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ABSTRACT
Motivation: Microarray experiments are now routinely used
to collect large-scale time series data, for example to monitor
gene expression during the cell cycle. Statistical analysis of
this data poses many challenges, one being that it is hard
to identify correctly the subset of genes with a clear peri-
odic signature. This has lead to a controversial argument with
regard to the suitability of both available methods and current
microarray data.
Methods: We introduce two simple but efficient statistical
methods for signal detection and gene selection in gene
expression time series data. First, we suggest the average
periodogram as an exploratory device for graphical assess-
ment of the presence of periodic transcripts in the data.
Second, we describe an exact statistical test to identify period-
ically expressed genes that allows one to distinguish periodic
from purely random processes. This identification method is
based on the so-called g-statistic and uses the false discovery
rate approach to multiple testing.
Results: Using simulated data it is shown that the suggested
method is capable of identifying cell-cycle-activated genes in
a gene expression data set even if the number of the cyc-
lic genes is very small and regardless the presence of a
dominant non-periodic component in the data. Subsequently,
we re-examine 12 large microarray time series data sets (in
part controversially discussed) from yeast, human fibroblast,
human HeLa and bacterial cells. Based on the statistical ana-
lysis it is found that a majority of these data sets contained
little or no statistical significant evidence for genes with peri-
odic variation linked to cell cycle regulation. On the other
hand, for the remaining data the method extends the catalog
of previously known cell-cycle-specific transcripts by identi-
fying additional periodic genes not found by other methods.
The problem of distinguishing periodicity due to generic cell
cycle activity and to artifacts from synchronization is also
discussed.
Availability: The approach has been implemented in
the R package GeneTS available from http://www.stat.

∗To whom correspondence should be addressed.

uni-muenchen.de/~strimmer/software.html under the terms of
the GNU General Public License.
Contact: strimmer@stat.uni-muenchen.de

INTRODUCTION
One of the earliest applications of gene expression experi-
ments was the genome-wide monitoring of gene activity in
a cell during cell division. Statistical analysis of this data
poses many challenges due to the typically small number
of measurements per gene (e.g. N = 20), high levels of
non-normal random noise, and the large number of simul-
taneously assessed genes (usually G > 1000). Thus, gene
expression time series data are quite different when compared
with classical time series data.

One particular aim when analyzing microarray cell cycle
data is to find statistical evidence of cyclicity or periodicity,
and then to identify this subset of genes that is responsible
during the cell cycle. However, usually only a small fraction
of the genes under investigation exhibits some evidence of
periodically varying expression during the cycle so that the
overall signal in the data is dominated by non-periodic com-
ponents. Consequently, the problem of identifying the subset
of periodically expressed genes is quite involved and calls for
new estimation methods.

The difficulties of the analysis of cell cycle data have echoed
in a recent controversy about the statistical significance of
results published for some widely used reference data sets.
For instance, Shedden and Cooper (2002a,b) questioned the
presence of generic cell-cycle-specific signal in two data sets
concerning yeast and human cells that were previously ana-
lyzed by other authors, namely Spellman et al. (1998) and Cho
et al. (2001), respectively. Shedden and Cooper suggested that
the cyclicity observed by Cho et al. (2001) was due to chance
fluctuation and criticized that cyclicity results for the yeast
data lacked reproducibility across different synchronization
methods.

In another seminal work, Whitfield et al. (2002) established
a catalog of genes periodically expressed in the human cell
cycle by conducting a series of large-scale microarray experi-
ments. This paper also introduced a statistical test to identify
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genes relevant for the cell cycle. However, their approach
is based on a criterion (‘periodicity score’) that is not only
difficult to interpret but also does not take account of multiple
testing.

These two examples show that a further development of stat-
istical methodology for analyzing genetic time series data is
necessary. The suggested methodology of this study is based
on two simple and computationally inexpensive procedures
for microarray time series analysis. First, we introduce a
graphical exploratory device in order to elucidate the quality
of cell cycle data prior to further analysis. Second, a stat-
istical test is proposed to distinguish periodic signal from an
otherwise random process. Individual genes are then screened
for cell-cycle-specific activity using multiple testing under the
criterion of false discovery rate (FDR). For data analysis pur-
poses, both approaches are then combined to screen cell cycle
microarray data for potentially relevant genes.

The rest of the paper is organized as follows. In the next
section we explain in detail the mathematical and statistical
background of our approach. Subsequently, we validate our
approach using computer simulation. Next, we study molecu-
lar data from 12 gene experiments for yeast, bacterial and
human cell lines (Spellman et al., 1998; Laub et al., 2000; Cho
et al., 2001; Whitfield et al., 2002) where particular emphasis
is given to the controversial issues raised by the Shedden–
Cooper debate. Finally, we compare our approach with other
related frameworks and we present some guidelines for the
analysis of gene expression time series data.

METHODS
Outline
Our approach to the statistical analysis of gene expression
time series data consists of two complementary procedures.
First, we use a graphical device which will be called aver-
age periodogram, for exploring visually and detecting any
periodic signatures in the data. The average periodogram is a
simple extension of the standard periodogram—a tool that is
widely used in time series analysis. Notice that the adjective
‘average’ refers to the averaging which takes place over all
considered genes. Second, for inferring the subset of genes
actually involved in the cell cycle and to quantize the results
obtained by the average periodogram analysis we appeal to an
exact test which is based on Fisher’s g-statistic. This allows
distinguishing periodic from purely random processes while
the tests of significance are carried out for all genes simul-
taneously using the method of FDR for multiple testing of
hypotheses.

Average periodogram
Consider the following simple model of periodic gene expres-
sion through time

Yt = β cos(ωt + φ) + εt (1)

where β is a positive constant, ω ∈ (0, π), φ uniformly distrib-
uted in (−π , π ], and where {εt } is a sequence of uncorrelated
random variables with mean 0 and variance σ 2, independent
of φ. Then, the periodogram, which is denoted by I (ω), and
defined as

I (ω) = 1

N

∣∣∣∣∣
N∑

t=1

Yt exp(−iωt)

∣∣∣∣∣
2

, ω ∈ [0, π ] (2)

can be used to detect periodic components in observed genetic
time series data Y1, . . . , YN , where N is the sample size.
A simple graphical device is to search for significant peaks
in I (ω) by treating ω as a continuous variable or, much more
often, as a discrete variable taking the values in [0, π ],

2πk

N
, k = 0, 1, . . . ,

[
N

2

]
, (3)

known as Fourier frequencies. If a time series has a significant
sinusoidal component with frequency ω0 ∈ [0, π ], then the
periodogram exhibits a peak at that frequency with a high
probability. Conversely, if the time series is a purely random
process, that is to say β = 0 in Equation (1), then the plot of
the periodogram against the Fourier frequencies reduces to a
straight line (Priestley, 1981).

It turns out that the periodogram is a helpful exploratory
device even when several short time series are observed over
the same time span. This is the case for gene expression
measurements where typically many thousands of genes are
assessed in parallel. Suppose that Yit denotes the i-th observed
time series at time t where i = 1, . . . , G and t = 1, . . . , N .
The average periodogram can then be defined as

AI(ω) = 1

G

G∑
i=1

Ii(ω), (4)

where Ii(ω) is the periodogram of the i-th time series.
Then a plot of AI(ωk) against ωk = 2πk/N where k =
0, 1, . . . , [N/2] should reveal whether or not there are peri-
odic components in the data. Note that in a related approach,
Welch (1967) proposed the average periodogram for different
blocks within a single time series whereas here we average
for a fixed block size over multiple time series.

This simple graphical device is justified as follows: if the
data follow a pure random process then the periodogram of
all time series is uniform and therefore the average estim-
ate should reduce to a straight line. However, if there are
a few time series exhibiting strong periodicity, then their
corresponding periodogram ordinates dominate Equation (4).
Therefore, the shape of the otherwise flat average periodo-
gram changes so that any visible peaks should indicate the
presence of a periodic component.

Using computer simulations (see corresponding section
in Results) we have validated these properties and shown
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that the average periodogram is well suited to detect the
presence of even minute amounts of periodically expressed
transcripts. However, it will yield accurate results only
when some of the time series exhibit the identical periodic
behavior.

Fisher’s test
Upon noticing that the periodogram (for a single time series)
contains a peak, then a formal test should be carried out to
determine whether or not this peak is significant or not. Most
of the established time series theory deals with asymptotic
results (Priestley, 1981) under the Gaussian assumption. How-
ever, there is an early result from Fisher (1929) that is valid
also for finite samples, and this is what will be utilized next.
Fisher derived an exact test of the maximum periodogram
coordinate by introducing the g-statistic

g = maxk I (ωk)∑[N/2]
k=1 I (ωk)

. (5)

Large values of g lead to the rejection of the null hypothesis
of purely random process—that is β = 0 in Equation (1). To
calculate the p-value of the test under the null hypothesis it is
helpful to resort at the exact distribution of g which is given by

P(g > x) = n(1 − x)n−1 − n(n − 1)

2
(1 − 2x)n−1

+ · · · + (−1)p
n!

p!(n − p)! (1 − px)n−1, (6)

where n = [N/2] and p is the largest integer less than 1/x.
Hence, if g� is the observed value of g, then Equation (6)
yields a p-value P(g > g�) that allows to test whether a gene
behaves like a purely random process or whether it exhibits
some periodic expression pattern (i.e. whether the maximum
peak in the periodogram is significant).

Gene selection and multiple testing
Turning to the problem of identifying periodically expressed
genes from multiple short time series data we also have to
consider the problem of multiple testing. In the proposed
methodology the g-statistic for each of the investigated genes
is calculated. Hence a sequence ofg-statistics is generated, say
g1, g2, . . . , gG with corresponding p-values p1, p2, . . . , pG

calculated by Equation (6). Subsequently, to answer the
question which of these test statistics are significant we
employ the method of FDR as multiple comparison pro-
cedure (Benjamini and Hochberg, 1995). FDR is a new
approach to the multiple comparisons problem where one con-
trols the expected proportion of false positives rather than
the chance of any false positives (e.g. as in the standard
Bonferroni correction). The FDR threshold is determined
from the observed p-value distribution, and hence is adaptive
to the actual data.
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Fig. 1. Average periodogram for simulated data sets with 2000 time
series (genes) of length 20. The upper part (a) corresponds to a white
noise process for all 2000 genes. In the lower part (b) the batch of
data includes 100 time series with frequency 1.

Accordingly, consider the set of ordered p-values p(1),
p(2), . . . , p(G) with corresponding genes g(1), g(2), . . . , g(G)

and apply the following algorithm:

(1) Let iq be the largest i for which p(i) ≤ i
G

q,

(2) then reject the null hypothesis for all genes g(1),
g(2), . . . , g(iq ).

It can be shown that this procedure controls the FDR at
level q (Benjamini and Hochberg, 1995).

Recipe for analysis
In summary, the time series methodology proposed here
consists of the following simple steps:

(1) Using the average periodogram check graphically
whether or not there are periodic components in
the data.

(2) For each time series calculate Fisher’s g-statistic.

(3) For each of the test statistic calculate the corresponding
p-value.

(4) Identify the genes for which the null hypothesis is rejec-
ted under the desired FDR level (e.g. q = 0.05) as
these are the genes that exhibit a statistically significant
periodic component in the periodogram.

All algorithms are implemented in the R package GeneTS.
It is freely available from the web page http://www.stat.
uni-muenchen.de/∼strimmer/software.html and is distributed
under the terms of the GNU General Public License.
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Fig. 2. Sensitivity of the average periodogram with regard to sample size (N = 5, . . . , 60, with 100 cyclic and 1900 random genes).

RESULTS

Simulated data
First, we use simulated data to validate the proposed meth-
odology. To investigate the accuracy and sensitivity of the
average periodogram and the FDR gene selection strategy
using the g-statistic we simulated time series data for the
expression ofG = 2000 genes as follows. Sequences of length
N = 10, 20, 50, 100 and 200 were either drawn from the

normal distribution with mean 0 and variance 1 or generated
according to

Yt = cos(ωt) + sin(ωt) + εt for t = 1, . . . , N (7)

with normal noise εt and with one or more dominant fre-
quencies (e.g. ω = 1, 2). The number of genes realized with a
periodic expression was varied between 0 and 200 (i.e. 0–10%
of all simulated genes).
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Fig. 3. Sensitivity of the average periodogram with respect to the number of cyclic genes (N = 20, with 0–125 cyclic genes and 2000–1875
random genes).

Average periodogram In Figure 1, the average periodogram
for a completely random data set with N = 20 (a) is con-
trasted with a plot for a similar data set but containing 5%
periodic genes of frequency ω = 1 (b). The upper plot (a)
shows a flat line whereas the lower plot (b) exhibits a peak
at ω = 1. This indicates that the average periodogram can
detect the presence of a dominant frequency in a small subset
of genes even if the length of each time series is not long. To

investigate this further, we studied the sensitivity of the aver-
age periodogram with respect to the fraction of cyclic genes
in the data set and the sequence length N . Figure 2 shows
results from the analysis of data sets with N ranging from 5
time points to 60 longitudinal measurements per gene, and
with 5% periodic genes. From N as low as 15 the peak at the
dominant frequency is clearly visible. Figure 3 illustrates the
impact of the size of the subset of cyclic genes in the data on
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Fig. 4. Frequency resolution of the average periodogram. Plots are shown for simulated data for various true frequencies (ω =
2, 1, 1/2, 1/4, . . . , 1/128, N = 40, with 100 cyclic and 1900 random genes).

the average periodogram. At sample size N = 20 the pres-
ence of periodicity is detected already even when only 1.5%
of all genes are cyclic. With larger sample size this threshold
decreases further (data not shown).

Next, we investigated the frequency resolution of the
periodogram and its impact on estimating the dominant fre-
quency ω. In a series of simulations we generated data of
different lengths N and assumed a variety of true frequen-
cies (ω = 2, 1, 1/2, 1/4, . . . , 1/128). Figure 4 shows the

results for N = 40 and 100 cyclic genes out of a total of
2000 genes. From Equation (3) the smallest positive estimate
of ω for a time series of length N is ωmin = 2π/N . This can
be seen clearly in Figure 4 where the average periodogram
detects the true values of ω above and close to the threshold
2π/40 ≈ 0.15. Smaller values of ω cannot be inferred with
the average periodogram (Fig. 4, bottom row).

In further simulations (data not shown) we additionally
considered the occurrence of multiple peaks in the average
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periodogram, i.e. the existence of two or more domin-
ant frequencies. The resulting plots were similar as above,
and the respective dominant frequencies were detected within
the resolution limit. Hence, our simulations confirmed that
the average periodogram is well suited as an exploratory
device to detect periodic components even in moderately short
multivariate time series data.

Gene selection Subsequently, we investigated the accur-
acy and power of the exact g-test, combined with FDR
multiple testing, to distinguish generically periodic from ran-
dom genes. Data were simulated as above with 100 periodic
genes for different sequence lengths (N = 10, 20, 40, 45,
50, 100, 200). In each case we computed a p-value for each
gene according to Equation (6) and applied the FDR rule to
determine which genes were considered to exhibit cyclicity
for a desired FDR level (q = 0.15, 0.10, 0.05, 0.01, 0.001).

The results are shown in Table 1. For sample sizes smaller
than 40 measurements per gene, the power of the test to distin-
guish between a purely random and a periodic process is weak.
For time series of this length the g-test underestimates the
true number of periodically expressed genes. However, from
40 sample points onwards Fisher’s g-test allows to identify
most cyclic genes. Moreover, even when non-randomness
cannot be rejected formally, the p-values can still be used
to rank and thus to compare the genes relative to each other.
As an example, the last line in Table 1 shows the number Z

of true periodic genes among the first 100 genes ranked using
the p-value. Z is surprisingly large even where the FDR test
is formally failing.

We repeated this experiment several times using different
fractions of cyclic genes (data not shown). Interestingly, the
sample size threshold of approximately N = 40 was also
valid for these data sets, and thus seems to be independent of
the number of periodic genes in the data. Generally, however,
the threshold will vary depending on the relative amplitude
of the noise in the data [i.e. on the error term in Equation (7)].

Molecular data
We now illustrate the theory by application to some real
data which are available either on the web or in public
databases. The number of experiments is 12, see Table 2
for an overview. The study includes gene expression data
from experiments with small sequence length (N ≈ 10),
such as the Caulobacter crescentus bacterial cell cycle (Laub
et al., 2000) and the human fibroblasts data (Cho et al.,
2001), as well as those with a larger number of meas-
ured time points (N ≈ 20–50), e.g. from yeast (Spellman
et al., 1998) and human cancer cell line experiments (Cho
et al., 2001). We adopt the normalization and prescreening
procedures of the aforementioned papers. In particular, for
the yeast data set cdc15, missing time points (columns)
were imputed by interpolation for all genes. For all data

Table 1. Number of inferred periodic genes using the FDR procedure

q N

10 20 40 45 50 100 200

0.15 3 21 65 103 118 121 117
0.10 1 13 41 97 114 111 111
0.05 1 3 30 90 107 104 104
0.01 0 2 1 78 99 99 100
0.001 0 0 0 45 88 99 99

Z 10 52 64 93 98 100 100

The simulations were carried out as for Figure 1, with 1900 random genes and 100 peri-
odic genes. N is the sequence length, q the desired FDR level expected type I error and
Z the number of correctly identified periodic genes among the first 100 genes ranked
according to their p-values.

Table 2. Data sets analyzed in this paper and results of FDR test

Cell type Experiment N G C C/G Source
(%)

Yeast cdc15 24 4289 766 17.9 (Spellman
et al., 1998)Yeast cdc28 17 1365 105 7.7

Yeast alpha 18 4415 468 10.6
Yeast elution 14 5695 193 3.4

C.crescentus bacteria 11 1444 44 3.0 (Laub et al.,
2000)

Human
fibroblasts

N2 13 4574 0 0 (Cho et al.,
2001)

Human
fibroblasts

N3 12 5079 0 0

Human HeLa score1 12 14 728 0 0 (Whitfield
et al., 2002)Human HeLa score2 26 15 472 134 0.9

Human HeLa score3 48 39 724 6043 15.2
Human HeLa score4 19 39 192 56 0.1
Human HeLa score5 9 34 890 0 0

Notation: N is the sample size, G the total number of genes, C the number of periodic
genes that are statistically significant for a FDR level of q = 0.05.

considered, genes with missing values and constant expres-
sion levels for all sample points were removed from the
study.

Yeast cell cycle The yeast Saccharomyces cerevisiae
microarray experiments were performed by Spellman et al.
(1998) and have been used as benchmark data set in previous
studies. Spellman et al. (1998) produced four gene expression
experiments data sets using three different cell cycle synchron-
ization techniques, i.e. temperature arrest (cdc15, cdc28),
alpha factor arrest (alpha) and elutriation synchronization
(elution). The latter experimental technique is said to be
the least stressful for the yeast cells, whereas the other two are
supposed to perturb the internal state of the cells (Shedden and
Cooper, 2002b).
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Fig. 5. Average periodogram for the four yeast data sets cdc15, cdc28, alpha and elution (see also Table 2).

The average periodograms computed for the data of the
four experiments are shown in Figure 5. These plots indicate
that for all synchronization techniques there is a clear signal
of periodicity. The FDR procedure with an expected type I
error (FDR level) of q = 0.05 yields the results of Table 2.
For the cdc15 experiment there are 766 genes with statist-
ically significant periodic variation. This is in line with the
approximately 800 periodically expressed genes identified in
the original work (Spellman et al., 1998). However, for the
other three techniques the number of periodically expressed
genes was lower (Table 2). In particular, the elution data
contained only 3.4% cyclic genes which supports the hypo-
thesis of Shedden and Cooper (2002b) that the elution data
provided only little statistically significant information with
regard to cell cycle regulation.

As noted above, it is possible that the cells may be per-
turbed, and so it is difficult to distinguish cell-cycle-specific
variation from an artifact of the method used to synchronize
the cells. Shedden and Cooper (2002b) therefore maintained
that the periodicity in the cdc15, cdc28 and alpha data
sets was only apparent and rather due to stress response than to
cell cycle activity. In order to verify this claim, we compared
the top 100 genes identified as periodic in the cdc15, cdc28
and alpha experiments. While plots of the expression levels
through time of these genes did confirm their periodicity, only
four genes were identical across different synchronization
methods. Therefore, if we subscribe to the assumption that
the elution data set represents the least perturbed data set,
this lends additional support to the arguments presented in
Shedden and Cooper (2002b) against the presence of a large
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Fig. 6. The nine statistically most significant periodic genes in the elution data set according to p-values from Equation (6).

number of generic periodic cell-cycle-regulated genes in the
data of Spellman et al. (1998). Nevertheless, our analysis does
confirm 193 periodically expressed genes in elution and
the temporal expression patterns of the nine statistically most
significant periodic genes in elution can be inspected in
Figure 6. However, the problem still exists as to whether these
periodicities that we have identified in elution are due to
artifacts or correspond to real cell-cycle-regulated expression
pattern.

Bacterial cell cycle The next example is about gene
expression data from synchronized cultures of the bacterium
C.crescentus (Laub et al., 2000). The corresponding data mat-
rix bacteria contains information on 1444 genes over 11
time points, and is therefore among the shortest time series
considered here. The average periodogram computed for this
data set, shown in Figure 7, is clearly indicative of the pres-
ence of cell-cycle-specific genes. It is worth noting that this
contrasts positively with other microarray data of comparable
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Fig. 7. Average periodogram for the C.crescentus bacteria data
set (also Table 2).

sample size that are investigated elsewhere in this paper (N2,
N3, score5) and that did not show any signs of periodicity
in the average periodogram.

The suitability of this data set for statistical analysis was
further confirmed in the application of the g-test to identify
periodically expressed genes. Despite the availability of only
11 measurements per gene, 44 open reading frames were
found where the null hypothesis of a random non-cyclic pro-
cess could be ruled out on a FDR level of q = 0.05. For
illustration, the expression levels through time of the nine
genes with the smallest p-values are plotted in Figure 8. The
complete list contains key regulatory genes such as crtA, indir-
ectly regulated genes (e.g. for the flagella biogenesis) and
repressors (e.g. lexA). Thus our results broadly confirm the
findings in Laub et al. (2000). However, statistical support
is provided only for the 44 top-ranked genes. We could not
verify the claim of 553 cell-cycle-regulated genes in Laub
et al. (2000). However, given the sparsity of available time
points, this is not surprising.

Human fibroblasts Next, we consider data from cell cycle
experiments using human fibroblasts cells. The design of the
microarray experiments is described by Cho et al. (2001). The
resulting data sets are two short time series N2 and N3 with
13 and 12 measurements per gene, respectively.

The results from an explorative inspection of these data
using the method of average periodogram are shown in
Figure 9. To complement the plots for N2 and N3, we also
show in Figure 9 the average periodogram for completely
random data simulated with the same number of genes and

sample points as in N2 and N3. Interestingly, we do not find
any evidence of periodic gene expression in the data that would
be different from a purely stochastic process. A subsequent
formal test using Fisher’s g-statistic and FDR multiple testing
also did not detect any periodicity.

This confirms Shedden and Cooper (2002a) who first raised
doubts on biological grounds whether the cell cycle data from
the human fibroblast experiments of Cho et al. (2001) was
suited for statistical analysis. Note that the negative results
cannot simply be due to the short sample size: the similarly
short elution data from the yeast experiment showed clear
evidence of periodicity both by graphical inspection and by
formal testing. Another counter example is the even shorter
bacteria data set discussed in the previous section. Our
results therefore also indicate that there may have been a
serious experimental problem, for instance failed forced cell
synchronization (Cooper, 2003).

Human cancer cell line
In a pivotal paper, Whitfield et al. (2002) described a large-
scale study on human cancer cells (HeLa S3) and established a
catalog of human cell-cycle-regulated genes (http://genome-
www.stanford.edu/Human-CellCycle/HeLa). Five experi-
ments (score1, score2, score3, score4, score5)
were conducted using microarray chips with 23 000–
43 000 probes measuring the expression levels of up to
approximately 30 000 genes. Three different cell cycle
synchronization methods were used, a double thymidine
block (score1, score2, score3), thymidine fol-
lowed by arrest in mitosis with nocodazole (score4)
and mitotic shake-off using an automated cell shake
(score5). Measurements were taken for up to 48
time points (score3), which makes this study one of
the most extensive microarray time series experiment
so far.

The results for the data sets are summarized in Table 2 and
in Figure 10. Visual exploration using the average periodo-
gram gave clear evidence for periodicity in all data sets but
score5 which yields to a flat line (Fig. 10). In the sub-
sequent gene selection test with an assumed FDR level of
q = 0.05 the results were also similarly heterogenous. As
expected score5 did not contain any statistically signific-
ant periodic genes. The same was true for score1 despite
a promising average periodogram, whereas score2 and
score4 contained a small fraction of detected periodic tran-
scripts. For the longest time series score3, our FDR test
detected a large number of statistically significant periodic
elements.

These differences are likely to be mainly a consequence of
sample size. For example, the mitotic shake-off synchroniza-
tion used in score5 is probably the least perturbing method
but the short length of this time series (9 time points) pro-
hibits detection of significant periodic genes. Similarly, as
score3 uses the same synchronization as score1, the lack
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Fig. 8. The nine statistically most significant periodic genes in the bacteria data set.

of inferred periodic genes in score1 must be a consequence
of the small number (12) of measurements per gene.

Compared with the original analysis we were able to identify
a substantial amount of additional periodic genes in score3.
Figure 11 shows as an example the expression-through-time
plots of the nine probe elements in score3with the smallest
overall p-values found by our method. While these elements
are clearly periodic they are not designated as such in the
online database of Whitfield et al. (2002) at http://genome-
www.stanford.edu/Human-CellCycle/HeLa. One reason for
this discrepancy is that in contrast to the approach by Whitfield
et al. (2002), our method is not based on the amplitude differ-
ence between the maximum and minimum expression level of

each gene through time and, therefore, it also considers genes
with small but still statistically significant amplitude changes.

Whitfield et al. (2002) tabulate their periodicity score and
related test results for a number of selected inferred genes
(their Table 1) and for cell-cycle-regulated genes known
from the literature (their Table 2). First, we re-analyzed
genes from their Table 1 using our approach, with the res-
ults shown in Table 3. Not all genes considered periodic
in Whitfield et al. (2002) test positive in our setting. For
instance genes PRIM1 and PSEN1 fail our test procedure.
Interestingly, a simple plot of their expression levels against
time reveals that the expression of these two genes does
in fact exhibit a fairly random rather than a clear periodic
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Fig. 9. Average periodogram for the two human fibroblast data sets N2 and N3, compared with simulated random data (also Table 2).

pattern (Fig. 12). Second, we have also tested probes for
all genes listed in Table 2 of Whitfield et al. (2002). Our
results (data not shown) generally concur with those of
Whitfield et al. (2002). However, in contrast to the approach
used by these authors our method detect periodicity in the
CDKN1A gene, in Histone H3 elements and rejects cyclicity
for CDKN2D.

Finally, we would again like to add a word of caution.
While periodic results may be obtained, as pointed out by
Shedden and Cooper (2002a,b), such periodicities may be due
to perturbations that have nothing to do with the cell cycle.
What is most problematic about the data of Whitfield et al.
(2002) is that the flow-cytometric data presented to support
synchronization do not indicate any unperturbed cell syn-
chronization. The initial cells in double-thymidine and the

thymidine–nocodazole experiments have too much DNA per
cell, and the subsequent samples do not indicate anything
near appropriate synchronization. Hence, it is very likely
that many of the genes identified by Whitfield et al. (2002),
as well as the genes identified here, may be due to cell
perturbations and not due to variations within the normal cell
cycle.

DISCUSSION
We have presented two new promising tools for microarray
time series analysis. First, the average periodogram was sug-
gested as an exploratory device to assess whether a data set
contains a signature indicative of the presence of periodically
expressed transcripts. Second, we have developed a formal
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Fig. 10. Average periodogram for the five human HeLa data sets score1, score2, score3, score4 and score5 (also Table 2).

statistical test for gene selection based on Fisher’s g-statistic
and FDR multiple testing that allows to screen for individual
periodic genes.

A novelty of our approach is that it combines visual inspec-
tion with a rigorous and exact testing procedure. Unlike most
methods in classical time series analysis, our approach is also
applicable to data sets with a comparatively small number
of measurements per gene. The average periodogram as a
non-parametric method of obtaining frequency estimators is

suited to detect periodic signal in very short time series as
it takes advantage of the parallel structure of the data. This
distinguishes this method from other visualization strategies,
such as geometric trajectories and correspondence analysis
(Fellenberg et al., 2001)

The g-statistic requires works on the level of the indi-
vidual gene and hence requires more sample points per
gene than the average periodogram. However, unlike other
related methods (Whitfield et al., 2002), it allows one to
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Fig. 11. The nine statistically most significant periodic genes in the score3 data set.

detect statistically significant periodically expressed genes
even with small amplitudes changes and is well defined for
finite samples. Finally, the application for the method of FDR
takes account of the multiple testing procedure.

While our approach performed well in identifying genes
with periodic variation in the application to simulated and to
12 large microarray data sets, there are also some potential
drawbacks. First, the g-statistic assumes as null-model a
purely Gaussian process. It is unclear whether this hypothesis
is a valid assumption for microarray data. However, high-level

analysis such as gene selection will typically take place on
preprocessed and transformed data [e.g. log-transformed to
stabilize variance, see Strimmer (2003) for a list of refer-
ences] so that the underlying stochastic processes may be
well approximated by Gaussian assumptions. Second, the
investigated genes are usually correlated and hence do not
evolve independently. This may have an impact on our ana-
lysis. While it appears that the assumption of independence
is not critical in the average periodogram or in FDR multiple
testing, this would deserve further study.
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Fig. 12. Expression-through-time plot of score3 genes PRIM1 and PSEN1 [top row, periodic in Whitfield et al. (2002), not considered
periodic in this paper] and STK15 and CENPE (periodic, bottom row).

From the data analysis presented in this paper we conclude
mainly two things. First, there seems to be a remarkable
gradient of signal quality in the data sets publicly available.
Looking at data sets with identical sample size we find some
very well suited for statistical analysis (bacteria) while
others (N2, N3) appear to contain mostly random noise.
Hence, sample size is not everything but the experimental
background, in particular the synchronization approach,
seems to be at least equally important, see e.g. Cooper
(2003) for a critique of forcing synchronization methods. Thus
caution needs to be taken in the biological interpretation,
as to whether the detected genes are linked to cell-cycle-
specific tasks or to artifacts of the experiment. Second,
having said this, we are bound to underestimate the num-
ber of cyclic genes in statistical test for small-length data
sets. From our preliminary simulation results for the g-
statistic, as well as from the analysis of the human HeLa

cell line data, it would seem that for a reliable detection
of cell-cycle-regulated genes at least 40 measurements per
gene are desirable. We recommend that these considerations
should be taken into account when planning future cell cycle
studies.
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Table 3. Test of periodicity of selected genes [in Table 1 in Whitfield et al.
(2002)]

Gene Periodic in p-value

Whitfield et al. (2002) This paper

STK
√ √

8.72e−09
PLK

√ √
1.78e−08

CENPE
√ √

4.89e−09
CKS2

√ √
5.29e−08

CCNA2
√ √

4.41e−08
CDC6

√ √
7.27e−11

CCNB1
√ √

4.79e−10
E2F1

√ √
2.17e−09

PCNA
√ √

8.20e−10
CIT

√ √
2.04e−03

GOLGIN-67
√ √

2.36e−05
ORC1

√ √
8.90e−10

PRIM1
√

— 9.92e−03
VCL

√ √
2.20e−06

BRCA1
√ √

6.84e−04
CCNE2

√ √
2.68e−03

PSEN1
√

— 1.16e−02
CDC42

√ √
9.67e−06

ZNF162 — — 3.59e−02
YY1 — — 1.79e−01

p-values are computed using the score3 data set. For genes with multiple probes the
result with the smallest p-value is reported. The FDR testing procedure gave a critical
p-value of p = 0.0076 for a desired FDR level of q = 0.05. See also Figure 12 for a
expression-through-time plot of of the non-periodic genes PRIM1 and PSEN1.
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