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ABSTRACT
Motivation:This paper presents a global test to be used for the
analysis of microarray data. Using this test it can be determ-
ined whether the global expression pattern of a group of genes
is significantly related to some clinical outcome of interest.
Groups of genes may be any size from a single gene to all
genes on the chip (e.g. known pathways, specific areas of the
genome or clusters from a cluster analysis).
Result: The test allows groups of genes of different size to be
compared, because the test gives one p-value for the group,
not a p-value for each gene. Researchers can use the test
to investigate hypotheses based on theory or past research
or to mine gene ontology databases for interesting pathways.
Multiple testing problems do not occur unless many groups are
tested. Special attention is given to visualizations of the test
result, focussing on the associations between samples and
showing the impact of individual genes on the test result.
Availability: An R-package globaltest is available from
http://www.bioconductor.org
Contact: j.j.goeman@lumc.nl

1 INTRODUCTION
The popularity of microarray technology has led to a surge
of new statistical methods aimed at finding differentially
expressed genes. A sophisticated methodology has been
developed to counter the multiple testing problem that occurs
when testing thousands of genes simultaneously.

This paper looks at the problem of finding differentially
expressed genes from a different point of view. It presents
a global test that can be used to determine whether some
pre-specified group of genes is differentially expressed. This
allows the unit of analysis to be shifted from individual genes
to groupings of genes. The question addressed is whether
the gene expression pattern over the whole group of genes
is related to a clinical outcome. It does not matter for the test
whether the group consists of up- or downregulated genes or
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is a mixture of both. The clinical outcome may be a group
label or a continuous measurement.

Often researchers who conduct microarray experiments
have one or more specific groups of genes that they are espe-
cially interested in, e.g. certain pathways or areas on the
genome. Even if this is not the case, many pathways are at
least partially known from the scientific literature and it could
sometimes be more worthwhile to test a limited number of
pathways or gene ontology classes than an enormous number
of individual genes. Other potentially interesting groups of
genes to be tested include the clusters from a cluster analysis
or all genes on the chip.

The first part of the paper presents the mathematical details,
starting with the empirical Bayesian generalized linear model
on which the test is based. Connections to other methods (esp.
prediction methods) are elaborated.

In the second part two elaborate applications are presented,
showing different aspects of the test. One is the well-known
public data set by Golub et al. (1999) with Affymetrix arrays
of patients with Acute Lymphoic Leukemia (ALL) and Acute
Myeloid Leukemia (AML). Here the test is applied to the
set of all genes to show an enormous difference in overall
expression pattern. The second is a smaller in-house data set
with oligonucleotide arrays of cell lines of which some were
exposed to a heat shock. The test is applied to two groups of
genes associated with heat shock.

In the applications, special attention is given to visualiza-
tions of the test result which make the results easier to interpret
for the researcher. These include graphs to search for outlying
samples and diagnostic plots to judge how much each indi-
vidual gene contributes to a significant test result for the group.

2 THE DATA
Proper normalization of data is very important for a meaning-
ful analysis of microarray data. The problem of normalization
generates an enormous amount of literature and is fast becom-
ing a statistical specialization by itself. In this paper we will
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simply assume that the data have been normalized beforehand
in a way that fits the experimental design and that possible con-
founding effects of array, dye etc. have been removed as well
as the experimental design allows. However, missing values
are allowed (see Section 8).

We assume we have normalized gene expression measure-
ments of n samples for p genes. Of these p genes, there is
a subgroup of m (1 ≤ m ≤ p) genes, which we want to
test. It is important that the clinical outcome was not used
in the selection of these m genes. Define X = (xij ) as the
n × m data matrix containing only the m genes of interest.
Note that we follow the statistical convention to use the rows
for the samples and the columns for the genes, instead of the
transposed notation which is common in microarray literature.

Define Y as the clinical outcome (an n × 1 vector). Usually
Y will be a 0/1 group label (e.g. AML versus ALL), but it may
also be a continuous measurement.

3 THE MODEL
There is a close connection between finding differentially
expressed genes and predicting the clinical outcome. If a
group of genes can be used to predict the clinical outcome,
the gene expression patterns must differ for different clinical
outcomes. This duality will be used to derive the test.

Modelling the way in which Y depends on X, we adopt the
framework of the generalized linear model (McCullagh and
Nelder, 1989), which includes linear regression and logistic
regression as special cases. In this model there is an intercept
α, a length m vector of regression coefficients β and a link
function h (e.g. the logit function), such that

E(Yi |β) = h−1


α +

m∑
j=1

xijβj


 . (1)

Here βj is the regression coefficient for gene j (j = 1, . . . , m).
Testing whether there is a predictive effect of the gene

expressions on the clinical outcome is equivalent to testing
the hypothesis

H0 : β1 = β2 = · · · = βm = 0,

that all regression coefficients are zero. It is not possible to
test this hypothesis in a classical way (with β non-stochastic)
because m might be large relative to n. In this case there are
too few degrees of freedom.

However, it is possible to test H0 if it is assumed that
β1, . . . , βm are a sample from some common distribution with
expectation zero and variance τ 2. Then a single unknown para-
meter τ 2 determines how much the regression coefficients are
allowed to deviate from zero. The null hypothesis becomes
simply

H0 : τ 2 = 0.

Note that the choice of τ 2Im (with Im the m×m identity mat-
rix) as the covariance matrix of the stochastic vector β is not
imperative. It is the most convenient choice which will yield a
test that treats all genes on an equal footing. Any other m×m

covariance matrix may be used to replace Im, if desired, result-
ing in a different test with power against different alternatives.
For example a different diagonal matrix can be taken to reflect
prior beliefs in the greater reliability of certain genes. Assum-
ing positive correlations between the elements of β results in
more power against alternatives where all β coefficients have
the same sign.

The model (1) with β random may be looked at in various
ways. Firstly the distribution of β can be seen as a prior, with
unknown shape and with a variance depending on an unknown
parameter. Viewed in this way the model (1) is an empirical
Bayesian model.

A second interpretation is to view the model as a penal-
ized regression model, in which the estimated coefficients are
shrunk towards a common mean. The log likelihood of Y can
be written

loglik(Y , β) = loglik(Y |β) + loglik(β),

where the first term on the right is the likelihood of the ordin-
ary generalized linear model and the second term is known
as the penalty. Well-known examples of penalized regres-
sion include ridge regression (Hoerl and Kennard, 1970),
which arises when β is normally distributed and the Lasso
(Tibshirani, 1996), which is a variant where β has a double
exponential distribution. Ridge regression with a logistic
link function has been described by Le Cessie and Van
Houwelingen (1992) and applied on microarray data by Eilers
et al. (2001) with promising results.

There is a third interpretation which will be the basis for
the test in the next section. For this we write ri = ∑

j xijβj ,
i = 1, . . . , n. Then ri is the linear predictor, the total effect
of all covariates for person i. Let r = (r1, . . . , rn), then r is
a random vector with E(r) = 0 and Cov(r) = τ 2XX′. The
model (1) simplifies to

E(Yi |ri) = h−1(α + ri). (2)

This is a simple random effects model, in which each sample
has a random effect that influences its outcome. The cov-
ariance matrix between the random effects is known and is
determined by the gene expression levels. If τ 2 > 0, two
samples i and j with similar gene expression patterns have
correlated random effects ri and rj and therefore have a greater
probability of having similar outcomes Yi and Yj than samples
with less similar expression patterns.

4 THE SCORE TEST
A test for testing H0 in the model (2) is discussed in Le Cessie
and Van Houwelingen (1995) and Houwing-Duistermaat et al.
(1995). The marginal likelihood of Y in this model depends on
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only two or three parameters. These are α and τ 2 and some-
times, depending on the specific model, an extra dispersion
parameter (e.g. the residual variance σ 2 of the outcome Y in
an ordinary linear regression model).

In this section, we first suppose that α and the dispersion
parameter are known (the case where they are unknown is
dealt with in Section 6). In this case a score test for τ 2 = 0
can be calculated by taking the derivative of the loglikelihood
with respect to τ 2 at τ 2 = 0, divided by the standard deviation
of this derivative under H0. This yields the test statistic

T = (Y − µ)′R(Y − µ) − µ2trace(R)[
2µ2

2trace(R2) + (µ4 − 3µ2
2)

∑
i R2

ii

]1/2
,

where R = (1/m)XX′ is an n × n matrix proportional to the
covariance matrix of the random effects r , µ = h−1(α) is
the expectation of Y under H0 and µ2 and µ4 the second and
fourth central moments of Y under H0.

It can be shown that if H0 is true, T is asymptotically nor-
mally distributed. However, it is often more convenient to use
the equivalent, much simpler test statistic

Q = (Y − µ)′R(Y − µ)

µ2

which has expectation

E(Q) = trace(R) (3)

and variance

Var(Q) = 2trace(R2) +
(

µ4

µ2
2

− 3

) ∑
i

R2
ii . (4)

The statistic Q is also asymptotically normally distributed, but
it is a quadratic form which is non-negative, because R is non-
negative definite. Therefore for small sample sizes a better
approximation to the distribution of Q is a scaled χ2 distri-
bution cχ2

ν , where c is a scaling factor and ν is the number of
degrees of freedom. This has been shown using simulations in
Le Cessie and Van Houwelingen (1995). Equating the mean
and variance of cχ2

ν and Q yields c = var(Q)/[2E(Q)] and
ν = 2[E(Q)]2/var(Q).

Note that the statistic Q and its distribution are easy to cal-
culate for high-dimensional data because they only involve
the small n × n covariance matrix R = (1/m)XX′ between
the samples and never the potentially large m × m covariance
matrix (1/n)X′X between the genes. Testing a large number
of genes therefore never gives computational problems.

5 PROPERTIES OF THE TEST
There are two ways of rewriting the test statistic Q to gain
a better intuitive understanding of the test. The first can be
used to show the influences of the genes, the second the
influence of the samples. These two decompositions of Q

will be the basis of various illustrative graphs in Sections 9
and 10. Furthermore, the fact that the test is a score test also
gives the test a nice optimality property.

For the first interpretation rewrite

Q = 1

m

m∑
i=1

1

µ2
[X′

i (Y − µ)]2

where Xi(i = 1, . . . , m) is the n × 1 vector of the gene
expressions of gene i. Note however that the expression
Qi = (1/µ2)[X′

i (Y − µ)]2 is exactly the test statistic that
would have been calculated for a group of genes consisting
only of the i-th single gene in the group of interest. Therefore
the test statistic Q for a group of m genes is just the average
of the statistics Q1, . . . , Qm, calculated for the m single genes
that the group consists of.

Each Qi can again be written as (a multiple of) the squared
covariance between the expression pattern of the gene and the
clinical outcome. Because the averaging is done at this squared
covariance level, genes with large variance have much more
influence on the outcome of the test statistic Q than genes
with small variance. This is a nice property in the context of
microarray analysis, because low-variance genes are generally
seen as uninteresting, as it usually implies that there is little
biological variation in these genes.

For a different look at the test the statistic Q can be written
in the following way

Q = 1

µ2

n∑
i=1

n∑
j=1

Rij (Yi − µ)(Yj − µ) (5)

as the sum over all terms of the Hadamard (term-by-term)
product of the matricesR and (Y−µ)(Y−µ)′. The matrixR =
(1/m)XX′ is the covariance of the gene-expression patterns
between the samples, and the matrix (Y − µ)(Y − µ)′ is the
covariance matrix of the clinical outcomes of the samples. The
statistic Q therefore has a high value whenever the terms of
these two matrices are correlated, that is when the covariance
structure of the gene-expressions between samples resembles
the covariance structure between their outcomes. The score
test can therefore be seen as a test to see whether samples
with similar gene-expressions also have similar outcomes.

An interesting property of a score test in general is that it
maximizes the average power against all alternatives where
the true value of the parameter is small. Equivalently, in this
case it has optimal power against the range of alternatives
Rt = {‖β‖2 ≤ t2} as t2 → 0. As Rt is an m-ball it contains
relatively many alternatives with all β’s non-zero but small,
therefore the test is focussed mostly on detecting alternatives
where many genes play a part. This is a desirable property
because the test is designed to say something about the group
of genes as a whole.
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6 SOME TECHNICAL ADJUSTMENTS
In the previous section it was assumed that α (and therefore µ)
was known and that the dispersion parameter (if any) was
also known. In practice this is never true. In this section some
adjustments of the test are presented which is correct for using
estimated parameters.

First suppose that µ is unknown, but µ2 and µ4 are known.
It is easily verified that

Y − µ̂ = (I − H)(Y − µ),

where H = (1/n)11′ is the hat matrix for estimation of
the mean µ of Y and 1 is a length n column vector of
ones. Therefore calculating Q using µ̂ instead of µ results
in calculating

Q = 1

µ2
(Y − µ̂)′R(Y − µ̂)

= 1

µ2
(Y − µ)′(I − H)R(I − H)(Y − µ).

The mean and variance of Q are therefore simply given by (3)
and (4) with R replaced by R̃ = (I − H)R(I − H). This is
equivalent to centering the genes so that the average value of
each gene over the samples is set to zero.

Correction for estimation of µ2 is not so easy. Simply repla-
cing µ2 by its estimate µ̂2 would generally lead to a test that
is too conservative, because the numerator (Y − µ̂)′R(Y − µ̂)

and the denominator µ̂2 = (1/n)(Y−µ̂)′(Y−µ̂) of Q are pos-
itively correlated, so that the variance of Q is overestimated
if this dependency is not taken into account.

Corrections for the variance of Q are available from
Houwing-Duistermaat et al. (1995) for a the linear regres-
sion model (continuous clinical outcome) and for the logistic
regression model (two groups). For a linear regression Q =
(Y − µ̂)′R(Y − µ̂)/σ̂ 2, which has E(Q) = trace(R̃) and
variance

Var(Q) = 2

n + 1

[
(n − 1)trace(R̃2) − trace2(R̃)

]
.

For the logistic regression model Q = (Y − µ̂)′R(Y − µ̂)/

[µ̂(1 − µ̂)]. This also has E(Q) = trace(R̃) and its variance
can be approximated by

Var(Q) ≈ 1 − 6µ + 6µ2

µ(1 − µ)

[
n∑

i=1

R̃2
ii − 1

n
trace2(R̃)

]

+ 2trace(R̃2) − 2

n − 1
trace2(R̃). (6)

7 HANDLING SMALL SAMPLE SIZE
If the sample size is small the asymptotic formula’s used to
calculate the p-value may not be correct. In this case a differ-
ent approach could be to find the p-value using a permutation

method. The empirical distribution of Q can be found by
calculating Q for all permutations of the outcome Y or a ran-
dom sample from these. The permutation method also works
for other distributions of Y than normal or Bernoulli.

A drawback of the permutation method is that it is hard to
demonstrate low p-values. Showing that a p-value is lower
than 10−7 for example, needs at least 107 permutations. Often
if the sample size is small, the total number of permutations
is not large enough to attain very low significance levels. The
minimum sample size needed to attain α = 0.05 can be calcu-
lated as 2 × 4 samples if Y takes two values and five samples
if Y is continuous. The permutation method is illustrated in
Section 9.

It is important to note that using permutations one calcu-
lates the distribution of Q under H0 conditional on the set
of observed outcomes in Y . For Y a group label this means
that the sizes of the groups are taken as fixed; for a continu-
ous outcome each value in the observed vector Y is assumed
to occur exactly once. Therefore the permutation version
is strictly speaking a different test (although asymptotically
equivalent). The expectation and variance of Q under the null
hypothesis and the p-value can therefore be systematically
different, although in practice the difference is usually small
except for very small samples.

8 HANDLING MISSING VALUES
Missing values for some genes in the data set are not a problem.
If some genes with missing values are too important to be
left out of the analysis, the missing values can be handled
by simply imputing the mean expression value of the same
gene from the other samples (or the K-nearest samples). This
allows the matrix R̃ of covariance between the gene expression
patterns of the samples to be calculated using all available
information. A nice property of this imputation is that genes
or samples with many missing values get a small variance and
are therefore automatically given less weight in the analysis.

9 APPLICATION: AML/ALL
The first application is the well-known data set by Golub
et al. (1999). These data were collected for the purpose of
distinguishing between AML and ALL on the basis of gene
expression.

There were microarray data of 7129 genes from 27 ALL and
11 AML patients. A pre-selection of genes was made in the
same manner as in earlier publications on this data set (Golub
et al., 1999; Eilers et al., 2001), truncating very high and very
low expression levels and removing genes whose truncated
expression showed no variation. This left 3571 genes. There
were no missing values.

This data set will be used here to illustrate the use of the
score test on all genes. The null hypothesis to be tested here
is whether AML and ALL patients are different with respect
to their overall gene expression pattern.
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9.1 Test result
The ALL patients were coded 0 and the AML patients 1. Now
µ̂ = 11/38, which was used to calculate

Q ≈ 13.2.

Under the null hypothesis H0 the distribution has E(Q) ≈
2.88 and s. e. (Q) ≈ 0.78, calculated using (6). This results
in a rejection of H0 with a p-value ≈ 1.6 × 10−14, calculated
on the cχ2

ν -distribution with c ≈ 0.11 and ν ≈ 27.0.
This shows that AML and ALL patients do indeed differ

enormously with respect to their overall gene expression sig-
nature. The extremely low p-value here can be seen as an
explanation why many people using many different methods
have been able to find good discriminating rules between AML
and ALL on the basis of these data.

9.2 The permutation method
Because the p-value is so extreme, it is prudent to check the
distribution of Q empirically. We do this by randomly taking
100 000 permutations of the vector Y of outcomes, calculat-
ing Q and making a histogram. The result is given in Figure 1,
with the observed value of Q in the real data set indicated
by an arrow. The empirical mean and standard deviation are
Q̄ ≈ 2.96 and s.e. (Q) ≈ 0.80, which are not very far from
the theoretical values.

The empirical p-value is the number of times the Q for
the permuted Y is as least as large as the ‘true’ Q, divided
by the number of permutations. In principle, because there
are about 3.3 × 1029 possible permutations of Y , this can be
calculated to almost any desired accuracy. But taking only 105

permutations (about 10 s on a normal computer) we can only
say that the p-value is most probably below 10−5, although
Figure 1 suggests that it is much lower than that.

9.3 The regression and checkerboard plots
It has already been explained using (5) that the test statistic Q

evaluates the resemblance between the covariance between the
gene expressions of all pairs of samples and the covariance
between their clinical outcomes. This comparison might also
be done by inspection. Figure 2 is an image of the symmetric
matrix R̃, with white denoting that an entry is larger than the
median off-diagonal element and black that it is smaller.

From this image it is easy to recognize that the true out-
comes Y had been sorted, starting with the 27 ALL patients
and continuing with the 11 AML patients. The block-like
structure of the matrix R̃ strongly resembles the block struc-
ture of the covariance matrix between the outcomes Y . This
can be used as an illustration of the low p-value that was
found.

This method of visualization works best when the outcome
is a group indicator. For continuous outcomes, two images
of R̃ and S = (Y − µ̂)(Y − µ̂)′ might be placed side by
side for comparison, perhaps with the samples sorted by their
outcomes to simplify the structure of the two matrices. In that
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Fig. 1. Histogram of values of the test statistic Q for 100 000
permutations of Y , compared with the observed value.

ALL AML

ALL

AML

Fig. 2. Checkerboard plot for the AML/ALL data set, showing the
matrix R̃ of covariance between the gene expressions of all pairs of
samples. White = above median; black = below median.

case a multi-color plot might be preferred over a black and
white one.

Some interesting things can be learned from the plot in
Figure 2. In the first place it can be seen from the image that the
AML group is much more homogeneous than the ALL group.
Another thing that can be noticed is that some arrays do not
seem to fit very well into the block-like structure. The ALL
arrays #2 and #12 for example (2nd and 12th row/column)
seem at least as similar to the AML group as to the ALL group.
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These arrays could have been wrongly classified or be of poor
quality.

A second way of visualizing the test is by plotting the off-
diagonal entries of R against those of S = (Y − µ̂)(Y − µ̂)′.
This is a way of representing Q, because Q is proportional to
the covariance between the plotted entries and can therefore
be represented by the slope of the regression line of the off-
diagonal entries of R on those of S. This type of plot is also
very useful when the outcome Y is continuous.

For the AML/ALL data set, the plot shown in Figure 3.
Because Y takes only the values 0 and 1, the matrix S takes
only three values. From left to right on the x-axis, these
are ALL versus AML, ALL versus ALL and AML versus
AML. The AML/AML comparisons have a higher covariance
between outcomes than the ALL/ALL comparisons because
there are fewer AML (so that Yi − µ̂ = 27/38 for the AML
and Yi − µ̂ = −11/38 for the ALL). The large value of Q is
seen from the steep slope of the regression line.

Using this type of plot the possibly outlying arrays can be
investigated further. In Figure 4 all points corresponding to
pairs of arrays that involve array #12 have been replaced by
crosses. An extra dotted regression line is drawn for reference,
which is the least squares fit only through the crosses. This way
it can be seen that ALL array #12 actually resembles the AML
arrays better than it resembles the other ALL arrays. This is
not suggestive of bad data quality (in which case #12 would
resemble none of the arrays very well) so it either indicates a
misclassification of #12, or perhaps it might be that ALL is
quite diverse and some forms are genetically closer to AML.

10 APPLICATION: HEAT SHOCK
The second data set contains six replicates each of a cell line
treated with a heat shock (hs+) and untreated (hs−). These
samples were labelled with two different fluorescent dyes and
cohybridized in hs+/hs− pairs on six spotted oligonucleotide
microarrays containing 20 160 genes. Normalization on the 12
samples was carried out using the variance stabilizing method
VSN (Huber et al., 2002).

In this data set two groups of genes were of specific
interest. One was a group of 27 genes which were classified
for biological process as heat shock response genes by the
Gene Ontology Consortium (http://www.geneontology.org).
Another group of 17 genes belonged to different biological
processes but their gene names referred to heat shock.

The test on the total group of all 20 160 genes gave a non-
significant result (p = 0.94). Looking at all genes, it could not
be proved that any gene was affected: the overall expression
pattern was not notably different between the hs+ and hs−
groups.

However, using the global test on the selected genes gave
a different picture. The global test on the 27 genes known
to function in heat shock response had an empirical p-value
of 0.017. The expression pattern of this group of genes was

Fig. 3. Regression plot I: visualization of Q as a regression between
off-diagonal entries of S and R̃.

Fig. 4. Regression plot II: visualization of Q as a regression between
off-diagonal entries of S and R̃. Crosses involve array #12.

therefore different between the two experimental conditions.
The other group of 17 genes with heat shock’ in the name only
had a non-significant p-value of 0.25.

As an informal comparison, we did an analysis using SAM
(Tusher et al., 2001). On the optimal false discovery rate which
was 11%, we could find only a small set of nine differentially
expressed genes. This set contained a single gene from the
group of 27 heat shock genes (no. 31 in Fig. 5).

10.1 A gene diagnostics plot
When testing a small group of genes for differential expression
of the group, it is often interesting to look at the single genes,
even if the group is the main focus of interest. A group of
genes can yield a significant test result because a few genes
are very much differentially expressed or because most genes
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Fig. 5. Gene influence plot for the heat shock data. High bars indicate
influential genes. Reference line is the expected influence under the
null hypothesis.

are a little differentially expressed. This can be an interesting
biological difference. In other cases single genes within the
group may be of interest in themselves.

The influence of single genes on the test result can be eval-
uated in a gene influence plot, as shown for the group of
27 genes in Figure 5. The bars in the figure indicate the
values of Qi for each gene, the value of the test statistic if
the group only consisted of this gene. A line is drawn for
reference to indicate the expected length of the bar under the
null hypothesis.

The interpretation of the figure is that it can be seen which
genes contribute positively to a high value of the test stat-
istic and which do not contribute. The difference in expected
contribution arises because genes which have greater vari-
ance among all arrays are naturally expected to also have a
greater discriminating power. In this data set we can see that
really only a minority of five or six genes out of 27 is clearly
above the reference line and that the majority of the genes
do not show any effect. The biological interpretation of this
observation, however, is beyond the scope of this paper.

11 DISCUSSION
The test presented in this paper is a useful new tool for the
analysis of microarray data. It allows researchers to use prior
information on groupings of genes and to specifically invest-
igate groups of genes that interest them from a biological point
of view.

In cases where there is a single candidate group of interest,
the global test opens the door to real inference: testing
hypotheses about biological mechanisms based on theory
or past research. In other cases, when researchers have
many candidate pathways, available e.g. from gene ontology
databases (http://www.geneontology.org) or programs like

GenMAPP (http://www.genmapp.org), the global test can be
used to find promising pathways. Alternatively the clusters
from a cluster analysis can be assigned a p-value to mark how
much the genes are coregulated with the clinical outcome.

Test results for groups of different sizes are fully compar-
able. However, when many groups of genes are to be tested,
multiple testing procedures come back into play (Benjamini
and Hochberg, 1995). Nested groups may be tested without
adjustments to the α-level. Always keep in mind that groups
of genes may never be chosen with reference to the clinical
outcome.

Furthermore using the test on all genes could be a useful
preliminary data quality check. If the test is not significant,
samples with a similar clinical outcomes do not have very
similar gene expression patterns. In this case it is unlikely
that there are many genes highly differentially expressed and
it is unlikely that a good classification rule can be found on
the basis of all genes. Because of the close connection of the
global test to penalized regression methods, the p-value that
results from the test can be used as a quality label for the
classification rule found with these methods.
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