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ABSTRACT in biological processes from similar expression profiles. In
Motivation: Microarray technology enables large-scale  this research, Gene Ontology (The Gene Ontology Con-
inference of the participation of genes in biological process  sortium, 2000, http://genome-www.stanford.edu/GO/) is
from similar expression profiles. Our aim is to induce  animportant source of structured knowledge of biological
classificatory models from expression data and biological ~ roles of proteins (gene products). Gene ontology divides
knowledge that can automatically associate genes with  the general notion of ‘function’ intenolecular function,
novel hypotheses of biological process. biological process andcellular component. Experimental
Results: We report a systematic supervised learning ~ work shows that among these three categories, biological
approach to predicting biological process from time series ~ process agrees best with the hypothesis that similar
of gene expression data and biological knowledge. Biolog-  expressions indicate a functional relation (Brownal.,

ical knowledge is expressed using gene ontology and this ~ 2000). Genes encoding proteins involved in the same
knowledge is associated with discriminatory expression-  process tend to be co-regulated and Pilgedl. (2001)
based features to form minimal decision rules. The  show that there is a correlation in expression profiles
resulting rule model is first evaluated on genes coding for ~ between genes with the same motifs in their promoter
proteins with known biological process roles using cross  region (Lockhart and Winzeler, 2000).

validation. Then it is used to generate hypotheses for Techniques for extracting biological knowledge of
genes for which no knowledge of participation in biological ~ process from microarray expression data can conceptually
process could be found. The theoretical foundation for ~ be divided intoclass discovery and class prediction or,

the methodology based on rough sets is outlined in the  equivalently, unsupervised and supervised learning. Unsu-
paper, and its practical application demonstrated on a  pervised methods organize expression data by clustering
data set previously published by Cho et al. (Nat. Genet.,  genes with similar patterns of expression. Supervised

27, 48-54, 2001). methods use genes coding for proteins with known
Availability: The Rosetta system is available at http:/  biological process roles as training examples. A model
www.idi.ntnu.no/~aleks/rosetta is induced from these examples, defining the relationship
Contact: Jan.Komorowski@Ich.uu.se between gene expression and biological process.

Supplementary information: http://www.lch.uu.se/ The most used algorithm for studying biological process
~hvidsten/bioinf_cho/ from microarray data is agglomerative hierarchical clus-

tering (e.g. Eiseret al., 1998; lyeret al., 1999), which

INTRODUCTION starts with the individual genes in separate clusters, and

Microarray technology (Schenet al., 1995) makes it successively merges the two most similar clusters until all
possible to measure levels of gene expression (mRNA€Nes have been grouped into one large cluster. The re-
abundance) for tens of thousands of genes in parallel. Thault is visualized using a binary tree called a dendrogram

enables large-scale inference of the participation of geneZombined with a heat plot showing how genes with simi-
lar expression profiles are clustered together. These plots

*To whom correspondence should be addressed. are often accompanied with heat plots of genes coding
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Rule-based models and Gene Ontology

for proteins participating in similar biological processesminimal set of features discriminating one particular
(Eisenet al., 1998; lyeret al., 1999). Although these stud- example from examples in all other classes. The set of
ies have been successful in showing that genes particiules from all examples constitutes a classificatory model
pating in the same biological processes have similar exeapable of classifying new examples. A detailed, relatively
pression profiles, there are several reasons why clustefermal, description of each step in the method is given in
ing analysis cannot solve the core issues of modeling bithe next four sections.

ological process from gene expression data (Shatkay

al., 2000). Genes that are biologically related often showCombining microarray data and knowledge of

a strong anti-correlation in their expression profiles andbiological process

hence will not be clustered together. Also, clustering genegime series microarray experiments provide snapshots of
into disjoint clusters will not capture the fact that many e sate of a cell in terms of quantitative measures of gene
gene products participate in more than one biological progy pression levels (i.e. relative mRNA level) during some
cess. Sherlock (2000) also observes that most studies Usip|ogical response. Lét be the universe of participating
ing clustering techniques do not report any measure Ofanes and leT = (i t... .. 1) be a set of functions
whether the overlap between biologically related genes o, that, : U — R rﬁapé each gene to a numerical
and genes in expression clusters is greater than what wouldy o measuring its expression level at time point

be expected by chance. Hence, no quantitative measuresthermore. let ainformation system M = (U, T) be

are given indicating to what degree we can trust procesg yape with this data. We now wish to combine the data
assignments to unknown gene products using these Clugzi annotations of biological processes

ters. Recently, Chet al. (2001) have reported statistically — ene gntology provides a structured language for pro-
significant over- and under-representation of biologicallyygjn, fnction and is therefore a natural tool for represent-

related genes in expre_ssion clusters. Braual. (200.0) ing such knowledge. Formally, Gene ontology is a directed
used supervised learning with support vector machines thycIic graph (DAG)GO = (V, E), whereV is a set of

learn six different classes from annotated yeast genes. T'ﬂffotein function descriptionsGO terms) and E is a bi-

classification quality was estimated using cross valldatlonnary relation onV such that proteins with functions de-

anq th(_a m<_)del was used to provide hypotheses of particEcribed byvj are a subset of proteins with functions de-

pation in biological processes for 15 unknown genes. (i byvi, denotedv; < i, if and only if there exists
In this paper we take a systematic supervised Iearning path (v v_’ v J “v_) ’such that(v vm) € E

approach to predict the participation of gene products i'}or m— il ’+'Ili’ +2 1—1,1_ ) 1] m-1, ¥m

biological process from time series of gene expression Again letU be the universe of genes anddetU — VX

data Iabe_led using gene ontology (GO). _Known 9€enes arfy 4 function annotating each gene with a set of GO-terms
grouped into classes extracted from their GO annotation t the most specific level of the biological process part

and constitute training examples. Numerical values o f gene ontology. We will then assume that we want to
expression levels are replaced by templates describinﬂ'lodelaset ofprédefined GO ter@s= {vy. v vl
. 5 sy oo Umy-

%%ﬂgggvgazzzngﬁ %ﬁ:rlsﬁbdgtzr\gilié r':]‘ Ir;tlgs Tfs)?nel ,'[f]Hence we move the annotations to the appropriate level
guag P 9 N6; generalization to obtain a set of gene-GO term pairs

rough set framework (Pawlak, 1982, 1991). The modeA: {(x.v) | x € U andu € a(x) andu < v andv € G

IS e\_/aluated using Cross valldatlo_n_ an_d f|r_1ally_ use_d tc}\lext, we add this biological knowledge to our information
provide novel hypotheses of participation in blologlcalS stem to obtain aecision sysem M = (U9, T U {d})
processes for both known and unknown genes. Th yd andd : Ud - G isgdefined_such ’thaUd Z

methodology is demonstrated on a publicly available dat? ) d

. ) x € U| (X u € Aandd(x) = u}. Elements ofU
set pubhshec_j by Chet al. (2001, http.//\_/vww.salk:e_du/_ are henceforth calleknown genes (or simply examples)
docs/labs/chipdata/). We can report high classification

e e . hile elements of) % = {x € U | x ¢ U9} are called
quality in terms of cross validation estimates. The metho . .
) . . -.unknown genes. Unknown genes are either genes without
is fully implemented in the Rosetta system (Komorowski

e al., 2002, http:/mww.idi.ntnu.notaleks/rosettal), a annotations or genes with annotation outside the scope of

publicly available toolkit for data mining and knowledge our predefined sdb.

. . Given a decision systerd = (U, AU {d}) in general,
discovery (Fayyaet al., 1996) using rough sets. A is called the set ofonditional attributes andd ¢ Ais

called thedecision attribute. The elements of the universe
METHOD U are calledobjects and sets of objects with similar
Pawvlak’s rough set theory constitutes a mathematicallydecision are calledecision classes. Note that genes it
sound framework for inducing minimal decision rules with more than one annotation @ are represented by one
from labeled examples. Each ‘if-then’ rule identifies aobject per annotation ib/d.
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Feature synthesis From the definition of indiscernibility we derive for

Machine leaming algorithms deal with the examplese@ch objecx € U the set ofreducts RED4(x, d) to
in a purely syntactical fashion, i.e. as points inma e the set of minimal sets of attributéd < A such
dimensional space spanned by the measured featurt! NDa(B, X, d) = IND4(A, x,d). Hence, a reduct
(i.e. feature space). However, semantical interpretation@f X is @ minimal set of attributes3 with the same
of these features can greatly increase the quality of thdiscriminatory power aé. Finding the set of all reducts is
induced model by using this knowledge to map the datdIP-hard (Skowron and Rauszer, 1992), however, there are
into a new more appropriate feature space. heuristics that compute a sufficient number of reducts in
We know that genes serve as recipes in the synthes@h acceptable time. Since real-world data almost always is
of proteins and that the mRNA levels reflect the amoungolluted with noise, methods finding approximate reducts
of protein being produced. However, also other factordhat reveal the underlying, general pattern in the data have
influence this amount, such as, how long the mRNA&ISo been developed. Two such approachesigmamic
exists in the cell before it is decomposed and how fasfeducts (Bazanet al., 1994) andx-reducts (Skowron and
it is translated into proteins. Even if proteimse being ~ Nguyen, 1999). - N
produced, some proteins, as for instance enzymes, mightReducts serve the purpose of synthesizing minimal
be switched off. Nevertheless, since protein synthesis igecision rules of the formx — g. The fundamental
an energy consuming task, cells are arranged so thkpilding blocks for assembling such rules are called
only strictly needed proteins are produced. Changes iflescriptors. A descriptor is an expressiom = a(x),
expression level should therefore indicate whether mor&vherea € (A U {d}). Descriptors may be combined
of the relevant gene product is needed or not, andn @ recursive manner to form more complex formulae

consequently, whether the relevant biological process isuch asFa(x) = a/e\A(a = a(x)) and Ga(x) =

more or ess active. vV (d = j). Here,5a(x) = {i| 3y € U)(y €
Given decision systemM = (U9, T U {d}) of labeled  i€sa o _

expression profiles, we define three templatasieasing | NDa(A, x, d) andd(y) = i)} is called thegeneralized

(incr), decreasing (decr) and constant (const). Given a  decision of x. Mi_nimum decision rules from the decision

genex e U9, atemplatet e {incr, decr, const} and an  System.A constitute the seRUL 4 = S {Fe() —

intervali e I = {(ti,tj)) |1 <i < j < |T|andtj,tj Gg(X) | B € RED4(x, d)}.

T}, we define the predicateatch(x,t, i) to be true ifx The decision systemM = (U9, | U {d}) of expression

matched ini and false otherwise. We use this to revise ourdata and biological knowledge can now be plugged into

previous decision system to obtaMl = (U9, 1 U{d}),  the above described rough set framework to obtain the

where predictive rule modet = RU L 5. We should, however,

. . . be careful when defining indiscernibility. The classical

t < {incr, decr, const}  if match(x, t, 1) (1)  definition of decision relative indiscernibility would be
otherwise INDyp(l,x,d) = {y € Ud|(vi e Dix) =

i(y))ord(x) = d(y)}. Howewr, M includes empty

Hence, we (rjepreser_lt each exptrestsmn profile '? terlms ntries (Equation 1) with an undefined interpretation, and
Increasing, decreasing or constant expression 1evels OVRlseems ynsatisfactory to induce rules based on these

sub-intervals. This equips us with a data representation mpty entries. We therefore use as an indiscernibility
the desired generality and with the flexibility suitable to definition | NDv((1, x, d) = {y € U9 | [(Vi € 1)(i(x) =

describe the complex relationship between gene expre

i (X) =

?(y) ori(x) = @)]ord(x) = d(y). Hence, the empty

ot h/3 should be tail de t h licati %’ntry is considered unfit to discernfrom other objects.
ICatematch/ 3 should be tallor made 10 each applicalion \ie that this definition is not symmetric, i.& e

data set, e.g. a gene should match the temphateasing | \p, (| t iv imolv th
in some interval if the mRNA level of this gene increases, DMEI ’ ))(/ g; does not necessarily imply that e
significantly during the interval. MET 2

Model induction Model evaluation and application

Rough set based models are founded on the concept bft () be the classification assigned>xdy model«
indiscernibility. Given a decision system = (U, A U and letd(x) be the true actual cIassﬁ(;catlon gf Then
{d}), we definel ND 4(A, x, d) to be the set of objects a,((x) takes the fornd, : U % [0,1] = {0, 1}, where
that are indiscernible fromt with respect to the attribute 1 represents a fixed decision class and O represents all
setA or are equal t with respect to the decision attribute other decision classe$g. ®(x) is the certainty ok that
d (We do not bother to discern objects from the samex belongs to the fixed clas¥1, while 6, (x) is a simple
class). threshold function that evaluates to 0df(x) < t, and
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1 otherwise.®(x) is realized by a voting procedure that This flexibility is important for biologists who view clas-
lets each matching rule cast a number of votes in favor oéifications as hypotheses subject to further experiments.
the decision class the rule indicates. The number of votes

given to a class is proportional to the support of the rule AL GORITHMS AND IMPLEMENTATION

I.e. to the number of examples maltchir_1_g the rule. it ofOUr method is fully implemented in the Rosetta system, a
Most metrics measuring the classification quality oy hjiciy available toolkit for data mining and knowledge

mod(.al_s'arer—depepdent, €.g. accuracy, _sgnsitivity anddiscovery using rough sets. The system consists of a com-
specificity. Thereceiver operating characteristic (ROC) ) yational kernel and a front end. The computational ker-

curve (Hanley and McNeil, 1982), however, results fromy,q| g 5 general C++ open source class library compilable
plotting sensitivity against { - specificity) Wh'le letting . _on alarge variety of platforms. The front end is developed
T vary across the full spectrum of possm_le values ("eusing the Microsoft Foundation Classes (MFC).

[0, 11). The ROC curve may be collapsed into one value ey e will outline some algorithmic details about the
by computing thearea under the ROC curve denoted  oneration of reducts in Rosetta. Lét= (U, AU {d}) be

AUC. This value is threshold-independent, and hencg e ision system with = |U| objects. The discernibility
independent of both error costs and prevalence of classgsiix D of A'is then x n matrix with entriesd;; =

The AUC value also has a nice and intuitive probabilistic : :
: ! aec Alx; € INDg({a}, xi,d)}. That is,d;; is the set
interpretation called the-index (Harrelet al., 1982). Let @e Al ¢ Adal x, d)} '

of attributes that discerg; from x; (Note that in general
Sc(B) = {(X0, X1) € Xo x X1| P(X0) O ®(x1)}, where

this is not the same set as the set that disc&ngom

0 € {<,>,=} Now, x). A hitting set of the multisetSp(x) = {dij | dij #
1S.(<)] + 31S.(2)] @,j =12 ...,n}isasetB C Athat forms a non-empty
c-index= AUC = 2 (2) intersection with every set iip(x;). FurthermorepB is a

| XolXal minimal hitting set ofSp(x;) or a reduct if it ceases to be
Hence, the c-index equals the probability that given a pai@ hitting set if any of its elements are removed. Searching
(XOv Xl) randomly drawn fromxo X Xl’ the Certa|nty fOI’ m|n|ma| h|tt|ng sets can eaS'ly be |mp|emented USIng a
function @ realized by the classifier will rank xo and ~ genetic algorithm with the following fitness function:
X1 correctly.

The rule modek induced fromM = (U9, 1 U {d}) FB.x) = (1— A-B
will be used to classify the unknown genes. Vet = (B. %) =1 =€) x A *
(U9 1) be the information system of unknown genes. i I{dij |dijNnB#0,j=1...,n}
For eachx € U~9 « will produce a vector®(x) = € X minja, n (4)

(P1, Po, ..., P|g)) during classification, wher®; is the
certainty ofk that class numberis a correct classification The function results in approximate reducts (so cadted
of x. The set of classification fox is Ce - (X) = {v;i € reducts) having a hitting fraction of at leastMore details
G| ®(X) > 1i}, wheret = (‘cl, 17 1:|G|> is a vector about the genetic algorithm implemented in Rosetta can be
of the ‘best’ thresholds for each class .. The ‘best’  found in Vinterbo and @hrn (2000).
thresholds are found by collecting tide values for each Having to construct the discernibility matrix obviously
object and each class for each cross validation iteratiogives the method a time complexity 6f(n?), dthoughn
and then performing ROC-analysis for each class. If thean be reduced from the number of genes to the number of
cost of false negatives and false positives are equallgiscernible genes. Since the matrix entries are computed
weighted, the thresholds that produced the point closesin the fly when needed, the memory usage is quite
to (0, 1) on the ROC curves should be used as the ‘besthodest.
thresholds. Letdensitivity(t), (1 - specificity(r))) be a
point produced by on some ROC curve. Minimizing the RESULTS AND DISCUSSION
expression Choet al. (2001) report the transcriptional profiling of the

¢ * (1 — specificity(r)) + (1 — sensitivity(r))  (3) cell gycle in human fibroblasts using microarray analysis.

Duplicate experiments were carried out for 6800 genes

with respect ta for each class oM makes it possible to ewvery other hour from 0 to 24 hours. The two time
choose the ‘best relative to a cost on false positives. A series were individually normalized to a unit standard
largerc implies a larger cost on false positives and hencaleviation with a mean of zero and then averaged to
fewer predictions with higher precision (i.e. lower sensi-form one time series (data available on the web: http://
tivity and higher specificity). A smallerimplies a smaller www.salk.edu/docs/labs/chipdata/). Clustering employing
cost on false positives and hence more predictions witthe Pearson correlation as similarity measure was used
lower precision (i.e. higher sensitivity, lower specificity). to organize the time series into cell cycle-regulated
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Table 1. The 27 classes of biological process used as a basis for learning a model

GO term GO no. AUC SE
Apoptosi§ G0:0006915 0.81 0.013
Carbohydrate metabolism G0:0005975 0.72 0.021
Cell adhesiofi G0:0007155 0.77 0.015
Cell cycle contrct G0:0000074 0.83 0.012
Cell motility* G0:0006928 0.81 0.011
Cell proliferation G0:0008283 0.80 0.009
Cell surface receptor linked signal transduction GO0:0007166 0.79 0.008
Cell-cell signaling G0:0007267 0.80 0.010
DNA metabolism G0:0006259 0.78 0.015
Energy pathways G0:0006091 0.76 0.020
Humoral immune response G0:0006959 0.77 0.017
Immune response G0:0006955 0.81 0.012
Intracellular signaling cascade G0:0007242 0.81 0.015
Lipid metabolism G0:0006629 0.71 0.017
Mesoderm development G0:0007498 0.77 0.015
Mitotic cell cycle* G0:0000278 0.84 0.014
Neurogenesis G0:0007399 0.78 0.014
Oncogenesis G0O:0007048 0.77 0.012
Phototransduction G0:0007602 0.85 0.011
Physiological processes G0:0007582 0.77 0.011
Protein biosynthesis G0:0006412 0.80 0.017
Protein metabolism and modification GO0:0006411 0.77 0.008
Protein amino acid phosphorylation G0:0006468 0.82 0.014
Proteolysis and peptidolysis G0:0006508 0.80 0.017
Transcription G0:0006350 0.71 0.011
Transport G0:0006810 0.71 0.011
Vision G0:0007601 0.83 0.013
Average 0.78 0.014
Precision Coverage
c=1 0.31 0.66
c=2 0.61 0.58
c=3 0.65 0.56

50-fold cross validation AUC (Area Under (ROC) Curve) estimates are given together with their standard errors. Also given are precision \(&si¢tpesiti
positives + false positives)) and coverage (true positives/(true positives + false negativesy) fIoc = 2 andc = 3 (Equation 3). Classes marked with *

correspond to the classes Céial. (2001) found to be statistically over-represented in one or more expression clusters.

expression clusters (see Methods in Céoal., 2001,

genes with 5521 annotations. Next, we transformed the
for details). The binomial distribution was used to shownumerical expression data using our language of templates
statistically significant over- and under-representation obver sub-intervals and employed the rough set machinery
genes participating in the same biological process in theéo obtain a rule model of 11 630 decision rules. Parameter
expression clusters. Of 160 biological processes, sevesgettings are given in Table 2. The model was used to
showed an over-representation in one or more clusters. re-classify the known genes and to provide hypotheses
Using human gene annotations collected from thef biological process roles for the remaining unknown
euGenes database (Gilbert, 2002, http://eugenes.org:808fanes (Figure 1). Table 1 shows the cross validation

the “biological process’-part of gene ontology. By moving g coverage over all classes for different costs on false

the most specific annotations upwards in the ontology,ysitives. Forc = 2 (see Equation 3) we predict

we extracted a set of 40 GO terms with at least 10

processes as our classes (Table These included 3043

TMidelfart et al. (2001) reports a different approach in which classes are

selected iteratively according to their learnability.

8% of the annotations correctly during cross validation
eteverage), while 61% of our prediction were correct

g(precision). A 50-fold cross validation was performed in
which the examples were divided into 50 equally sized
subsets and each subset was used as a test set once and
as a part of the training set 49 times. The cross validation
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Table 2. Parameter values used in the methodology to obtain cross validation estimates and final classifications

Approximate reductsy in Equation 4) 0.99
Weighting between subset cost and hitting fractiom(Equation 4) 0.40
Templateincreasing
Required increase over the full interval 0.60
Required increase during the first and last atomic interval 0.10
Maximum decrease from one time point to the next: 1.00
Templatedecreasing
Required decrease over the full interval 0.60
Required decrease during the first and last atomic interval 0.10
Maximum increase from one time point to the next: 1.00

Templateconstant
Maximum difference between largest/smallest value and average value:

o
hN)
=}

ojumoq

The parameters were choosen experimentally to maximize average AUC during cross validation. To reduce the risk of overfitting, the final esdiohates in T
1 were obtained from different computational trials.

04 For this to be possible, a supervised rather than an
B Knowngenes unsupervised approach is advantageous where annotation
M Unknown genes form constraints guiding the search. Furthermore, our

0.3
feature language of templates over subintervals makes it

possible to base similarity on discriminatory features of

02 the expression profiles. To illustrate how the rules model
the data we have depicted three typical rules in Figure 2
o together with the expression profiles of the covered known

genes. During classification these rules will contribute to
the final classification of unknown genes. Hence, we also
included the unknown genes covered by each rule. As
we can clearly see, one rule is not enough to pinpoint a
class. The rule in Figure 2A indicates 10 different classes.
Fig. 1. Distributions (i.e. histograms) for the number of classifica- This is partly a result of one gene participating in several
tions assigned to one gene by the final classifier. As it can be seeBiological processes (e.g. gene M27288 is associated with
_the 'class_ifierin general produces several hypotheses of participatiqp ree different processes) and partly the result of genes
in biological process per gene. participating in different biological processes exhibiting
similar expression profiles. However, six of the 18 time
profiles covered by the rule in Figure 2A are associated
estimates are normally interpreted as the classificatiowith genes annotated with the GO tetransport.
quality one would get if a model was induced from the Altogether, the rules constitute a model of the relation-
full set of examples and used to classify new examplesship between temporal transcript profiles and knowledge
Hence, precision and coverage in Table 1 are estimatesf biological process. Since each class normally includes
of the quality we may expect when classifying unknowngenes with several different profiles, a rather large num-
genes. ber of relatively specific rules are needed to describe each
Genes participating in the same biological procesglass. To prove that this model is not a specific definition
formalized by gene ontology show a great diversity inonly applicable to the genes already used to induce it, we
expression profiles. In addition, biologists have to assigrtested its classificatory capabilities on unseen examples
more than one GO term to each gene to explain thesing cross validation. Clearly the results given in Table 1
biological process roles of its products. It is evident thatare not random (a random classifier would produce AUC
such a complex relationship cannot be modeled using walues of 0.5). Although each rule is quite specific (i.e.
few large non-overlapping expression clusters. Instead;overs few examples), the rules capture important general
a large number of small overlapping clusters would bepatterns characterizing different subsets of the classes. The
needed, each modeling subsets of genes associated wighneralization claim is also confirmed applying a similar
one or a few classes. In essence, this is what rulesiethod to another data set (Hvids&tral., 2001).
in our method do. Each rule covers a small set of As shown by the values obtained for precision and
genes annotated to an even smaller number of processesverage in Table 1, we are not able to fully discriminate
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Rule Covered genes
0-2(Increasing) AND 2-16(Increasing) =>
GO(cell proliferation) OR M27288 U70663
GO(DNA metabolism) OR U73737 X99586
GO(transcription from Pol I promoter) OR AB005535
GO(cell-cell signaling) OR M27288
GO(transport) OR U58130 X99586 U81006 M14758 U62434 U55936
GO(physiological processes) OR M27288
GO(energy pathways) OR Y00764
GO(intracellular signaling cascade) OR D86968
GO(mesoderm development) OR X04143 U70663
GO(oncogenesis) u73737
10 12 14 16 18 20 22 24 U79267 D64158 U90910 X61373 U20230 (unknown)
)
Qo
2
=3
(o]
oY)
o
0]
o
Rule Covered genes é“
3
0-4(Constant) AND 0-10(Increasing) => =
GO(protein metabolism and modification) OR M35296 J02783 D13748 X05130 _é:
GO(mesoderm development) OR X60957 7]
GO(protein biosynthesis) D13748 §
U90918 (unknown) 8
Q
]
3
o
ER o
c
0 2 4 6 8 10 12 14 16 18 20 22 24 S
o
o
3
C =3
o.
S
154 o
=
3
4 2
05 Rule Covered genes a
V)
0l 0-4(Increasing) AND 6-10(Decreasing) AND 14-18(Constant) => =
GO(cell proliferation) OR Y07909 X58377 U66468 %
-0.54 GO(cell-cell signaling) OR X58377 =
GO(intracellular signaling cascade) OR X85106 ©
1 GO(oncogenesis) Y07909 g
-
15 N
(<2
=
21 N
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Fig. 2. Three sample rules together with the expression profiles and the corresponding genes covered by these rules. Also given are unkrfown
genes covered by the same rules. The examples illustrate how the template language enables induction of discriminatory rules. Howeéver,
single rules alone cannot discriminate the classes. A large number of rules is needed. Also shown is how multiple process-assignments rdake
it even more difficult to discriminate (e.g. M27288 in a). The main biological process is shown in bold for each rule.
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the classes. False positives occur because genes frame example. This may also be seen by comparing our
different classes cannot be discerned. False negativesoss validation results for classes that were found to be
occur because some genes show too little similarity wittsignificantly over-represented in some expression clusters
other genes from the same class. Although we havey Choet al. (2001). For examplegell cycle was found to

a less strict similarity definition than most clustering be over-represented in two expression clustersnatatic
approaches (i.e. genes need to match the same templatel cycle andcell cycle control (both sub-classes akll

over sub-intervals, rather than having to have similarcycle) in Table 1 have high AUC values (0.84 and 0.83,
numerical values over the whole time series), some degraespectively). This trend is also true fDINA replication

of similarity within classes is of course necessary in(a sub-process afitotic cell cycle with AUC = 0.84),
order to induce rules that can generalize over more thamuscle contraction (a sub-process ofell motility with
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AUC = 0.81) andapoptosis (with AUC = 0.81). Other Hvidsten,T.R., .K.omorowski,J., .Sandvik,A.K. and Laegreid,A.
processes found to be over-represented in expression (2001) Predicting gene function from gene expressions and
clusters werecytoskeletal reorganization (not related to ~ ontologies. In Altman,R.B., Dunker,A.K., Hunter.L., Laud-
any process in Table 1) arw|-to cell adhesion (a sub- erdale,K. and Klein,T.E. (eds)Pacific Symposium on Biocom-
: . _ puting. World Scientific, Mauna Lani, HI, pp. 299-310.

prﬁlciisrnorﬁzl: advr\]l?ggr\:w;[g AOLrJtCa_SS‘(ZC?e)S-SfuI aporoach t(I;/er,V.R., Eisen,M.B., Ross,D.T., Schuler,G., Moore,T., Lee,J.C.F.,

) y’. . . P . p_p ) Trent,J.M., Staudt,L.M., Hudson,J.Jr. and Boguski,MeSal.
modeling participation of gene products in biological

. . . . (1999) The transcriptional program in the response of human
processes from gene expression time series UsiNg a fiproblasts to seruntcience, 283, 83-87.

supervised learning approach. High precision hypothes&&morowski,J., @hr,A. and Skowron,A. (2002) The rosetta soft-
can be obtained for both known and unknown genes as ware system. In Kisgen,W. andZytkow,J. (eds), Handbook
demonstrated on the data set previously published by of Data Mining and Knowledge Discovery. Oxford University
Choet al. (2001). The full rule model and classifications  Press, pp. 554-559.

for all known and unknown genes can be found onLockhart,D.J. and Winzeler,E.A. (2000) Genomics, gene expression
our web site: http://www.lcb.uu.sehvidsten/bioinfchol. ~and DNA arraysNature, 405, 827-836. -
We believe that supervised learning algorithms have aNldeIfart,H., Leegreid,A. and Komorowski,J. (2001) Classification

: : : of Gene Expression Data in an Ontology. In Crespo,J., Maojo,V.
ggﬁgﬁg role as hypotheses generators in functional and Martin,F. (eds),Second International Symposium on Medi-

cal Data Analysis. Springer, New York, pp. 186-194.
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