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ABSTRACT
Motivation: Microarray technology enables large-scale
inference of the participation of genes in biological process
from similar expression profiles. Our aim is to induce
classificatory models from expression data and biological
knowledge that can automatically associate genes with
novel hypotheses of biological process.
Results: We report a systematic supervised learning
approach to predicting biological process from time series
of gene expression data and biological knowledge. Biolog-
ical knowledge is expressed using gene ontology and this
knowledge is associated with discriminatory expression-
based features to form minimal decision rules. The
resulting rule model is first evaluated on genes coding for
proteins with known biological process roles using cross
validation. Then it is used to generate hypotheses for
genes for which no knowledge of participation in biological
process could be found. The theoretical foundation for
the methodology based on rough sets is outlined in the
paper, and its practical application demonstrated on a
data set previously published by Cho et al. (Nat. Genet.,
27, 48–54, 2001).
Availability: The Rosetta system is available at http://
www.idi.ntnu.no/∼aleks/rosetta
Contact: Jan.Komorowski@lcb.uu.se
Supplementary information: http://www.lcb.uu.se/
∼hvidsten/bioinf cho/

INTRODUCTION
Microarray technology (Schenaet al., 1995) makes it
possible to measure levels of gene expression (mRNA
abundance) for tens of thousands of genes in parallel. This
enables large-scale inference of the participation of genes

∗To whom correspondence should be addressed.

in biological processes from similar expression profiles. In
this research, Gene Ontology (The Gene Ontology Con-
sortium, 2000, http://genome-www.stanford.edu/GO/) is
an important source of structured knowledge of biological
roles of proteins (gene products). Gene ontology divides
the general notion of ‘function’ intomolecular function,
biological process andcellular component. Experimental
work shows that among these three categories, biological
process agrees best with the hypothesis that similar
expressions indicate a functional relation (Brownet al.,
2000). Genes encoding proteins involved in the same
process tend to be co-regulated and Pilpelet al. (2001)
show that there is a correlation in expression profiles
between genes with the same motifs in their promoter
region (Lockhart and Winzeler, 2000).

Techniques for extracting biological knowledge of
process from microarray expression data can conceptually
be divided intoclass discovery and class prediction or,
equivalently, unsupervised and supervised learning. Unsu-
pervised methods organize expression data by clustering
genes with similar patterns of expression. Supervised
methods use genes coding for proteins with known
biological process roles as training examples. A model
is induced from these examples, defining the relationship
between gene expression and biological process.

The most used algorithm for studying biological process
from microarray data is agglomerative hierarchical clus-
tering (e.g. Eisenet al., 1998; Iyeret al., 1999), which
starts with the individual genes in separate clusters, and
successively merges the two most similar clusters until all
genes have been grouped into one large cluster. The re-
sult is visualized using a binary tree called a dendrogram
combined with a heat plot showing how genes with simi-
lar expression profiles are clustered together. These plots
are often accompanied with heat plots of genes coding
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for proteins participating in similar biological processes
(Eisenet al., 1998; Iyeret al., 1999). Although these stud-
ies have been successful in showing that genes partici-
pating in the same biological processes have similar ex-
pression profiles, there are several reasons why cluster-
ing analysis cannot solve the core issues of modeling bi-
ological process from gene expression data (Shatkayet
al., 2000). Genes that are biologically related often show
a strong anti-correlation in their expression profiles and
hence will not be clustered together. Also, clustering genes
into disjoint clusters will not capture the fact that many
gene products participate in more than one biological pro-
cess. Sherlock (2000) also observes that most studies us-
ing clustering techniques do not report any measure of
whether the overlap between biologically related genes
and genes in expression clusters is greater than what would
be expected by chance. Hence, no quantitative measures
are given indicating to what degree we can trust process
assignments to unknown gene products using these clus-
ters. Recently, Choet al. (2001) have reported statistically
significant over- and under-representation of biologically
related genes in expression clusters. Brownet al. (2000)
used supervised learning with support vector machines to
learn six different classes from annotated yeast genes. The
classification quality was estimated using cross validation,
and the model was used to provide hypotheses of partici-
pation in biological processes for 15 unknown genes.

In this paper we take a systematic supervised learning
approach to predict the participation of gene products in
biological process from time series of gene expression
data labeled using gene ontology (GO). Known genes are
grouped into classes extracted from their GO annotations
and constitute training examples. Numerical values of
expression levels are replaced by templates describing
qualitative change over sub-intervals. A rule model is
induced based on this language of templates using the
rough set framework (Pawlak, 1982, 1991). The model
is evaluated using cross validation and finally used to
provide novel hypotheses of participation in biological
processes for both known and unknown genes. The
methodology is demonstrated on a publicly available data
set published by Choet al. (2001, http://www.salk.edu/
docs/labs/chipdata/). We can report high classification
quality in terms of cross validation estimates. The method
is fully implemented in the Rosetta system (Komorowski
et al., 2002, http://www.idi.ntnu.no/∼aleks/rosetta/), a
publicly available toolkit for data mining and knowledge
discovery (Fayyadet al., 1996) using rough sets.

METHOD
Pawlak’s rough set theory constitutes a mathematically
sound framework for inducing minimal decision rules
from labeled examples. Each ‘if-then’ rule identifies a

minimal set of features discriminating one particular
example from examples in all other classes. The set of
rules from all examples constitutes a classificatory model
capable of classifying new examples. A detailed, relatively
formal, description of each step in the method is given in
the next four sections.

Combining microarray data and knowledge of
biological process
Time series microarray experiments provide snapshots of
the state of a cell in terms of quantitative measures of gene
expression levels (i.e. relative mRNA level) during some
biological response. LetU be the universe of participating
genes and letT = {t1, t2, . . . , tm} be a set of functions
such thatti : U → R maps each gene to a numerical
value measuring its expression level at time pointi .
Furthermore, let aninformation system M = (U, T ) be
a table with this data. We now wish to combine the data
with annotations of biological processes.

Gene ontology provides a structured language for pro-
tein function and is therefore a natural tool for represent-
ing such knowledge. Formally, Gene ontology is a directed
acyclic graph (DAG)G O = (V, E), whereV is a set of
protein function descriptions (GO terms) and E is a bi-
nary relation onV such that proteins with functions de-
scribed byv j are a subset of proteins with functions de-
scribed byvi , denotedv j � vi , if and only if there exists
a path(vi , vi+1, . . . , v j−1, v j ) such that(vm−1, vm) ∈ E
for m = i + 1, i + 2, . . . , j − 1, j .

Again letU be the universe of genes and leta : U → V k

be a function annotating each gene with a set of GO-terms
at the most specific level of the biological process part
of gene ontology. We will then assume that we want to
model a set of predefined GO termsG = {v1, v2, . . . , vm}.
Hence we move the annotations to the appropriate level
of generalization to obtain a set of gene–GO term pairs
A = {(x, v) | x ∈ U andu ∈ a(x) andu � v andv ∈ G}.
Next, we add this biological knowledge to our information
system to obtain adecision system M = (U d , T ∪ {d}).
U d and d : U d → G is defined such thatU d =
{x ∈ U | (x, u) ∈ A andd(x) = u}. Elements ofU d

are henceforth calledknown genes (or simply examples)
while elements ofU−d = {x ∈ U | x �∈ U d} are called
unknown genes. Unknown genes are either genes without
annotations or genes with annotation outside the scope of
our predefined setG.

Given a decision systemA = (U, A ∪ {d}) in general,
A is called the set ofconditional attributes andd �∈ A is
called thedecision attribute. The elements of the universe
U are calledobjects and sets of objects with similar
decision are calleddecision classes. Note that genes inU
with more than one annotation inG are represented by one
object per annotation inU d .
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Feature synthesis
Machine learning algorithms deal with the examples
in a purely syntactical fashion, i.e. as points in am-
dimensional space spanned by the measured features
(i.e. feature space). However, semantical interpretations
of these features can greatly increase the quality of the
induced model by using this knowledge to map the data
into a new more appropriate feature space.

We know that genes serve as recipes in the synthesis
of proteins and that the mRNA levels reflect the amount
of protein being produced. However, also other factors
influence this amount, such as, how long the mRNA
exists in the cell before it is decomposed and how fast
it is translated into proteins. Even if proteinsare being
produced, some proteins, as for instance enzymes, might
be switched off. Nevertheless, since protein synthesis is
an energy consuming task, cells are arranged so that
only strictly needed proteins are produced. Changes in
expression level should therefore indicate whether more
of the relevant gene product is needed or not, and,
consequently, whether the relevant biological process is
more or less active.

Given decision systemM = (U d , T ∪ {d}) of labeled
expression profiles, we define three templates,increasing
(incr), decreasing (decr) and constant (const). Given a
genex ∈ U d , a templatet ∈ {incr, decr, const} and an
interval i ∈ I = {(ti , t j ) | 1 ≤ i < j ≤ |T | andti , t j ∈
T }, we define the predicatematch(x, t, i) to be true ifx
matchest in i and false otherwise. We use this to revise our
previous decision system to obtainM = (U d , I ∪ {d}),
where

i(x) =
{

t ∈ {incr, decr, const} if match(x, t, i)
∅ otherwise

(1)

Hence, we represent each expression profile in terms of
increasing, decreasing or constant expression levels over
sub-intervals. This equips us with a data representation of
the desired generality and with the flexibility suitable to
describe the complex relationship between gene expres-
sion and biological process. The templates and the pred-
icatematch/3 should be tailor made to each application
data set, e.g. a gene should match the templateincreasing
in some interval if the mRNA level of this gene increases
significantly during the interval.

Model induction
Rough set based models are founded on the concept of
indiscernibility. Given a decision systemA = (U, A ∪
{d}), we defineI N DA(A, x, d) to be the set of objects
that are indiscernible fromx with respect to the attribute
setA or are equal tox with respect to the decision attribute
d (We do not bother to discern objects from the same
class).

From the definition of indiscernibility we derive for
each objectx ∈ U the set ofreducts RE DA(x, d) to
be the set of minimal sets of attributesB ⊆ A such
that I N DA(B, x, d) = I N DA(A, x, d). Hence, a reduct
of x is a minimal set of attributesB with the same
discriminatory power asA. Finding the set of all reducts is
NP-hard (Skowron and Rauszer, 1992), however, there are
heuristics that compute a sufficient number of reducts in
an acceptable time. Since real-world data almost always is
polluted with noise, methods finding approximate reducts
that reveal the underlying, general pattern in the data have
also been developed. Two such approaches aredynamic
reducts (Bazanet al., 1994) andα-reducts (Skowron and
Nguyen, 1999).

Reducts serve the purpose of synthesizing minimal
decision rules of the formα → β. The fundamental
building blocks for assembling such rules are called
descriptors. A descriptor is an expressiona = a(x),
where a ∈ (A ∪ {d}). Descriptors may be combined
in a recursive manner to form more complex formulae
such as FA(x) = ∧

a∈A
(a = a(x)) and G A(x) =

∨
j∈δA(x)

(d = j). Here, δA(x) = {i | (∃y ∈ U )(y ∈
I N DA(A, x, d) andd(y) = i)} is called thegeneralized
decision of x . Minimum decision rules from the decision
systemA constitute the setRU LA = ∪

x∈U
{FB(x) →

G B(x) | B ∈ RE DA(x, d)}.
The decision systemM = (U d , I ∪ {d}) of expression

data and biological knowledge can now be plugged into
the above described rough set framework to obtain the
predictive rule modelκ = RU LM. We should, however,
be careful when defining indiscernibility. The classical
definition of decision relative indiscernibility would be
I N DM(I, x, d) = {y ∈ U d | (∀i ∈ I )(i(x) =
i(y)) or d(x) = d(y)}. However, M includes empty
entries (Equation 1) with an undefined interpretation, and
it seems unsatisfactory to induce rules based on these
empty entries. We therefore use as an indiscernibility
definition I N DM(I, x, d) = {y ∈ U d | [(∀i ∈ I )(i(x) =
i(y) or i(x) = ∅)] or d(x) = d(y). Hence, the empty
entry is considered unfit to discernx from other objects.
Note that this definition is not symmetric, i.e.x ∈
I N DM(I, y, d) does not necessarily imply thaty ∈
I N DM(I, x, d).

Model evaluation and application

Let d̂κ(x) be the classification assigned tox by modelκ
and letd(x) be the true actual classification ofx . Then

d̂κ(x) takes the formd̂κ : U
�→ [0, 1] θτ→ {0, 1}, where

1 represents a fixed decision classX1 and 0 represents all
other decision classesX0. �(x) is the certainty ofκ that
x belongs to the fixed classX1, while θτ (x) is a simple
threshold function that evaluates to 0 if�(x) < τ , and
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1 otherwise.�(x) is realized by a voting procedure that
lets each matching rule cast a number of votes in favor of
the decision class the rule indicates. The number of votes
given to a class is proportional to the support of the rule,
i.e. to the number of examples matching the rule.

Most metrics measuring the classification quality of
models areτ -dependent, e.g. accuracy, sensitivity and
specificity. Thereceiver operating characteristic (ROC)
curve (Hanley and McNeil, 1982), however, results from
plotting sensitivity against (1 - specificity) while letting
τ vary across the full spectrum of possible values (i.e.
[0, 1]). The ROC curve may be collapsed into one value
by computing thearea under the ROC curve denoted
AUC. This value is threshold-independent, and hence
independent of both error costs and prevalence of classes.
The AUC value also has a nice and intuitive probabilistic
interpretation called thec-index (Harrel et al., 1982). Let
Sκ(�) = {(x0, x1) ∈ X0 × X1 | �(x0) � �(x1)}, where
� ∈ {<, >, =}. Now,

c-index= AUC = |Sκ(<)| + 1
2|Sκ(=)|

|X0||X1| (2)

Hence, the c-index equals the probability that given a pair
(x0, x1) randomly drawn fromX0 × X1, the certainty
function � realized by the classifierκ will rank x0 and
x1 correctly.

The rule modelκ induced fromM = (U d , I ∪ {d})
will be used to classify the unknown genes. LetM−d =
(U−d , I ) be the information system of unknown genes.
For each x ∈ U−d , κ will produce a vector�(x) =
〈�1, �2, . . . , �|G|〉 during classification, where�i is the
certainty ofκ that class numberi is a correct classification
of x . The set of classification forx is C�,τ (x) = {vi ∈
G | �i (x) > τi }, whereτ = 〈

τ1, τ2, . . . , τ|G|
〉

is a vector
of the ‘best’ thresholds for each class ofM. The ‘best’
thresholds are found by collecting the� values for each
object and each class for each cross validation iteration
and then performing ROC-analysis for each class. If the
cost of false negatives and false positives are equally
weighted, the thresholds that produced the point closest
to (0, 1) on the ROC curves should be used as the ‘best’
thresholds. Let (sensitivity(τ ), (1 - specificity(τ ))) be a
point produced byτ on some ROC curve. Minimizing the
expression

c ∗ (1 − specificity(τ )) + (1 − sensitivity(τ )) (3)

with respect toτ for each class ofM makes it possible to
choose the ‘best’τ relative to a costc on false positives. A
largerc implies a larger cost on false positives and hence
fewer predictions with higher precision (i.e. lower sensi-
tivity and higher specificity). A smallerc implies a smaller
cost on false positives and hence more predictions with
lower precision (i.e. higher sensitivity, lower specificity).

This flexibility is important for biologists who view clas-
sifications as hypotheses subject to further experiments.

ALGORITHMS AND IMPLEMENTATION
Our method is fully implemented in the Rosetta system, a
publicly available toolkit for data mining and knowledge
discovery using rough sets. The system consists of a com-
putational kernel and a front end. The computational ker-
nel is a general C++ open source class library compilable
on a large variety of platforms. The front end is developed
using the Microsoft Foundation Classes (MFC).

Next, we will outline some algorithmic details about the
generation of reducts in Rosetta. LetA = (U, A ∪ {d}) be
adecision system withn = |U | objects. The discernibility
matrix D of A is the n × n matrix with entriesdi j =
{a ∈ A | x j �∈ I N DA({a}, xi , d)}. That is,di j is the set
of attributes that discernxi from x j (Note that in general
this is not the same set as the set that discernsx j from
xi ). A hitting set of the multisetSD(xi ) = {di j | di j �=
∅, j = 1, 2, . . . , n} is a setB ⊆ A that forms a non-empty
intersection with every set inSD(xi ). Furthermore,B is a
minimal hitting set ofSD(xi ) or a reduct if it ceases to be
a hitting set if any of its elements are removed. Searching
for minimal hitting sets can easily be implemented using a
genetic algorithm with the following fitness function:

f (B, xi ) = (1 − ε) × A − B

A
+

ε × min

{
α,

|{di j | di j ∩ B �= ∅, j = 1, . . . , n}|
n

}
(4)

The function results in approximate reducts (so calledα-
reducts) having a hitting fraction of at leastα. More details
about the genetic algorithm implemented in Rosetta can be
found in Vinterbo and Øhrn (2000).

Having to construct the discernibility matrix obviously
gives the method a time complexity ofO(n2), althoughn
can be reduced from the number of genes to the number of
discernible genes. Since the matrix entries are computed
on the fly when needed, the memory usage is quite
modest.

RESULTS AND DISCUSSION
Choet al. (2001) report the transcriptional profiling of the
cell cycle in human fibroblasts using microarray analysis.
Duplicate experiments were carried out for 6800 genes
every other hour from 0 to 24 hours. The two time
series were individually normalized to a unit standard
deviation with a mean of zero and then averaged to
form one time series (data available on the web: http://
www.salk.edu/docs/labs/chipdata/). Clustering employing
the Pearson correlation as similarity measure was used
to organize the time series into cell cycle-regulated
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Table 1. The 27 classes of biological process used as a basis for learning a model

GO term GO no. AUC SE

Apoptosis∗ GO:0006915 0.81 0.013
Carbohydrate metabolism GO:0005975 0.72 0.021
Cell adhesion∗ GO:0007155 0.77 0.015
Cell cycle control∗ GO:0000074 0.83 0.012
Cell motility∗ GO:0006928 0.81 0.011
Cell proliferation GO:0008283 0.80 0.009
Cell surface receptor linked signal transduction GO:0007166 0.79 0.008
Cell-cell signaling GO:0007267 0.80 0.010
DNA metabolism GO:0006259 0.78 0.015
Energy pathways GO:0006091 0.76 0.020
Humoral immune response GO:0006959 0.77 0.017
Immune response GO:0006955 0.81 0.012
Intracellular signaling cascade GO:0007242 0.81 0.015
Lipid metabolism GO:0006629 0.71 0.017
Mesoderm development GO:0007498 0.77 0.015
Mitotic cell cycle∗ GO:0000278 0.84 0.014
Neurogenesis GO:0007399 0.78 0.014
Oncogenesis GO:0007048 0.77 0.012
Phototransduction GO:0007602 0.85 0.011
Physiological processes GO:0007582 0.77 0.011
Protein biosynthesis GO:0006412 0.80 0.017
Protein metabolism and modification GO:0006411 0.77 0.008
Protein amino acid phosphorylation GO:0006468 0.82 0.014
Proteolysis and peptidolysis GO:0006508 0.80 0.017
Transcription GO:0006350 0.71 0.011
Transport GO:0006810 0.71 0.011
Vision GO:0007601 0.83 0.013

Average 0.78 0.014

Precision Coverage

c = 1 0.31 0.66
c = 2 0.61 0.58
c = 3 0.65 0.56

50-fold cross validation AUC (Area Under (ROC) Curve) estimates are given together with their standard errors. Also given are precision (true positives/(true
positives + false positives)) and coverage (true positives/(true positives + false negatives)) forc = 1, c = 2 andc = 3 (Equation 3). Classes marked with *
correspond to the classes Choet al. (2001) found to be statistically over-represented in one or more expression clusters.

expression clusters (see Methods in Choet al., 2001,
for details). The binomial distribution was used to show
statistically significant over- and under-representation of
genes participating in the same biological process in the
expression clusters. Of 160 biological processes, seven
showed an over-representation in one or more clusters.

Using human gene annotations collected from the
euGenes database (Gilbert, 2002, http://eugenes.org:8089)
we could label 3620 genes with 7679 specific terms from
the ‘biological process’-part of gene ontology. By moving
the most specific annotations upwards in the ontology
we extracted a set of 40 GO terms with at least 100
genes each. Since some of these processes completely
covered others, we finally extracted 27 partly overlapping
processes as our classes (Table 1)†. These included 3043

† Midelfart et al. (2001) reports a different approach in which classes are
selected iteratively according to their learnability.

genes with 5521 annotations. Next, we transformed the
numerical expression data using our language of templates
over sub-intervals and employed the rough set machinery
to obtain a rule model of 11 630 decision rules. Parameter
settings are given in Table 2. The model was used to
re-classify the known genes and to provide hypotheses
of biological process roles for the remaining unknown
genes (Figure 1). Table 1 shows the cross validation
AUC estimates foreach classes together withprecision
andcoverage over all classes for different costs on false
positives. For c = 2 (see Equation 3) we predict
58% of the annotations correctly during cross validation
(coverage), while 61% of our prediction were correct
(precision). A 50-fold cross validation was performed in
which the examples were divided into 50 equally sized
subsets and each subset was used as a test set once and
as a part of the training set 49 times. The cross validation

1120

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/9/1116/284985 by guest on 24 April 2024



Rule-based models and Gene Ontology

Table 2. Parameter values used in the methodology to obtain cross validation estimates and final classifications

Approximate reducts (α in Equation 4) 0.99
Weighting between subset cost and hitting fraction (ε in Equation 4) 0.40
Templateincreasing

Required increase over the full interval 0.60
Required increase during the first and last atomic interval 0.10
Maximum decrease from one time point to the next: 1.00

Templatedecreasing
Required decrease over the full interval 0.60
Required decrease during the first and last atomic interval 0.10
Maximum increase from one time point to the next: 1.00

Templateconstant
Maximum difference between largest/smallest value and average value: 0.20

The parameters were choosen experimentally to maximize average AUC during cross validation. To reduce the risk of overfitting, the final estimates in Table
1 were obtained from different computational trials.

Fig. 1. Distributions (i.e. histograms) for the number of classifica-
tions assigned to one gene by the final classifier. As it can be seen,
the classifier in general produces several hypotheses of participation
in biological process per gene.

estimates are normally interpreted as the classification
quality one would get if a model was induced from the
full set of examples and used to classify new examples.
Hence, precision and coverage in Table 1 are estimates
of the quality we may expect when classifying unknown
genes.

Genes participating in the same biological process
formalized by gene ontology show a great diversity in
expression profiles. In addition, biologists have to assign
more than one GO term to each gene to explain the
biological process roles of its products. It is evident that
such a complex relationship cannot be modeled using a
few large non-overlapping expression clusters. Instead,
a large number of small overlapping clusters would be
needed, each modeling subsets of genes associated with
one or a few classes. In essence, this is what rules
in our method do. Each rule covers a small set of
genes annotated to an even smaller number of processes.

For this to be possible, a supervised rather than an
unsupervised approach is advantageous where annotations
form constraints guiding the search. Furthermore, our
feature language of templates over subintervals makes it
possible to base similarity on discriminatory features of
the expression profiles. To illustrate how the rules model
the data we have depicted three typical rules in Figure 2
together with the expression profiles of the covered known
genes. During classification these rules will contribute to
the final classification of unknown genes. Hence, we also
included the unknown genes covered by each rule. As
we can clearly see, one rule is not enough to pinpoint a
class. The rule in Figure 2A indicates 10 different classes.
This is partly a result of one gene participating in several
biological processes (e.g. gene M27288 is associated with
three different processes) and partly the result of genes
participating in different biological processes exhibiting
similar expression profiles. However, six of the 18 time
profiles covered by the rule in Figure 2A are associated
with genes annotated with the GO termtransport.

Altogether, the rules constitute a model of the relation-
ship between temporal transcript profiles and knowledge
of biological process. Since each class normally includes
genes with several different profiles, a rather large num-
ber of relatively specific rules are needed to describe each
class. To prove that this model is not a specific definition
only applicable to the genes already used to induce it, we
tested its classificatory capabilities on unseen examples
using cross validation. Clearly the results given in Table 1
are not random (a random classifier would produce AUC
values of 0.5). Although each rule is quite specific (i.e.
covers few examples), the rules capture important general
patterns characterizing different subsets of the classes. The
generalization claim is also confirmed applying a similar
method to another data set (Hvidstenet al., 2001).

As shown by the values obtained for precision and
coverage in Table 1, we are not able to fully discriminate
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AB005535

M27288
U58130
M27288

Y00764

D86968
X04143 U70663

U73737

U79267 D64158 U90910 X61373 U20230 (unknown)

0-
GO(cell proliferation) OR

Covered genesRule

M27288 U70663

U73737 X99586

U58130 X99586 U81006 M14758 U62434 U55936

0-2(Increasing) AND 2-16(Increasing) =>

GO(DNA metabolism) OR

GO(transcription from Pol II promoter) OR

GO(cell-cell signaling) OR
GO(transport) OR
GO(physiological processes) OR

GO(energy pathways) OR

GO(intracellular signaling cascade) OR
GO(mesoderm development) OR

GO(oncogenesis)-4

-3

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24

A.

M35296 J02783 D13748 X05130
X60957

D13748

U90918 (unknown)

0-4(Constant) AND 0-10(Increasing) =>
GO(protein metabolism and modification) OR
GO(mesoderm development) OR

GO(protein biosynthesis)

Covered genesRule

B.

Y07909 X58377 U66468
X58377
X85106

Y07909

0-4(Increasing) AND 6-10(Decreasing) AND 14-18(Constant) =>

GO(cell proliferation) OR
GO(cell-cell signaling) OR
GO(intracellular signaling cascade) OR

GO(oncogenesis)

Covered genesRule

C.

-1

-0.5

0

0.5

1

1.5

2
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Fig. 2. Three sample rules together with the expression profiles and the corresponding genes covered by these rules. Also given are unknown
genes covered by the same rules. The examples illustrate how the template language enables induction of discriminatory rules. However,
single rules alone cannot discriminate the classes. A large number of rules is needed. Also shown is how multiple process-assignments make
it even more difficult to discriminate (e.g. M27288 in a). The main biological process is shown in bold for each rule.

the classes. False positives occur because genes from
different classes cannot be discerned. False negatives
occur because some genes show too little similarity with
other genes from the same class. Although we have
a less strict similarity definition than most clustering
approaches (i.e. genes need to match the same templates
over sub-intervals, rather than having to have similar
numerical values over the whole time series), some degree
of similarity within classes is of course necessary in
order to induce rules that can generalize over more than

one example. This may also be seen by comparing our
cross validation results for classes that were found to be
significantly over-represented in some expression clusters
by Choet al. (2001). For example,cell cycle was found to
be over-represented in two expression clusters, andmitotic
cell cycle andcell cycle control (both sub-classes ofcell
cycle) in Table 1 have high AUC values (0.84 and 0.83,
respectively). This trend is also true forDNA replication
(a sub-process ofmitotic cell cycle with AUC = 0.84),
muscle contraction (a sub-process ofcell motility with
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AUC = 0.81) andapoptosis (with AUC = 0.81). Other
processes found to be over-represented in expression
clusters werecytoskeletal reorganization (not related to
any process in Table 1) andcell-to cell adhesion (a sub-
process ofcell adhesion with AUC = 0.77).

In summary, we can report a successful approach to
modeling participation of gene products in biological
processes from gene expression time series using a
supervised learning approach. High precision hypotheses
can be obtained for both known and unknown genes as
demonstrated on the data set previously published by
Cho et al. (2001). The full rule model and classifications
for all known and unknown genes can be found on
our web site: http://www.lcb.uu.se/∼hvidsten/bioinfcho/.
We believe that supervised learning algorithms have an
important role as hypotheses generators in functional
genomics.

ACKNOWLEDGEMENT
We would like to thank Vladimir Yankovski for his work
with the euGenes database.

REFERENCES
Bazan,J.G., Skowron,A. and Synak,P. (1994) Dynamic reducts as

a tool for extracting laws from decision tables. InProceedings
of the International Symposium on Methodologies for Intelligent
Systems, Lecture Notes in Artificial Intelligence, 869, Springer,
New York, pp. 346–355.

Brown,M.P.S., Grundy,W.N., Cristianini,N., Sugnet,C.W.,
Furey,T.S., Ares,M. and Haussler,D. (2000) Knowledge-based
analysis of microarray gene expression data by using support
vector machines.Proc. Natl Acad. Sci. USA, 97, 262–267.

Cho,R.J., Huang,M., Campbell,M.J., Dong,H., Steinmetz,L.,
Sapinoso,L., Hampton,G., Elledge,S.J., Davis,R.W. and
Lockhart,D.J. (2001) Transcriptional regulation and function
during the human cell cycle.Nat. Genet., 27, 48–54.

Eisen,M., Spellman,P., Brown,P. and Botstein,D. (1998) Cluster
analysis and display of genome-wide expression pattern.Proc.
Natl Acad. Sci. USA, 95, 14863–14868.

Fayyad,U., Piatetsky-Shapiro,G. and Smyth,P. (1996) The KDD
process for extracting useful knowledge from volumes of data.
Communications of the ACM, 39, 27–34.

Gilbert,D.G. (2002) euGenes: a eukaryote genome information
system.Nucleic Acids Res., 30, 145–148.

Hanley,J.A. and McNeil,B.J. (1982) The meaning and use of the
area under a receiver operating characteristic (ROC) curve.
Radiology, 143, 29–36.

Harrel,Jr,F.E., Califf,R.M., Pryor,D.B., Lee,K.L. and Rosati,R.A.
(1982) Evaluating the yield of medical tests.J. Am. Med. Assoc.,
247, 2543–2546.

Hvidsten,T.R., Komorowski,J., Sandvik,A.K. and Lægreid,A.
(2001) Predicting gene function from gene expressions and
ontologies. In Altman,R.B., Dunker,A.K., Hunter,L., Laud-
erdale,K. and Klein,T.E. (eds),Pacific Symposium on Biocom-
puting. World Scientific, Mauna Lani, HI, pp. 299–310.

Iyer,V.R., Eisen,M.B., Ross,D.T., Schuler,G., Moore,T., Lee,J.C.F.,
Trent,J.M., Staudt,L.M., Hudson,J.Jr. and Boguski,M.S.et al.
(1999) The transcriptional program in the response of human
fibroblasts to serum.Science, 283, 83–87.

Komorowski,J., Øhrn,A. and Skowron,A. (2002) The rosetta soft-
ware system. In Kl̈osgen,W. anḋZytkow,J. (eds), Handbook
of Data Mining and Knowledge Discovery. Oxford University
Press, pp. 554–559.

Lockhart,D.J. and Winzeler,E.A. (2000) Genomics, gene expression
and DNA arrays.Nature, 405, 827–836.

Midelfart,H., Lægreid,A. and Komorowski,J. (2001) Classification
of Gene Expression Data in an Ontology. In Crespo,J., Maojo,V.
and Martin,F. (eds),Second International Symposium on Medi-
cal Data Analysis. Springer, New York, pp. 186–194.

Pawlak,Z. (1982) Rough sets.International Journal of Information
and Computer Science, 11, 341–356.

Pawlak,Z. (1991) Rough sets: theoretical aspects of reasoning about
data. Series D: System Theory, Knowledge Engineering and
Problem Solving, 9. Kluwer, Dordrecht.

Pilpel,Y., Sudarsanam,P. and Church,G.M. (2001) Identifying regu-
latory networks by combinatorial analysis of promoter elements.
Nat. Genet., 29, 153–159.

Schena,M., Shalon,D., Davis,R. and Brown,P.O. (1995) Quantita-
tive monitoring of gene expression patterns with a complemen-
tary dna microarray.Science, 270, 467–470.

Shatkay,H., Edwards,S., Wilbur,W. and Boguski,M. (2000) Genes,
themes and microarrays—using information retrieval for large-
scale gene analysis. InProceedings of the 8th Interna-
tional Conference on Intelligent Systems for Molecular Biology
(ISMB2000). pp. 317–328.

Sherlock,G. (2000) Analysis of large-scale gene expression data.
Curr. Opin. Immunol., 12, 201–205.

Skowron,A. and Nguyen,H.S. (1999) Boolean reasoning scheme
with some applications in data mining. IṅZytkow,J.M. and
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