaction
allow one to compose arbitrary stoichiometric networks.
Biomass synthesis can be considered as a special ‘reac-
tion’ (in the FluxAnalyzer denoted by ‘mue’ for growth
rate µ). The stoichiometry of ‘mue’ specifies the cumu-
lative efflux of metabolites into biomass. It depends on
biomass composition and can therefore vary even for the
same organism. The element type biomass constituent
(BC) enables the convenient determination of the overall
stoichiometry of ‘mue’. The properties of each BC (like
protein, DNA, RNA, or lipids) allows to include the
cumulative stoichiometry of consumption of metabolites
for its synthesis (mmol metabolite/gBC; cf. Neidhardt
et al., 1990). Together with the user-defined biomass
composition the current stoichiometry of ‘mue’ can be
computed internally.

Assembly route is an auxiliary element type allowing
one to display the consumption of a certain metabolite for
the biosynthesis of one BC. In SMALLNET, for example,
metabolite C is needed for synthesis of BC1 and BC2 and
participates therefore in two assembly routes (Figure 1,
dashed lines). Note, as the assembly rates are implicitly

determined by growth rate and biomass composition,
they are not part of the reaction vector in the balancing
Equation (1) and their associated text boxes have ‘non-
editable’ style.

TOOLBOX FOR ANALYZING STRUCTURE,
PATHWAYS AND FLUXES IN METABOLIC
NETWORKS
After creating a network project, the user can start to study
it by a variety of functions provided in the FluxAnalyzer’s
toolbox covering a broad spectrum of techniques for flux
and structural analysis in metabolic networks. The pro-
cedures are implemented in the MATLAB programming
language (executable m-files), often taking advantage of
a large set of predefined and optimized matrix functions.
However, some special procedures of the FluxAnalyzer
had to be fully self-implemented.

All functions can be started from a pull-down menu
automatically installed in the first flux map (Figure 1:
menu-item ‘FluxAnalyzer’). Using the interactive flux
maps and the menu-controlled functions, the user does
not need to be aware of the mathematical details of
calculations.

Usually, starting an action from the menu is accompa-
nied by a readout of the text box values. Together with the
internal abstract network model, they are used for the re-
spective calculations. In some cases, the user is requested
for further specifications. After the calculation has been
finished, results are shown on the flux maps and/or in sep-
arate windows. An overview of the most important func-
tions provided by the menu is given in the following para-
graphs (the complete menu is shown on the web-site).

Analyzing basic topological network properties
The FluxAnalyzer facilitates the extraction of some basic
features of the network’s topology, e.g. to detect construc-
tion errors or to remove redundant constraints caused by
conservation relations:

• detection of dead-end metabolites (participating only
in one reaction) and those never participating;

• strictly detailed balanced reactions: reactions whose
rates are per se determined to be zero, for example,
when involving a dead-end metabolite;

• enzyme subsets: reactions always operating together to
keep the network balanced (Pfeiffer et al., 1999);

• if the rank of N is smaller than the number of
metabolites, then linear dependencies between the
rows occur (conservation relations). In this case, all
elementary conservation relations are determined from
which the non-negative ones are useful for detecting
conserved moieties (Heinrich and Schuster, 1996) .
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Table 1.Network element types in the FluxAnalyzer and their properties

Element type Metabolite (Substance) Reaction Biomass constituent Assembly route

Network node (Bio)chemical conversion Substantial macromolecule Efflux of a metabolite for
synthesis of a biomass
constituent

Text box None Reaction rate ([mmol/(gDW h)]) Relative biomass concentration
([g/gDW])

Rate of metabolite consumption
([mmol/(gDW h)])

Properties • Full name
• Symbolic name
• External-flag
(External metabolites are
not considered to be in
pseudo-steady state and
therefore not balanced by
Equation (1))

• Symbolic name
• Reaction equation
• Default rate
• Rate minimum
• Rate maximum
• Coefficient in linear objective function
• Variance of measurements
• Text box parameters

• Full name
• Symbolic name
• Default concentration
• Cumulative synthesis equation
• Text box parameters

• Symbolic name
• Metabolite
• Biomass constituent
• Text box parameters

For obtaining a more detailed, but still concise overview
of the complete stoichiometric system, the FluxAna-
lyzer provides an intuitively comprehensible graphical
display of the stoichiometric matrix (Figure 3). The
rows correspond to metabolites (names shown left),
the columns represent the reactions (names shown on
the bottom, reversible reactions are bold). A cell ni j
is black if the metabolite i is consumed in reaction j ,
white if produced or gray if not involved. At the end of
each row, the metabolite’s connectivity number, and the
number of consuming and producing reactions are shown.
This condensed representation provides one example for
how network analysis, especially for large networks, is
supported in the FluxAnalyzer by graphical displays.

Computing the set of elementary modes (extreme
pathways/convex bases)
One of the most powerful facilities of the FluxAnalyzer
is pathway analysis, i.e. the calculation, display and
evaluation of elementary flux modes, extreme pathways,
and convex bases directly assisted by the interactive flux
maps. The capability to calculate and handle huge sets of
these structural elements also enables one to apply these
tools to complex networks.

Determination of elementary modes is a highly combi-
natorial problem. This is reflected by the upper bound Smax
for the number S of elementary modes (assuming full rank
of N and number of metabolites m < number of reactions
q):

S � Smax =
(

q
m + 1

)
= q!

(q − m − 1)!(m + 1)!

= q(q − 1)(q − 2) . . . (q − m)

(m + 1)! . (4)

Fig. 3.Concise graphical representation of the stoichiometric matrix
(here: catabolic part of the network studied in Klamt et al., 2002)

If, for example, one reaction is added to a network, the
boundary increases by a factor of (q + 1)/(q − m). For-
tunately, at least in biochemical networks, Equation (4)
seems to be a very pessimistic estimation (for SMALL-
NET: S = 12, Smax = 56; see also the large example
below). Smax would only be reached if all possible subsets
containing m columns of N were linearly independent and
if all reactions were reversible. The number of modes is
greatly reduced by small pathways, irreversible reactions,
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the relatively low connectivity of many metabolites and
enzyme subsets (Klamt and Stelling, 2002). For example,
an enzyme subset can be considered as one lumped re-
action without changing the modes in the network, thus,
lowering q in Equation (4) and accordingly Smax . The up-
per bound represents rough estimates of the problem com-
plexity, since e.g. the number of modes even for networks
having the same number of metabolites and reactions can
differ by magnitudes (Klamt and Stelling, 2002). This em-
phasizes the inherent structural information reflected by
the elementary modes.

The calculation procedure for elementary modes is
based on the iterative algorithm described in Schuster et al.
(2000). A similar algorithm is used for computing convex
bases and extreme pathways, providing the network has
been configured according to Schilling et al. (2000). To
cope with the combinatorial complexity of large networks,
we optimized the algorithm with respect to speed, memory
requirement and numerical stability. Preprocessing steps
map the original network to a smaller one yielding the
same final modes by lumping enzyme subsets into one
overall reaction (Schuster et al., 2000), and by removal of
nonparticipating metabolites and strictly detailed balanced
reactions. Moreover, the tableau is ordered ascending
with respect to metabolite connectivity to avoid a rapidly
growing tableau already during the first iterations. In
SMALLNET, R2 and R3 would be lumped into one
reaction A→D, metabolite B would be removed and the
metabolite order would be A, C, D.

During the iterative algorithm, preliminary modes are
compared to each other to ensure that no duplicate and
only elementary modes are calculated (Schuster et al.,
2000). These subset checks turned out to be the most
time-consuming part of the computation (50% in a larger
problem). The participating reactions of each elementary
mode are therefore stored bit-wise to save memory and to
allow the use of fast bit operations increasing the speed
drastically. Parts of the algorithm were implemented in
external C functions directly accessible to MATLAB (via
its MEX interface), which proved very favorable under
the conditions of large memory throughput and relatively
simple loops.

Since the algorithm uses finite-precision real numbers
(in contrast to integer arithmetic in METATOOL; Pfeiffer
et al., 1999) the user can control the numerical precision
by defining epsilon (smallest number greater than zero).
To avoid badly scaled row operations, preliminary modes
are normalized after each iteration.

As a ‘benchmark test’ we calculated the elementary
modes in the central metabolism in Escherichia coli
comprising 89 metabolites and 110 reactions including
simultaneous uptake of four substrates, excretion of 5
products and biomass synthesis (Klamt and Stelling,
2002). According to Equation (4), Smax is 4.39 × 1021,

which drops to 4.85 × 1013 after preprocessing. Due to
aforementioned reasons, ‘only’ 507 632 elementary modes
were calculated by the FluxAnalyzer, which, however, far
exceeds previously reported set sizes of approximately
10.000. In general, the computation time (here: about 50 h,
Intel Pentium IV, 1.0 GHz, 4 GB RAM) correlates well
with the square of the final number of elementary modes
(Klamt and Stelling, 2002).

Although the algorithm has been optimized, it seems
to be impossible or would at least require parallel algo-
rithms to calculate all elementary modes in genome-wide
networks (cf. Edwards and Palsson, 2000: 436 metabo-
lites, 720 reaction for E. coli). Nevertheless, applications
of pathway analysis demonstrate that it is also worth and
feasible to study the modes in (still large) subnetworks.
For this purpose, the FluxAnalyzer supports user-defined
exclusions of reactions before calculating the modes.

Analyzing the set of elementary modes
Once the calculation of the elementary modes has been
finished, a control panel comes up with several functions
for studying—and saving—the set of these topological
elements:

Display of elementary modes: Each elementary flux
mode can be displayed separately in the flux maps in an
intuitive way. The participating reactions (and the fluxes
they carry) are identified by an emphasized coloration of
their boxes.

Selections: In large networks it would be a tedious task
to step through the complete set of modes. The user might
be rather interested in subsets of modes fulfilling certain
conditions, e.g. ‘reaction rx or metabolite M is / is not
involved’ or ‘metabolite Y is excreted’ or ‘pathway length
(number of involved reactions) is less/larger than or equal
to z’. The ‘Selection’ tool allows one to build up subsets of
modes by specifying such properties. Different subsets can
be combined through ‘subset clipboards’ and ‘UNION’,
‘INTERSECTION’, . . . operators. When a selection has
been specified, all functions work only on these subsets,
which is especially useful for statistical evaluations.

Statistics: A valuable statistical method is to determine
how often each reaction is applied in the current selection.
For SMALLNET, we would obtain information like: 58%
(7/12) of the modes allow growth; besides substrate up-
take, the most important reaction for growth is R4 partic-
ipating in 71% (5/7) of these modes; biomass production
on exclusively substrate A (four modes) shows higher flex-
ibility than on substrate D (one mode). In our eyes, such
‘combinatorial pathway analyses’—by studying subsets
of elementary modes—provides deeper insights into rout-
ing constraints of different growth regimes in metabolic
networks.

Pathway engineering often relies on the detection of
pathways with maximal product or growth yield for a
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certain substrate. In contrast to linear optimization, by
screening the elementary modes all optimal routes are
found and displayed by the FluxAnalyzer. Displaying a
histogram of pathway lengths and the determination of all
enzyme subsets occurring in the selected modes round off
the statistical tools.

Tools for flux analysis
Since the functions related to flux analysis focus only
on single (and not all feasible) flux distributions they
are computationally much less elaborate than pathway
analysis. In general, performing flux analysis in the
FluxAnalyzer requires the definition of a (flux) scenario
by entering the biomass composition and some measured
or known rates. The following procedures are available for
flux analysis (for termini see Introduction ):

‘Feasibility check’: This function checks whether for
a given scenario any flux distribution exists at all, that
complies with the currently defined rates, the mass bal-
ances, and constraints on reaction rates including reaction
reversibilities. For example, setting R4 = R6 = 0 and
R7 = 0.1 in SMALLNET results in an underdetermined
scenario where no other rate could be determined. How-
ever, as one can simply verify, there is no feasible flux
distribution applying these rates as R3 and R5 are irre-
versible. In this way, one can detect inconsistencies or
check whether a ‘virtual’ mutant (by setting the respective
reaction rate to zero) is still able to grow or not.

‘Classify rates’: Checks whether the scenario is re-
dundant and/or determined and examines which of the
unknown rates are calculable (observable) and which of
the known rates cause redundancies, i.e. are balanceable.
For planning experiments, for instance, one might check
whether a certain set of measurements would be sufficient
to calculate all or at least some rates.

‘Determine calculable rates’: This function computes
and displays all calculable rates for nonredundant sce-
narios. For a better distinction, the text boxes of defined
(here: white), calculated (gray) and noncalculable (dark
gray) rates as well as the biomass composition (white)
are colored differently. Thus, the example scenario in
Figure 1 can be fully reconstructed.

‘Procedures for redundant systems’: For treating
redundant scenarios, three methods are provided for
calculating a least square solution (‘Simple least squares’,
’Variance-weighted least square’, ‘Gross error detec-
tion’). The latter two enable to incorporate the variances
of measured rates (reaction property, Table 1) to detect
modeling/measurement errors (Stephanopoulos et al.,
1998) or to find the reaction rate that causes the highest
deviation from a consistent system (cf. van der Heijden et
al., 1994a).

‘Sensitivity analysis’: Applying this tool, the user can
check the sensitivity drc/drm (partial derivative) of a

calculated rate, rc, with respect to a measured or given
rate, rm .

‘Optimization’: This procedure minimizes the linear
objective function

f = c1r1 + c2r2 + . . . cnrn = min!
whereby c1, . . . , cn are the respective coefficients for each
reaction (see Table 1) and r1, . . . , rnthe reaction rates. As
additional constraints, the lower and upper boundaries of
each reaction rate are considered as well as the linear
relation (3) arising by user-defined rates. Thus, arbitrary
optimization problems for the network can be defined and
handled (see example below).

Flux clipboard
The provided flux clipboard serves like a common clip-
board: the current set of reaction rates can be copied from
and later pasted back into the corresponding text boxes.
This is in particular useful for combining two different
flux distributions arithmetically (‘+′, ‘−′, ‘∗′, ‘\′, normal-
ization by a scalar) and, thereby, comparing them. This is
illustrated by the following example:

Assume a user wants to compare two flux distributions
optimized with respect to growth rate and ATP produc-
tion, respectively. A first step would be to optimize a sce-
nario with respect to the growth rate and to copy the re-
sulting flux distribution to the flux clipboard. For optimiz-
ing the network with respect to ATP production, the ob-
jective function’s coefficients for the growth rate must be
changed in the network composer from −1 to 0 and for
‘ATP production’ from 0 to −1 (the optimization routine
minimizes). Then, the rates defined prior to the first opti-
mization can be reset and the network is optimized again,
which results in the calculation and display of the opti-
mized flux distribution with respect to ATP production.
Using the arithmetic operations one can calculate and dis-
play the differences between this solution and the growth-
optimal solution stored in the flux clipboard. Optionally,
the results can be printed and stored or be further analyzed
in a bar chart allowing for quick identification of the high
and low values.

DISCUSSION AND CONCLUSIONS
In the growing interdisciplinary field of systems and in
silico biology, one of the most challenging tasks is to
develop user-friendly software tools enabling reproducible
network and systems analyses, also for users not so
familiar with the underlying algorithms. Accordingly, the
central focus during the development of the FluxAnalyzer
was not only to create powerful algorithms for studying
metabolic networks but also to embed them into a
comprehensive graphical user interface. The core concept
of the FluxAnalyzer are the interactive flux maps. They
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enable a fully interactive and menu-controlled network
analysis. The opportunity to incorporate externally created
graphics preserves a high degree of freedom for the layout
of the flux maps and the option to use sophisticated
tools for generating them. The conceptual framework for
composing arbitrary stoichiometric network models also
ensures an adequate consideration of biomass composition
and biomass synthesis in metabolic networks.

Due to the combination of visualization, interactivity
and broad functionality the FluxAnalyzer represents a
valuable tool for a holistic analysis of in silico metabolic
networks based on their underlying stoichiometry. It
complements other tools such as Jarnac (Sauro, 2000)
or GEPASI (Mendes, 1997), which focus more on the
dynamic simulation of metabolic networks or Metabolic
Control Analysis (MCA). In these software packages,
structural network analysis is considered only to a sup-
plemental extent, e.g. both programs contain the routine
from METATOOL for calculating elementary modes.
METATOOL (Pfeiffer et al., 1999) is a frequently used
tool for pure structural network analysis. However, none
of these programs is embedded in a graphical interface
such that user input as well as output of results can be
realized intuitively in a network visualization. Neverthe-
less, for extended analysis using external programs, it
is possible to export the stoichiometric matrix from the
FluxAnalyzer in ASCII format or to generate an input file
for METATOOL.

Besides flux analysis, one of the main facilities of
the FluxAnalyzer are tools for exploring the pathway
structure of a network. An efficient algorithm has been
developed which calculates elementary flux modes or
extreme pathways even in networks of higher complexity.
The interactive flux maps allow a convenient display of
the extracted structural features. ‘Pathway subsets’ having
certain properties can be defined representing different
growth regimes or strategies. Some tools have been
introduced for studying such subsets providing further
insights in the functionality of a metabolic network, e.g.
for evaluating the importance of a reaction with respect to
a selected subset.

Due to space limitations it is impossible to demonstrate
the application of the FluxAnalyzer in larger and more
realistic networks. The user should refer to Klamt et al.
(2002) dealing with observability of reaction rates and
detection of structural constraints in the metabolism of
purple non-sulfur bacteria, or to our web-site. Moreover,
the FluxAnalyzer was used for elementary-mode analysis
of the central metabolism in E. coli (Klamt and Stelling,
2002) to predict mutant phenotypes and gene expression
ratios to a certain extent (Stellling et al., 2002). An
industrial corporation uses the FluxAnalyzer for online
calculation and visualization of metabolic fluxes during
fermentation processes.

The FluxAnalyzer is still under construction and it is
straightforward to implement and embed new features
based on operations on the stoichiometric matrix. Possible
extensions or applications for the FluxAnalyzer could
also be the display of results obtained by the more
complicated 13C flux analysis (Wiechert, 2001), or by
dynamic simulations of metabolic networks. Furthermore,
the FluxAnalyzer supports the analysis of any kind of
stoichiometric network, for example chemical reaction
networks as studied in (Happel and Sellers, 1989).
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