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ABSTRACT is a mixture of both. The clinical outcome may be a group

Motivation: This paper presents a global test to be used for the
analysis of microarray data. Using this test it can be determ-
ined whether the global expression pattern of a group of genes
is significantly related to some clinical outcome of interest.
Groups of genes may be any size from a single gene to all
genes on the chip (e.g. known pathways, specific areas of the
genome or clusters from a cluster analysis).

Result: The test allows groups of genes of different size to be
compared, because the test gives one p-value for the group,
not a p-value for each gene. Researchers can use the test
to investigate hypotheses based on theory or past research
or to mine gene ontology databases for interesting pathways.
Multiple testing problems do not occur unless many groups are
tested. Special attention is given to visualizations of the test
result, focussing on the associations between samples and
showing the impact of individual genes on the test result.
Availability: An R-package globaltest is available from
http://www.bioconductor.org

Contact: j.j.goeman@Ilumc.nl

1 INTRODUCTION

The popularity of microarray technology has led to a surge
of new statistical methods aimed at finding differentially
expressed genes. A sophisticated methodology has been
developed to counter the multiple testing problem that occurs
when testing thousands of genes simultaneously.

This paper looks at the problem of finding differentially
expressed genes from a different point of view. It presents
a global test that can be used to determine whether some
pre-specified group of genesis differentially expressed. This
allowsthe unit of analysisto be shifted from individual genes
to groupings of genes. The question addressed is whether
the gene expression pattern over the whole group of genes
isrelated to aclinical outcome. It does not matter for the test
whether the group consists of up- or downregulated genes or

*To whom correspondence should be addressed.

label or a continuous measurement.

Often researchers who conduct microarray experiments
have one or more specific groups of genes that they are espe-
cialy interested in, e.g. certain pathways or areas on the
genome. Even if this is not the case, many pathways are at
least partially known from the scientific literatureand it could
sometimes be more worthwhile to test a limited number of
pathways or gene ontology classes than an enormous number
of individual genes. Other potentially interesting groups of
genesto be tested include the clusters from a cluster analysis
or dl geneson the chip.

Thefirst part of the paper presentsthe mathematical details,
starting with the empirical Bayesian generalized linear model
onwhich thetest isbased. Connectionsto other methods (esp.
prediction methods) are elaborated.

In the second part two elaborate applications are presented,
showing different aspects of the test. One is the well-known
public data set by Golub et al. (1999) with Affymetrix arrays
of patientswith Acute Lymphoic Leukemia (ALL) and Acute
Myeloid Leukemia (AML). Here the test is applied to the
set of al genes to show an enormous difference in overall
expression pattern. The second is a smaller in-house data set
with oligonucleotide arrays of cell lines of which some were
exposed to a heat shock. The test is applied to two groups of
genes associated with heat shock.

In the applications, specia attention is given to visuaiza-
tionsof thetest result which maketheresultseasier tointerpret
for theresearcher. Theseinclude graphsto search for outlying
samples and diagnostic plots to judge how much each indi-
vidual gene contributesto asignificant test result for thegroup.

2 THE DATA

Proper normalization of datais very important for ameaning-
ful analysisof microarray data. The problem of normalization
generates an enormous amount of literature and isfast becom-
ing a statistical specialization by itself. In this paper we will
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simply assumethat the data have been normalized beforehand
inaway that fitstheexperimental designand that possiblecon-
founding effects of array, dye etc. have been removed as well
as the experimental design allows. However, missing values
are allowed (see Section 8).

We assume we have normalized gene expression measure-
ments of n samples for p genes. Of these p genes, there is
a subgroup of m (1 < m < p) genes, which we want to
test. It is important that the clinical outcome was not used
in the selection of these m genes. Define X = (x;;) as the
n x m data matrix containing only the m genes of interest.
Note that we follow the statistical convention to use the rows
for the samples and the columns for the genes, instead of the
transposed notation whichiscommoninmicroarray literature.

Define Y astheclinical outcome (ann x 1 vector). Usually
Y will beaO/1 group label (e.g. AML versusALL), but it may
also be a continuous measurement.

3 THE MODEL

There is a close connection between finding differentialy
expressed genes and predicting the clinical outcome. If a
group of genes can be used to predict the clinical outcome,
the gene expression patterns must differ for different clinical
outcomes. This duality will be used to derive the test.

Modelling the way in which Y depends on X, we adopt the
framework of the generalized linear model (McCullagh and
Nelder, 1989), which includes linear regression and logistic
regression as special cases. In thismodel there is an intercept
o, alength m vector of regression coefficients 8 and a link
function # (e.g. the logit function), such that

EYi|p)=h" (a + Zx,»,ﬂ,-) : €

j=1

Hereg; istheregressioncoefficientforgenej (j = 1,...,m).

Testing whether there is a predictive effect of the gene
expressions on the clinical outcome is equivalent to testing
the hypothesis

Ho:pr=p2=-=pBn=0,

that all regression coefficients are zero. It is not possible to
test this hypothesisin aclassical way (with 8 non-stochastic)
because m might be large relative to n. In this case there are
too few degrees of freedom.

However, it is possible to test Hp if it is assumed that
B1, ..., B, areasamplefrom some common distribution with
expectation zero and variance t2. Thenasingleunknown para-
meter 72 determines how much the regression coefficientsare
allowed to deviate from zero. The null hypothesis becomes
simply

H()I‘L'ZZO.

Note that the choice of 721, (with I, them x m identity mat-
rix) as the covariance matrix of the stochastic vector g is not
imperative. Itisthe most convenient choicewhich will yield a
test that treats all genes on an equal footing. Any other m x m
covariance matrix may beusedtoreplace I, if desired, result-
ingin adifferent test with power against different alternatives.
For example adifferent diagonal matrix can betakento reflect
prior beliefsin the greater reliability of certain genes. Assum-
ing positive correlations between the elements of g resultsin
more power against alternatives where al 8 coefficients have
the same sign.

The model (1) with 8 random may be looked at in various
ways. Firstly the distribution of 8 can be seen asa prior, with
unknown shape and with avariance depending on an unknown
parameter. Viewed in this way the model (1) is an empirical
Bayesian model.

A second interpretation is to view the model as a penal-
ized regression model, in which the estimated coefficients are
shrunk towards acommon mean. Thelog likelihood of Y can
be written

loglik(Y, B) = loglik(Y|B) + loglik(B),

wherethefirst term on theright is the likelihood of the ordin-
ary generalized linear model and the second term is known
as the penalty. Well-known examples of penalized regres-
sion include ridge regression (Hoerl and Kennard, 1970),
which arises when g is normally distributed and the Lasso
(Tibshirani, 1996), which is a variant where 8 has a double
exponential distribution. Ridge regression with a logistic
link function has been described by Le Cessie and Van
Houwelingen (1992) and applied on microarray databy Eilers
et al. (2001) with promising results.

There is a third interpretation which will be the basis for
the test in the next section. For thiswewriter; = 3 x;;B;,
i =1,...,n. Then r; isthe linear predictor, the total effect
of all covariates for personi. Letr = (r1,...,r,), thenr is
arandom vector with E(r) = 0 and Cov(r) = t2XX’'. The
model (1) simplifiesto

EWYi|r) = h™Ha +r). )

Thisisasimple random effects model, in which each sample
has a random effect that influences its outcome. The cov-
ariance matrix between the random effects is known and is
determined by the gene expression levels. If 72 > 0, two
samples i and j with similar gene expression patterns have
correlated random effectsr; andr; and thereforehaveagreater
probability of having similar outcomesY; and Y; than samples
with less similar expression patterns.

4 THE SCORETEST

A test for testing Hp inthemodel (2) isdiscussedinLe Cessie
and Van Houwelingen (1995) and Houwing-Duistermaat et al.
(1995). Themarginal likelihood of Y inthismodel dependson
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only two or three parameters. These are « and 2 and some-
times, depending on the specific model, an extra dispersion
parameter (e.g. the residual variance o2 of the outcome Y in
an ordinary linear regression model).

In this section, we first suppose that o and the dispersion
parameter are known (the case where they are unknown is
dealt with in Section 6). In this case a score test for t2 = 0
can be calculated by taking the derivative of the loglikelihood
withrespect to r2 at t2 = 0, divided by the standard deviation
of this derivative under Hp. Thisyieldsthe test statistic

(Y — w'RY — ) — potrace(R)
[213trace(R2) + (na — 3u3) Y, R2]Y?

T_

where R = (1/m)X X’ isann x n matrix proportional to the
covariance matrix of the random effects r, u = h~ () is
the expectation of Y under Hp and u2 and 4 the second and
fourth centra moments of Y under Hp.

It can be shown that if Hp istrue, T isasymptotically nor-
mally distributed. However, it is often more convenient to use
the equivalent, much simpler test statistic

Y — )R — p)
w2

0=

which has expectation
E(Q) = trace(R) ©)

and variance
Var(Q) = 2trace(R?) + (— — 3) Z RZ. (4

Thestatistic Q isalso asymptotically normally distributed, but
itisaquadratic form which isnon-negative, because R isnon-
negative definite. Therefore for small sample sizes a better
approximation to the distribution of Q is a scaled x? distri-
bution ¢ x2, where ¢ isascaling factor and v is the number of
degrees of freedom. Thishas been shown using simulationsin
Le Cessie and Van Houwelingen (1995). Equating the mean
and variance of cx2 and Q yields ¢ = var(Q)/[2E(Q)] and
v =2[E(Q)]?/var(Q).

Note that the statistic Q and its distribution are easy to cal-
culate for high-dimensional data because they only involve
the small n x n covariance matrix R = (1/m)X X’ between
the samples and never the potentially large m x m covariance
matrix (1/n)X’X between the genes. Testing a large number
of genes therefore never gives computational problems.

5 PROPERTIES OF THETEST

There are two ways of rewriting the test statistic Q to gain
a better intuitive understanding of the test. The first can be
used to show the influences of the genes, the second the
influence of the samples. These two decompositions of QO

will be the basis of various illustrative graphs in Sections 9
and 10. Furthermore, the fact that the test is a score test also
gives the test a nice optimality property.

For thefirst interpretation rewrite

1.1
== XY — PP
0 - MZ[ (Y = @]

i=1

where X;(i = 1,...,m) isthe n x 1 vector of the gene
expressions of gene i. Note however that the expression
0 = (L/u)[X;(Y — w)]? is exactly the test statistic that
would have been calculated for a group of genes consisting
only of thei-th single genein the group of interest. Therefore
the test statistic Q for agroup of m genesisjust the average
of thestatistics Q1, . . ., O, caculated for them single genes
that the group consists of.

Each Q; can again be written as (amultiple of) the squared
covariance between the expression pattern of the gene and the
clinical outcome. Becausetheaveragingisdoneat thissquared
covariance level, genes with large variance have much more
influence on the outcome of the test statistic Q than genes
with small variance. Thisis a nice property in the context of
microarray analysis, becauselow-variancegenesaregenerally
seen as uninteresting, as it usually implies that there is little
biological variation in these genes.

For adifferent look at the test the statistic O can be written
in the following way

= —ZZR,](Y

ll]l

m(Yj — ) ©)

as the sum over al terms of the Hadamard (term-by-term)
product of thematrices R and (Y —u) (Y — ). Thematrix R =
(1/m)X X’ is the covariance of the gene-expression patterns
between the samples, and the matrix (Y — u)(Y — )’ isthe
covariance matrix of theclinical outcomesof thesamples. The
statistic Q therefore has a high value whenever the terms of
these two matrices are correlated, that is when the covariance
structure of the gene-expressions between samples resembles
the covariance structure between their outcomes. The score
test can therefore be seen as a test to see whether samples
with similar gene-expressions also have similar outcomes.

An interesting property of a score test in general is that it
maximizes the average power against al alternatives where
the true value of the parameter is small. Equivalently, in this
case it has optimal power against the range of alternatives
R, = {lIBlI? < t?} ast?> — 0. As R, isan m-ball it contains
relatively many aternatives with all 8’s non-zero but small,
therefore the test is focussed mostly on detecting alternatives
where many genes play a part. This is a desirable property
because the test is designed to say something about the group
of genes asawhole.
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6 SOMETECHNICAL ADJUSTMENTS

Inthe previous section it was assumed that « (and therefore 1)
was known and that the dispersion parameter (if any) was
also known. In practice thisis never true. In this section some
adjustments of thetest are presented whichiscorrect for using
estimated parameters.

First supposethat w isunknown, but w2 and 14 are known.
Itiseasly verified that

Y—p=U-HY —w,

where H = (1/n)11 is the hat matrix for estimation of
the mean n of Y and 1 is a length n column vector of
ones. Therefore calculating Q using & instead of u results
in calculating

1
0= (Y —)RY — Q)
n2
1
= —(Y — W' — H)RU — H)(Y — p).
Hn2

Themean and variance of Q aretherefore simply given by (3)
and (4) with R replaced by R = (I — H)R(I — H). Thisis
equivalent to centering the genes so that the average value of
each gene over the samplesis set to zero.

Correction for estimation of 112 isnot so easy. Simply repla-
cing w2 by its estimate fi, would generally lead to atest that
istoo conservative, because the numerator (Y — i)’ R(Y — 1)
andthedenominator (o = (1/n)(Y —p)' (Y — ) of Q arepos-
itively correlated, so that the variance of Q is overestimated
if this dependency is not taken into account.

Corrections for the variance of Q are available from
Houwing-Duistermaat et al. (1995) for a the linear regres-
sion model (continuous clinical outcome) and for the logistic
regression model (two groups). For alinear regression Q =

(Y — @)Y R(Y — )/62, which has E(Q) = trace(R) and
variance
Var(Q) = 1[(n — Dtrace(R?) — trace?(R)].

For the logistic regression model O = (Y — 4)'R(Y — [1)/
[f(1 — f)]. Thisalso has E(Q) =trace(R) and its variance
can be approximated by

1- 6,u+6u

Ve s =y

[Z R? tracez(ﬁ)}

i 1trace2(1§). (6)

+ 2trace(R?) —
n

7 HANDLING SMALL SAMPLE SIZE

If the sample size is small the asymptotic formula’'s used to
calculate the p-value may not be correct. In this case adiffer-
ent approach could beto find the p-value using a permutation

method. The empirical distribution of Q can be found by
calculating Q for all permutations of the outcome Y or aran-
dom sample from these. The permutation method al so works
for other distributions of ¥ than normal or Bernoulli.

A drawback of the permutation method is that it is hard to
demonstrate low p-values. Showing that a p-value is lower
than 10~/ for example, needsat least 107 permutations. Often
if the sample size is small, the total number of permutations
isnot large enough to attain very low significance levels. The
minimum sample size needed to attain @« = 0.05 can be calcu-
lated as 2 x 4 samplesif Y takestwo values and five samples
if Y iscontinuous. The permutation method is illustrated in
Section 9.

It is important to note that using permutations one cal cu-
lates the distribution of Q under Hp conditional on the set
of observed outcomesin Y. For Y a group label this means
that the sizes of the groups are taken as fixed; for a continu-
ous outcome each value in the observed vector Y is assumed
to occur exactly once. Therefore the permutation version
is strictly speaking a different test (although asymptotically
equivalent). The expectation and variance of Q under the null
hypothesis and the p-value can therefore be systematically
different, although in practice the difference is usually small
except for very small samples.

8 HANDLING MISSING VALUES

Missing valuesfor somegenesinthedataset arenot aproblem.
If some genes with missing values are too important to be
left out of the analysis, the missing values can be handled
by simply imputing the mean expression value of the same
gene from the other samples (or the K -nearest samples). This
alowsthematrix R of covariancebetween thegeneexpression
patterns of the samples to be calculated using all available
information. A nice property of thisimputation is that genes
or sampleswith many missing values get asmall variance and
are therefore automatically given less weight in the analysis.

9 APPLICATION: AML/ALL

The first application is the well-known data set by Golub
et al. (1999). These data were collected for the purpose of
distinguishing between AML and ALL on the basis of gene
expression.

Thereweremicroarray dataof 7129 genesfrom27 ALL and
11 AML patients. A pre-selection of genes was made in the
same manner asin earlier publications on this data set (Golub
etal., 1999; Eilerset al., 2001), truncating very high and very
low expression levels and removing genes whose truncated
expression showed no variation. This left 3571 genes. There
were no missing values.

This data set will be used here to illustrate the use of the
score test on all genes. The null hypothesis to be tested here
iswhether AML and ALL patients are different with respect
to their overall gene expression pattern.
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9.1 Test result

The ALL patientswere coded 0 and the AML patients 1. Now
i = 11/38, which was used to calculate

0~ 13.2.

Under the null hypothesis Hy the distribution has E(Q) ~
288ands. e (Q) ~ 0.78, calculated using (6). This results
inargjection of Ho with a p-value ~ 1.6 x 10~%4, calculated
on the cx 2-distribution with ¢ &~ 0.11 and v ~ 27.0.

This shows that AML and ALL patients do indeed differ
enormously with respect to their overall gene expression sig-
nature. The extremely low p-value here can be seen as an
explanation why many people using many different methods
have been ableto find good discriminating rulesbetween AM L
and ALL on the basis of these data.

9.2 Thepermutation method

Because the p-value is so extreme, it is prudent to check the
distribution of Q empirically. We do this by randomly taking
100000 permutations of the vector Y of outcomes, calculat-
ing Q and making ahistogram. Theresultisgivenin Figure1,
with the observed value of Q in the real data set indicated
by an arrow. The empirical mean and standard deviation are
0 ~ 2.96 and se. (Q) ~ 0.80, which are not very far from
the theoretical values.

The empirical p-value is the number of times the Q for
the permuted Y is as least as large as the ‘true’ Q, divided
by the number of permutations. In principle, because there
are about 3.3 x 10%° possible permutations of Y, this can be
calculated to almost any desired accuracy. But taking only 10°
permutations (about 10 s on anormal computer) we can only
say that the p-value is most probably below 10~°, athough
Figure 1 suggeststhat it is much lower than that.

9.3 Theregression and checkerboard plots

It has aready been explained using (5) that thetest statistic Q
evaluatesthe resemblance between the covariance betweenthe
gene expressions of al pairs of samples and the covariance
between their clinical outcomes. This comparison might also
be done by inspection. Figure 2 is an image of the symmetric
matrix R, with white denoting that an entry is larger than the
median off-diagonal element and black that it is smaller.

From this image it is easy to recognize that the true out-
comes Y had been sorted, starting with the 27 ALL patients
and continuing with the 11 AML patients. The block-like
structure of the matrix R strongly resembles the block struc-
ture of the covariance matrix between the outcomes Y. This
can be used as an illustration of the low p-value that was
found.

This method of visualization works best when the outcome
is a group indicator. For continuous outcomes, two images
of Rand § = (Y — 2)(Y — 1)’ might be placed side by
side for comparison, perhaps with the samples sorted by their
outcomesto simplify the structure of the two matrices. In that

7000
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o
o

40007

number of permutations

N w
o o
o o
o o

1000

Fig. 1. Histogram of values of the test statistic Q for 100000
permutations of ¥, compared with the observed value.

Fig. 2. Checkerboard plot for the AML/ALL data set, showing the
matrix R of covariance between the gene expressions of al pairs of
samples. White = above median; black = below median.

case a multi-color plot might be preferred over a black and
white one.

Some interesting things can be learned from the plot in
Figure2. Inthefirst placeit can be seenfromtheimagethat the
AML group is much more homogeneousthan the ALL group.
Another thing that can be noticed is that some arrays do not
seem to fit very well into the block-like structure. The ALL
arrays #2 and #12 for example (2nd and 12th row/column)
seemat least assimilar tothe AML group astothe ALL group.
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These arrays could have been wrongly classified or be of poor
quality.

A second way of visualizing the test is by plotting the off-
diagonal entriesof R againstthoseof S = (Y — a)(Y — ).
Thisisaway of representing Q, because Q is proportional to
the covariance between the plotted entries and can therefore
be represented by the slope of the regression line of the off-
diagonal entries of R on those of S. Thistype of plot is aso
very useful when the outcome Y is continuous.

For the AML/ALL data set, the plot shown in Figure 3.
Because Y takes only the values 0 and 1, the matrix S takes
only three values. From left to right on the x-axis, these
are ALL versus AML, ALL versus ALL and AML versus
AML. The AML/AML comparisons have ahigher covariance
between outcomes than the ALL/ALL comparisons because
there are fewer AML (so that ¥; — 4 = 27/38 for the AML
and Y; — o = —11/38for the ALL). Thelargevalue of Q is
seen from the steep slope of the regression line.

Using this type of plot the possibly outlying arrays can be
investigated further. In Figure 4 all points corresponding to
pairs of arrays that involve array #12 have been replaced by
crosses. Anextradotted regression lineisdrawn for reference,
whichistheleast squaresfit only throughthecrosses. Thisway
it canbeseenthat ALL array #12 actually resemblesthe AML
arrays better than it resembles the other ALL arrays. Thisis
not suggestive of bad data quality (in which case #12 would
resemble none of the arrays very well) so it either indicates a
misclassification of #12, or perhaps it might be that ALL is
quite diverse and some forms are genetically closer to AML.

10 APPLICATION: HEAT SHOCK

The second data set contains six replicates each of acell line
treated with a heat shock (hs+) and untreated (hs—). These
sampleswere|abelled with two different fluorescent dyesand
cohybridized in hs+/hs— pairs on six spotted oligonucleotide
microarrayscontaining 20 160 genes. Normalizationonthe 12
sampleswas carried out using the variance stabilizing method
VSN (Huber et al., 2002).

In this data set two groups of genes were of specific
interest. One was a group of 27 genes which were classified
for biological process as heat shock response genes by the
Gene Ontology Consortium (http://www.geneontol ogy.org).
Another group of 17 genes belonged to different biological
processes but their gene names referred to heat shock.

The test on the total group of all 20160 genes gave a hon-
significant result (p = 0.94). Looking at all genes, it could not
be proved that any gene was affected: the overall expression
pattern was not notably different between the hs+ and hs—
groups.

However, using the global test on the selected genes gave
a different picture. The global test on the 27 genes known
to function in heat shock response had an empirical p-value
of 0.017. The expression pattern of this group of genes was

0.06
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\

=-0.02 |

Covariance between gene expressions

-0.0 ° L L L
-6.4 -0.2 0 0.2 0.4 0.6
Covariance between outcomes

Fig. 3. Regressionplot I: visualization of Q asaregression between
off-diagonal entriesof S and R.

0.06

Covariance between gene expressions

-0.4 -0.2 0 0.2 0.4 0.6
Covariance between outcomes

Fig. 4. Regressionplot!l: visualizationof Q asaregression between
off-diagonal entriesof S and R. Crosses involve array #12.

therefore different between the two experimental conditions.
Theother group of 17 geneswith heat shock’ inthe nameonly
had a non-significant p-value of 0.25.

Asan informal comparison, we did an analysisusing SAM
(Tusher etal., 2001). Ontheoptimal fal sediscovery ratewhich
was 11%, we could find only asmall set of nine differentially
expressed genes. This set contained a single gene from the
group of 27 heat shock genes (no. 31 in Fig. 5).

10.1 A genediagnostics plot

Whentesting asmall group of genesfor differential expression
of the group, it is often interesting to look at the single genes,
even if the group is the main focus of interest. A group of
genes can yield a significant test result because a few genes
arevery much differentially expressed or because most genes
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Fig.5. Geneinfluenceplot for theheat shock data. Highbarsindicate
influential genes. Reference line is the expected influence under the
null hypothesis.

are alittle differentially expressed. This can be an interesting
biological difference. In other cases single genes within the
group may be of interest in themselves.

The influence of single genes on the test result can be eval-
uated in a gene influence plot, as shown for the group of
27 genes in Figure 5. The bars in the figure indicate the
values of Q; for each gene, the value of the test statistic if
the group only consisted of this gene. A line is drawn for
reference to indicate the expected length of the bar under the
null hypothesis.

The interpretation of the figure is that it can be seen which
genes contribute positively to a high value of the test stat-
istic and which do not contribute. The difference in expected
contribution arises because genes which have grester vari-
ance among all arrays are naturally expected to also have a
greater discriminating power. In this data set we can see that
really only aminority of five or six genesout of 27 is clearly
above the reference line and that the mgjority of the genes
do not show any effect. The biological interpretation of this
observation, however, is beyond the scope of this paper.

11 DISCUSSION

The test presented in this paper is a useful new tool for the
analysis of microarray data. It allows researchers to use prior
information on groupings of genes and to specifically invest-
igategroupsof genesthat interest them from abiological point
of view.

In cases where there is a single candidate group of interest,
the globa test opens the door to real inference: testing
hypotheses about biological mechanisms based on theory
or past research. In other cases, when researchers have
many candidate pathways, available e.g. from gene ontology
databases (http://www.geneontology.org) or programs like

GenMAPP (http://www.genmapp.org), the global test can be
used to find promising pathways. Alternatively the clusters
from acluster analysis can be assigned a p-valueto mark how
much the genes are coregul ated with the clinical outcome.

Test results for groups of different sizes are fully compar-
able. However, when many groups of genes are to be tested,
multiple testing procedures come back into play (Benjamini
and Hochberg, 1995). Nested groups may be tested without
adjustments to the «-level. Always keep in mind that groups
of genes may never be chosen with reference to the clinical
outcome.

Furthermore using the test on al genes could be a useful
preliminary data quality check. If the test is not significant,
samples with a similar clinical outcomes do not have very
similar gene expression patterns. In this case it is unlikely
that there are many genes highly differentially expressed and
it is unlikely that a good classification rule can be found on
the basis of al genes. Because of the close connection of the
global test to penalized regression methods, the p-value that
results from the test can be used as a quality label for the
classification rule found with these methods.
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