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ABSTRACT
Motivation: A simultaneous search is necessary for maximiz-
ing the power to detect epistatic quantitative trait loci (QTL).
The computational complexity demands that the traditional
exhaustive search be replaced by a more efficient global
optimization algorithm.
Results: We have the previously known algorithm adapted
DIRECT, to the problem of simultaneous mapping of multiple
QTL. We have compared DIRECT with standard exhaustive
search and a genetic algorithm previously used for QTL map-
ping in two dimensions. In all two- and three-QTL test cases,
DIRECT accurately finds the global optimum two to four orders
of magnitude faster than when using an exhaustive search,
and one order of magnitude faster than when using the genetic
algorithm. Thus, randomization testing for determining empir-
ical significance thresholds for at least three QTL is made
feasible by the use of DIRECT.
Availability: The code of the prototype implementation is
available at http://user.it.uu.se/~kl/qtl_software.html
Contact: Kajsa.Ljungberg@it.uu.se

INTRODUCTION
Rapid progress in molecular genetics has led to the devel-
opment of dense genetic maps, which are powerful tools for
studying the molecular basis for quantitative genetic variation.
One way to dissect the genetic architecture behind quantitative
traits, i.e. traits showing a continuous phenotypic distribution
and which are often affected by the joint effect of multiple
genes and the environment, is to identify quantitative trait
loci (QTL), in the genome. A QTL is a chromosomal region,
locus, harboring one or several genes that affect the trait under
study. The first methods used to locate, or map, QTL focused
on detection of QTL by their marginal, i.e. additive and dom-
inance, effects. These methods are presented in Lander and
Botstein (1989) and Haley and Knott (1992). They are based
on the concept of interval mapping, where the analyzed trait
is modeled to depend on the genetic effects of a single QTL in
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the genome. A one-dimensional (1D) scan is performed using
a dense grid covering the genome, and the single QTL model
is fitted at each grid-point. The most likely position of the
QTL is taken to be the grid-point with the best model fit. In
composite interval mapping (Zeng, 1993) and multiple QTL
mapping (Jansen, 1992), a window of analysis is introduced
in the 1D scan. These schemes still search for the position of
a single QTL, but markers outside the window of analysis are
included as cofactors in the model. In this way, the problem
with variation caused by other QTL is reduced. A random-
ization test (Churchill and Doerge, 1994) is normally used
to derive an empirical significance threshold for a statistical
test of the putative QTL. During randomization testing, nor-
mally 1000–10 000 genome scans are performed on permuted
datasets to obtain a stable distribution of the model fit under
the null hypothesis of no QTL. A recent overview of current
QTL mapping techniques is given in Doerge (2002). Bayesian
QTL mapping, described in e.g. Satagopan et al. (1996) and
reviewed in Sillanpää and Corander (2002), is conceptually
different from the parametric methods used in this paper, and
will not be considered further here.

Since most quantitative traits are believed to be affected by
multiple genes, it is desirable to simultaneously model the
effects of these genes. Furthermore, simultaneous mapping
is necessary for finding groups of interacting QTL where all
loci involved lack significant marginal effects. Several meth-
ods have recently been proposed to simultaneously model
the effects of multiple QTL and their interactions (e.g. Kao
et al., 1999; Wang et al., 1999; Jannink and Jansen, 2001; Sen
and Churchill, 2001; Carlborg and Andersson, 2002; Boer
et al., 2002; Kao and Zeng, 2002; Yi and Xu, 2002). A fun-
damental problem when using a multiple QTL model is that
of computational complexity. For a model including n inter-
acting QTL, the 1D scan in a single QTL model is replaced
by an n-dimensional search for the most likely positions of
the interacting loci. When using randomization testing to
derive significance thresholds for multiple QTL, the computa-
tions become very demanding even for models involving only
two QTL.
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To reduce the number of combinations of locations to evalu-
ate, several approaches have been suggested. One suggestion
(Kao and Zeng, 1997; Kao et al., 1999; Zeng et al., 1999,
2000) is that the computational complexity of the search is
decreased by pre-selection of genomic regions with marginal
effects. This potentially leads to a reduction in power since
regions with primarily epistatic effects are disregarded. Sen
and Churchill (2001) propose that a 2D exhaustive search is
performed on a sparse grid. This procedure reduces the resolu-
tion and would still be computationally burdensome in higher
dimensions. To retain the true global search without intro-
ducing a prohibitive computational demand, the exhaustive
search technique must be replaced by a more sophistic-
ated algorithm for multi-dimensional global optimization.
Carlborg et al. (2000) suggest that a genetic optimization algo-
rithm is used, and this type of algorithm was shown to be an
efficient tool for mapping interacting QTL pairs in simulated
data. Subsequently, a procedure for mapping and signific-
ance testing for epistatic QTL pairs was derived (Carlborg
and Andersson, 2002). This method has recently been used
to map QTL in experimental data, where multiple QTL pairs
were detected in which neither of the QTL had significant
marginal effects (Carlborg et al., 2003). Similar results have
been obtained using the method of Sen and Churchill (2001),
e.g. in Sugiyama et al. (2001) and Shimomura et al. (2001).

To further investigate the evidence for higher order epi-
stasis in experimental crosses, efficient numerical methods
are needed for simultaneous mapping of QTL in two- and
higher dimensions. In this study, we will explore the prop-
erties of a global optimization algorithm named DIRECT to
perform QTL searches in two and three dimensions faster
and more reliably than when using the genetic algorithm
proposed in Carlborg et al. (2000). We will show that it is
possible to perform simultaneous mapping, including ran-
domization testing, of three fully interacting QTL, using a
standard single-processor computer.

SYSTEMS AND METHODS
Computations in QTL mapping
There are two main elements in the computations when
searching for QTL: the kernel problem and the global opti-
mization problem. In general, any algorithm for the global
optimization problem can be used together with any type of
kernel algorithm.

The kernel problem consists of evaluating the objective
function, i.e. calculating the model fit for a specific com-
bination of putative QTL. Many different genetic models
with or without interaction parameters can be used. The
model parameters can be determined using e.g. ordinary lin-
ear regression (Haley and Knott, 1992; Haley et al., 1994)
or maximum likelihood estimation (Zeng, 1994). Both linear
regression and maximum likelihood estimation, via the ECM
algorithm (Meng and Rubin, 1993), involve solving a least

squares problem, which is normally done using standard soft-
ware library routines. The kernel problem was investigated in
Ljungberg et al. (2002), where we presented efficient objective
function evaluation algorithms based on updated QR factor-
izations for both linear regression and maximum likelihood
kernels.

The global problem consists of optimizing the objective
function, i.e. out of all possible QTL combinations finding
the one giving the best model fit. It appears in two flavors.
When searching the original data, the goal is to find both the
most likely positions of the QTL in the set and the correspond-
ing value of the parameters and model fit. However, during
randomization testing, only the optimal value of the model
fit is needed. As long as the value found by the algorithm is
sufficiently accurate, the significance thresholds will also be
accurate. This is an important observation, since the problem
of determining the position of the true global optimum is more
difficult for the permuted data where the connection between
genotype and phenotype is broken. In this case, the optimi-
zation landscape will often have many smaller local optima,
scattered over the search space, with almost the same value of
the objective function.

The global optimization problem
When performing simultaneous mapping of a set of n QTL,
we search a point x̄opt = (x

opt
1 , xopt

2 , . . . , xopt
n ) in the n-

dimensional hypercube defined by 0 ≤ xi ≤ L. Here, L

is the size of the genome in cM and xi is the position of the
ith QTL in the set. The optimal value of the test statistics is
independent of the ordering of the QTL in the set. Therefore,
the optimization problem exhibits an n!-fold symmetry, equi-
valent to the n! possible orderings of the QTL. This represents
a significant reduction of the search space. In QTL mapping,
the search space can be divided into boxes where each edge
corresponds to one chromosome. Such a chromosome com-
bination box (c1, c2, . . . , cn) encloses all points where QTL 1
is assumed to be on chromosome c1, QTL 2 is assumed to be
on chromosome c2 and so on. The search space symmetry is
employed by restricting the search to chromosome combin-
ation boxes where c1 ≤ c2 ≤ · · · ≤ cn. Boxes where two
or more QTL are located on the same chromosome are also
affected by the symmetry, and only part of them need to be
considered.

The most likely QTL position combination x̄opt minimizes
an objective function which may be written as (Ljungberg
et al., 2002)

f (x̄) = min
b

(y − Ab)TG(y − Ab), (1)

where y is the vector of trait values, b is a vector of regres-
sion parameters and A is the matrix of regression indicator
variables. The matrices G and A depend on the QTL map-
ping method being used. When using the linear regression
method, G = I , and the entries of A are either constants or
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Table 1. Names and descriptions of parametric models

Model Description

2:m A two-QTL model including fixed effects and additive
and dominance marginal effects.

3:m The three-QTL version of 2:m.
2:m+p The 2:m model with pairwise interaction effects added.
3:m+p The three-QTL version of 2:m+p.
3:m+p+t 3:m+p adding the full three-way interaction.

continuous functions of x̄ within chromosomes. Hence, the
objective function f (x̄) depends continuously on x̄ within
every chromosome combination box. However, at the bound-
aries between chromosomes, f (x̄) is normally not continuous.
We claim that the same continuity properties also hold for
the maximum likelihood objective functions, but present no
formal proof. Continuity in this case has been observed exper-
imentally and is supported by a heuristic argument based on
the nature of continuous functions.

Models
Throughout this work, we have used the Haley–Knott regres-
sion method for experimental crosses between outbred lines
(Haley et al., 1994). Table 1 describes the five genetic models
that are used. The indicator variables for the marginal additive
and dominance effects are determined as described in Haley
et al. (1994) for an outbred line cross. The pairwise inter-
action variables are obtained by multiplying the respective
additive/dominance indicator variables for the QTL in the pair
as in Haley and Knott (1992), and the three-way interaction
indicator variables are obtained analogously.

In this paper, we have not evaluated the power to detect
epistatic QTL using the different models, nor have we invest-
igated the best choice of model for the datasets used. This
question will be addressed separately. The purpose of the cur-
rent study is to compare the computational methods in terms of
speed and their ability to find the global optimum of the object-
ive function using real data, and the models were chosen with
the intention to give a varied set of optimization landscapes.

Data
We have tested the computational methods on data from two
mapping populations. The first population consists of 191 pigs
from an F2 intercross between European Wild Boar and Large
White domestic pigs (Andersson et al., 1994). The genome
size is ∼2300 cM and we used phenotypic data for six growth-
related traits. The second population consists of 852 chickens
from an F2 intercross between red jungle-fowl and White
Leghorn chickens described in Schütz et al. (2002). The gen-
ome size is ∼2500 cM, and phenotypic data for nine different
growth traits were used. We leave out further details about the
phenotypes since we are not currently looking for new QTL.

In addition to optimizing the objective function for vari-
ous models in the original datasets, it is relevant to compare
empirical significance thresholds derived when using the three
methods. For this purpose four sets of randomized data were
generated, 1000 randomizations each of two chicken and pig
traits.

ALGORITHMS
Exhaustive grid search
The standard method for solving the global optimization
problem is to use an exhaustive grid search, evaluating
the objective function for every possible QTL combination
using steps of e.g. 1 cM. We have performed exhaustive
2D and 3D searches for all test cases. The symmetry of
the search space was easily exploited. To make the com-
putations feasible, the exhaustive searches were performed
on a parallel computer. We measure the accuracy of DIR-
ECT and GA as their ability to find the same optimum as
the one found by exhaustive search, which is the global
optimum.

The DIRECT algorithm
The original DIRECT algorithm was presented in Jones et al.
(1993). It searches for the global minimum x̄opt of multi-
dimensional Lipschitz continuous functions f (x̄) with the
same type of constant constraints as the QTL mapping prob-
lem described above. The practical interpretation of a function
f (x̄) being Lipschitz continuous is that the slope of f (x̄) is
limited by some constant K everywhere.

DIRECT systematically divides the search space into smal-
ler and smaller boxes, see Figure 1. The Lipschitz continuity
condition is used for deterministically determining which
boxes to select for further division in each iteration. Sup-
pose that the search space at iteration i has been divided into
L boxes, and that f (x̄) has been computed at the center of
each box. Given K , a lower bound on f (x̄) in each box could
be computed, and the box with the lowest bound would be
selected for further division. In practice, K is unknown, so
DIRECT divides all boxes where f (x̄) has the lowest bound
for any value of K from zero to infinity. The center point
of each new box is sampled, and the selection procedure is
repeated. The box selection step is very fast. It should be
noted that the Lipschitz continuity condition is only used for
bounding f (x̄) within each box, which is important for the
application of the algorithm to QTL mapping problems.

In the original formulation of the algorithm, no box is
ever discarded from the search. A box not considered poten-
tially optimal in one iteration can be chosen for division in a
later iteration. If the algorithm is run for a sufficiently long
time, it is possible to prove that the global optimum will
always be found (Jones et al., 1993). In practice, the global
optimum is normally found after a rather small number of iter-
ations. However, a general problem for global optimization
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Fig. 1. Illustration of DIRECT search space division.

algorithms is how to determine when to stop the iterations. In
the original paper (Jones et al., 1993), it was suggested that a
fixed number of function evaluations be used.

The original algorithm has been modified to fit the QTL
search problem. As observed above, f (x̄) is a continuous
function of x̄ within every chromosome combination box.
However, at the boundaries between chromosomes, f (x̄) is
normally not continuous. To guarantee that the continuity
condition of the algorithm is fulfilled, the search is initiated
by sampling the center point of all chromosome combination
boxes in the search space. In the original algorithm, only the
center point of the complete search space is to be sampled at
initiation. Also, we do not normalize the xi coordinates as in
the original algorithm, and do not divide boxes with edges
smaller than 1 cM.

We present no proof that f (x̄) is Lipschitz continuous
as well as continuous within the chromosome combination
boxes. However, a simple argument along this line can be
appled to the computations. By construction, G is positive
semidefinite (Ljungberg et al., 2002). Thus, f (x̄) can neither
be smaller than 0 nor exceed yTGy, which is finite. When
performing the search for the set of QTL, a resolution limit
of typically 1 cM is used, and thus there exists a practical
Lipschitz constant which is bounded by yTGy.

The only parameter in DIRECT with a significant influence
on performance is the number of function evaluations allowed.
In 2D searches, we performed 6000 evaluations, and in 3D
searches, 46 000 function evaluations plus 10 000 in the inter-
mediate refinement step. Using these settings we found the
global optimum in all test cases using non-randomized data.

We have observed, in accordance with other authors (e.g.
Cox et al., 2001; Bartholomew-Biggs et al., 2002), that DIR-
ECT quickly locates the region of the global optimum but
that local convergence is rather slow. We therefore finish
the search by performing a local exhaustive search, ±5 cM
in each dimension, around the best point. This is similar
to the procedure suggested in Cox et al. (2001). In the 3D
searches, we also use an intermediate refinement step. After
a set number of iterations, the chromosome combination box

containing the best point is located, and a number of additional
iterations are performed in this box only, before the final local
exhaustive search.

The genetic algorithm
We have compared DIRECT with a genetic algorithm, GA,
from a library named PGAPack (Levine, 1996). The same
GA was used in Carlborg et al. (2000), where a position in the
search space is encoded as a string of 2n real numbers repres-
enting the chromosomes and the chromosome positions of the
n QTL. One QTL position string is called a GA-chromosome,
and the fit of a chromosome is given by the objective function
value at the corresponding position in the search space. A GA-
population is a set of GA-chromosomes, and in each iteration
new GA-chromosomes are created by mutation and crossover
among the existing ones, selecting for best fit. The GA is, thus,
partly related to forward selection in the sense that mutation
and/or crossover on a good candidate GA-chromosome often
results in keeping one QTL position fixed and changing the
other. The symmetry of the search space is exploited by not
allowing the algorithm to evaluate the reflection of a position
already visited. After the GA is finished, a local exhaustive
search ±5 cM is performed around the found optimum in the
same way as for DIRECT.

A significant effort has been made in tuning the paramet-
ers to obtain the best possible accuracy for all test cases.
Table 2 shows the different parameter settings chosen for
this study. We refer to the settings chosen in Carlborg et al.
(2000) as GA(20k), the name reflecting the approximate
number of function evaluations performed. The best para-
meter choice found was a modified version of GA(20k) which
we call GA(75k). GA(6k) is the settings giving only the
same number of function evaluations as DIRECT in 2D. The
parameterization used in the 3D searches is called GA(1M).

IMPLEMENTATION
All objective function evaluations were done using the effi-
cient kernel algorithm presented in Ljungberg et al. (2002).
The experiments showed that, in practice, the only factors
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Table 2. Parameter settings for the GA

Name Number of Iterations/ Population
populations population size

GA(6k) 3 980 20
GA(20k) 10 1000 20
GA(75k) 25 1500 20
GA(1M) 25 2000 200

determining the CPU time for the three methods are the num-
ber of function evaluations performed and the time required
for a single evaluation. The CPU time for one evaluation
depends on the model and dataset, but not on the optimization
method since they use the same kernel algorithm.

All code was written in Fortran90, and the computations
were done on SPARC UIII, 900 MHz processors. The exhaust-
ive searches were performed on a parallel computer using
message passing interface (MPI) (http://www.mpi-forum.org)
library routines, and the CPU times reported are the sums of
the CPU times for each processor, not including overhead time
for the parallelization.

RESULTS
Original, non-randomized, data
The accuracy is reported as the percentage of successful loc-
alizations of the exact global optimum out of the total number
of searches. Since the GA has a random element, the res-
ult will depend on the random seed. Therefore, using this
method, each search was repeated 15 times to give a reas-
onable statistic. DIRECT is deterministic and gives the same
result every time.

We again stress that we do not present any new QTL map-
ping method in this paper. The parameter estimates at a given
position depend only on the choice of objective function, e.g.
linear regression or maximum likelihood, and are completely
independent of the optimization algorithm. In the context of
this study, returning the correct result means returning the set
of QTL positions that gives the best value of the test statistic
for the chosen model and mapping method.

First we report the results for searches in two dimensions.
We have tested the methods for the 2:m and 2:m+p models
in Table 1 on all datasets described in the Data subsection,
which gives a total of 30 tests.

Figure 2 shows the average CPU times and accuracy over
the nine phenotypes of the chicken dataset using the 2:m
and 2:m+p models. The results for pig data and the same
models were very similar. It should be noted that the CPU
times essentially equal the number of function evaluations per-
formed multiplied with the time for each objective function
evaluation. The CPU time for function evaluation is largely
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Fig. 2. CPU time for 2D searches as a function of the percentage of
successful localizations of the global optimum.

determined by the number of individuals and fixed effects,
and the important result here is the relative change in com-
putation time, not the absolute values. An exhaustive search
with the 2:m model requires about 20 min, and 46 min with
the 2:m+p model. DIRECT finds the global optimum in less
than 3 and 7 s, respectively, which represents a speed-up of
between two and three orders of magnitude. GA(75k) gives
the global optimum at close to 100% of the runs, with CPU
time 34 and 76 s. Using GA(6k), the genetic algorithm with
the same number of function evaluations and thus practic-
ally the same CPU time as DIRECT, reduces the accuracy
from close to 100% to around 60%. GA(20k), the settings of
Carlborg et al. (2000), gives intermediate results. The GA has
more difficulties finding the global optimum when epistasis
is included in the model. It was observed already in Carlborg
et al. (2000) that the GA sometimes failed when a QTL pair
lacked significant marginal effects. This can be explained by
the forward selection property of the algorithm.

Now we turn to three-QTL results. We have used the 3:m
and 3:m+p models combined with four chicken traits, one of
which was also used with the 3:m+p+t model, giving nine
tests in total.

Figure 3 shows the average CPU times and accuracy over
four phenotypes of the chicken dataset using the 3:m and
3:m+p models, and one phenotype using the 3:m+p+t model.
The chicken 3:m, 3:m+p and 3:m+p+t exhaustive searches
would take ∼25, 60 and 142 days, respectively, on a single
processor computer. The gain in using DIRECT over exhaust-
ive search is more than four orders of magnitude in speed, the
searches taking 0.5, 3 and 6 min, while not losing accuracy.
Using GA(1M) gives high accuracy for the 3:m and 3:m+p
models but lower accuracy for 3:m+p+t and is over one order
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Fig. 3. CPU time for 3D searches in chicken data as a function of
the percentage of successful localizations of the global optimum.

of magnitude slower than DIRECT, the searches requiring 12,
73 and 136 min, respectively.

Figures 4 and 5 illustrate the difference in search pat-
terns between DIRECT and the GA. Here we show results
from model 2:m+p with pig data. The two figures show the
sampling pattern after a complete run, i.e. 6000 function eval-
uations, using DIRECT (Fig. 4) and GA(6k) (Fig. 5). The
locations where the objective function has been evaluated are
marked with ‘×’ in contour plots of the objective function
around the four largest peaks. For clarity, most contours for
lower levels are not shown. DIRECT uses the function eval-
uations very efficiently. It gives even coverage of the search
space with dense clusters of function evaluations around the
largest peaks. This indicates that the algorithm can locate the
global optimum for original data also in difficult cases when
there are many local optima of similar magnitude. Using the
same number of function evaluations, the GA sometimes does
not find the global optimum, even if the regions around all the
four largest peaks are sampled. If many peaks are of similar
height, the best position found so far when the local search is
initiated might be at the wrong peak. Or the right peak might
have been found, but local exhaustive search ±5 cM is not
a good enough method to localize the very best position on
the peak. The GA samples the search space stochastically to
a large extent.

Randomized data
Finding the global optimum can be expected to be more diffi-
cult in a randomized dataset, since the optimization landscape
will be smoothed out and the peaks smaller for most of the
randomizations when the connections between genotype and
phenotype is broken.

We used the 2:m+p model for the four randomized datasets.
We determined the 1.0, 5.0, 10 and 20% genome-wide sig-
nificance thresholds for 0 against 2 QTL using an exhaustive
search. The thresholds were also calculated using DIRECT
and GA on the same data. In Table 3, we report the true levels
(as given by the exhaustive search) of the thresholds derived
using DIRECT, GA(20k) and GA(75k) intended to give the
1.0, 5.0, 10 and 20% significance levels. A number 5.6% in
the 5.0% column means that in 5.0% of the randomizations,
a global optimum better than x (x not reported) was found
when using the global optimization algorithm, i.e. the 5.0%
significance threshold would be taken to be x, while in real-
ity 5.6% of the true global optima, obtained using exhaustive
search, were better than the same x. A threshold that is too
low, i.e. at 5.6% instead of 5.0%, gives a slight increase in the
type I error rate. This could in part explain the increased rate
of type I errors in Carlborg and Andersson (2002), where the
genetic algorithm is used.

Looking at the individual runs, it can be seen that DIRECT
finds the wrong position in about 9% of the randomizations.
The function values are, however, accurate enough to give
nearly the same threshold values as exhaustive search, and
they are calculated between two and three orders of magnitude
faster. Using GA(20k) the wrong position is found in 23–35%
of the cases. This is about the same error rate as was found
with non-randomized data. The error rate is about 1–14%
when using GA(75k), which gives very accurate threshold
values at the cost of increased CPU time.

There is a tendency for the 1 and 5% computed thresholds
to be more accurate than the 10 and 20%. This reflects that it
is easier for both algorithms to find large peaks, while the ran-
domizations giving a ‘smeared’ landscape with many smaller
peaks are more difficult from an optimization point of view.

DISCUSSION
This study has shown that DIRECT is a fast and accurate
algorithm for global optimization in QTL mapping. The exact
optimum is found in real datasets, and searches in randomized
data are accurate enough to give almost the same empirical sig-
nificance thresholds as exhaustive search. 2D searches require
a few seconds, and 3D searches are finished in a few minutes.
DIRECT makes randomization testing of two QTL models
faster, and randomization testing of three QTL models fully
feasible. This opens the possibility to thoroughly investig-
ate the power of simultaneous search to detect triplets of
interacting QTL, which will be done in future research.

We have implemented DIRECT to simultaneously search
for up to 15 interacting QTL. In practice, a search in more than
five or six dimensions will necessitate some strategy to reduce
the search space, which otherwise will be prohibitively large
even if DIRECT is used. Possible strategies include imposing
conditions such as having at least one QTL on each chromo-
some in a set. This is essentially a forward selection procedure,
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Fig. 4. Search pattern after 6000 function evaluations with DIRECT in the region around the four largest peaks, numbered 1–4 according to
their relative ranks.
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Fig. 5. The GA sampling pattern after 6000 function evaluations, GA(6k), in the region around the four largest peaks.
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Table 3. Empirical thresholds with CPU times

2:m+p model
Computed thresholds (%) Time

Chicken data algorithm
Exh. search 1.0 5.0 10 20 32 days
DIRECT 1.0 5.2 10 21 1.7 h
GA(20k) 1.0 5.6 12 24 5.8 h
GA(75k) 1.0 5.3 10 21 21 h

Pig data algorithm
Exh. search 1.0 5.0 10 20 17 days
DIRECT 1.0 5.1 10 21 57 min
GA(20k) 1.0 5.4 11 22 3.5 h
GA(75k) 1.0 5.0 10 20 14 h

but with the advantage that the positioning of the ‘known’
QTL is unrestricted within the boundaries of the pre-selected
chromosomes. Also, the significant reduction in search space
using this approach makes it possible to simultaneously add
more than one free QTL in each forward selection step. It
is a statistical problem to investigate whether the resulting
improvement in objective function value motivates adding
QTL to the model. Backward selection can be performed by
restricting the number of QTL on each chromosome to at most
the same number as with the optimal n QTL model, and then
optimizing an n− 1 QTL model in the resulting search space.
Again this has the advantage of free QTL positioning within
chromosome boundaries. These options are implemented, but
so far not evaluated.

DIRECT is developed to find the optima of Lipschitz con-
tinuous functions, i.e. functions where the rate of change of
the objective functions is limited everywhere by some constant
K , where K is normally unknown. We gave a motivation for
Lipschitz continuity of the QTL mapping objective function
based on that 0 ≤ f (x̄) ≤ yTGy, and that the resolution is
limited. A more interesting observation is that genetic distance
is a measure of change, a measure of recombination events.
Recombinations are reflected by change in the indicator vari-
able matrix A and consequently in f (x̄). The magnitude of
the change in f (x̄) depends not only on the genetic distance
but also on the phenotype values of the individuals switching
genotype between the flanking markers, but there still exists a
limit on the possible rate of change in f (x̄). No such limit is
assumed in the calculations, but we believe it is the explanation
for the good performance of DIRECT.

The optimization landscape will change, and consequently
the convergence properties of DIRECT will change, if a dif-
ferent objective function is chosen. According to Kao (2000),
the differences between maximum likelihood mapping and
linear regression are minor if the marker map is dense, but
become larger, e.g. as the size of marker intervals and the

proportion of the variance explained by a QTL increase. DIR-
ECT can be applied in combination with maximum likelihood
methods, since the condition of a practical Lipschitz constant
is fulfilled, but we have not investigated the exact perform-
ance of the algorithm on those types of objective functions.
Also, when analyzing data from other types of experimental
crosses, the optimization landscape will probably be differ-
ent than in this study. However, we believe that an F2 cross
between outbred lines is one of the most difficult cases, since
the objective function will contain more noise and less distinct
peaks. In addition, we have used models with many paramet-
ers, and that too will make the peaks smaller and more difficult
for the optimization algorithms to find. When adapting DIR-
ECT to other experimental designs, an advantage is that the
only parameter necessary to adjust is the number of function
evaluations allowed, as opposed to GA which is dependent
on the settings of a large number of parameters. We have
used 6000 function evaluations in the 2D searches and 56 000
evaluations in the 3D search, which corresponds to 0.2% and
0.002% of the total number of positions.
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