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ABSTRACT
Summary: Bayesian statistical methods based on sim-
ulation techniques have recently been shown to provide
powerful tools for the analysis of genetic population struc-
ture. We have previously developed a Markov chain Monte
Carlo (MCMC) algorithm for characterizing genetically diver-
gent groups based on molecular markers and geographical
sampling design of the dataset. However, for large-scale data-
sets such algorithms may get stuck to local maxima in the
parameter space. Therefore, we have modified our earlier
algorithm to support multiple parallel MCMC chains, with
enhanced features that enable considerably faster and more
reliable estimation compared to the earlier version of the
algorithm. We consider also a hierarchical tree representation,
from which a Bayesian model-averaged structure estimate can
be extracted. The algorithm is implemented in a computer
program that features a user-friendly interface and built-in
graphics. The enhanced features are illustrated by analyses
of simulated data and an extensive human molecular dataset.
Availability: Freely available at http://www.rni.helsinki.fi/~jic/
bapspage.html
Contact: jukka.corander@rni.helsinki.fi

INTRODUCTION
Recent studies of genetic population structures have applied
Bayesian methods in assigning individuals or chromosomal
segments into classes or clusters using multilocus molecular
markers (Pritchard et al., 2000a; Dawson and Belkhir, 2001;
Corander et al., 2003; Falush et al., 2003). Apart from the
evolutionary perspective, the estimated structure can provide
a useful insight into many applications, such as correcting
for population stratification in association studies (Pritchard
et al., 2000b; Satten et al., 2001; Sillanpää et al., 2001) or
accounting for genetic heterogeneity (Sillanpää et al., 2001;
Province et al., 2001).

Assignments in methods by Pritchard et al. (2000a) and
Falush et al. (2003), are configured within a prespecified num-
ber of latent classes. Inference about the number of classes
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or clusters that are supported by the data is then done by
repeated analyses where different fixed numbers of classes are
used. Although such an approach is computationally straight-
forward, it has at least two drawbacks. First, as pointed out by
the authors of these two papers, inference on the number of
classes supported by the data is based on an ad hoc approxima-
tion, with a generally unknown performance. Second, in the
analysis of datasets of moderate or large degree of complexity,
the computational algorithm may get stuck in various parts of
the parameter space in separate runs, whereby it is difficult to
evaluate the correctness of the estimated distributions. Such
behavior of the algorithm was reported in Rosenberg et al.
(2002).

Dawson and Belkhir (2001) and Corander et al. (2003) also
use molecular markers to resolve the latent genetic structure
among populations, but they estimate the partition among
individuals directly. This provides a natural means to infer
the a priori unknown number of genetically divergent lat-
ent groups of individuals. The main differences between the
approaches of Dawson and Belkhir (2001) and Corander et al.
(2003) are in the parametric assumptions of the Bayesian
model, and in that the latter lays conditions on the geo-
graphical sampling design of the individuals. It was shown
in Corander et al. (2003) that, when applicable, the con-
ditional approach greatly improves the statistical power to
detect clusters in the data. This was illustrated with real data
in Gyllenstrand and Seppä (2003). On the other hand, such
an approach cannot be utilized to detect whether the data con-
sists of a mixed or admixed sub-population within a single
geographical sampling location. Therefore, we have gener-
alized the approach of Corander et al. (2003) to account for
such cases.

Most species are genetically structured at several levels,
such as populations, demes and individuals (Weir, 1996). In
our approach partitions can be formed at different levels of
sampling units, where a single unit can correspond to an
individual, group of individuals or even a population. Such
flexibility allows the investigation of hierarchical patterns of
genetic variations at levels that are of interest in any particular
application.
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A particular advantage of using sampling units is that one
can receive substantial savings in genotyping costs by apply-
ing DNA pooling techniques in connection with the method.
In DNA pooling, one can determine allele frequencies for
a whole pool of samples instead of individually genotyping
them (e.g. Sham et al., 2002). Such frequencies from several
different pools can then be modeled using our algorithm, as
opposed to the methods that are solely restricted to individual-
level analyses (Pritchard et al., 2000a; Dawson and Belkhir,
2001; Falush et al., 2003).

Our method is applicable to common types of co-dominant
markers (e.g. allozymes, single-nucleotide polymorphisms,
microsatellites), and to DNA haplotypes and haploid multi-
locus markers. Dominant markers (e.g. AFLPs) can also be
used for inferring latent groups. However, estimation of evol-
utionary parameters from such data may not be well founded.
Generally, as with other classification and clustering methods,
the biological relevance of the conclusions depends on the
appropriateness of the data used for the purpose of the study.

Support for running the multiple parallel Markov chain
Monte Carlo (MCMC) chains introduced here enables a
global-level assessment of the validity of the parameter estim-
ates obtained from different chains. BAPS provides estim-
ates of posterior probabilities of specific partitions of given
sampling units, as well as a hierarchical-tree representation
of the closeness of the sampling units, from which a Bayesian
model-averaged partition can be extracted. This feature is sim-
ilar to that advocated in Dawson and Belkhir (2001), and
it is particularly useful when the sampling units are indi-
viduals and the molecular data are scarce, since any specific
partitions have then typically very low posterior probabilit-
ies. In the software, we have also included the possibility of
deriving Bayesian estimates of the fixation index (Nei, 1977)
and pairwise genetic distances (Nei, 1972; Reynolds et al.,
1983). To illustrate the new features and the potential in the
BAPS software, we present analyses of simulated data and of
a well-known human molecular dataset of Rosenberg et al.
(2002).

SYSTEM AND METHODS
The target of our estimation is to provide posterior distribu-
tion of partitions among the sampling units into non-empty
classes, which have non-identical allele frequency parameters
over an arbitrary number of molecular marker loci. Let
S = (s1, . . . , sk) represent a partition of n sampling units
into k non-empty classes. Let NL denote the number of
observed marker loci, and NA(j) the number of different
alleles distinguishable at locus j in the data. Independently
for each class si in S, the joint distribution of the data
and parameters is proportional to the Multinomial–Dirichlet

expression
∏NL

j=1

∏NA(j)

l=1 p
nijl+αj

ijl , where pijl is the unknown
allele frequency parameter, nijl is the observed number of
copies of allele l at locus j among sampling units in si and

αj is the Dirichlet prior hyperparameter, chosen as 1/NA(j).
Thus, in the above we assume independence of allele frequen-
cies between loci and Hardy–Weinberg equilibrium (HWE)
within each class si . These assumptions are commonly used,
an exception being Falush et al. (2003), where dependence
between loci was modeled. In cases where the HWE assump-
tion seems unjustified, our model can be used for observed
genotype frequencies to account for the effect of inbreeding.
The prior distribution for the parameter S is chosen to be uni-
form in the class of all possible partitions. The above Bayesian
model used in the new BAPS 2 program for an arbitrary spe-
cified sampling unit level, is analogous to that introduced in
Corander et al. (2003) for population-level analysis.

For small n, it is possible to use complete enumeration to
obtain exactly the posterior distribution over the class � of all
possible partitions, defined as

p(S|data) = m(S)
/ ∑

S∈�
m(S),

where m(S) is the marginal likelihood (or unnormalized pos-
terior) having the allele frequency parameters of each class si
in S integrated out analytically (formula A1 in Corander et al.,
2003) according to

k∏
i=1

NL∏
j=1


 �

(∑
l αj

)
�

[∑
l (αj + nijl)

]
NA(j)∏
l=1

�(αj + nijl)

�(αj )


 .

This Bayesian goodness-of-fit measure automatically weights
information across the genome, taking into account possible
variation in the degree of empirical uncertainty about para-
meters at different loci. This is highly relevant, for instance,
when the amount of missing observations vary largely over
the loci. In the case of an admixed background of a particular
sampling unit, e.g. an individual, the model-based averaging
of genetic information will support allocation to a group hav-
ing a predominant resemblance in expected allelic pattern.
However, when no particular source appears in a predomin-
ant position, it is reflected in posterior uncertainty about the
allocation of the particular sampling unit.

In the general case where the class of all possible parti-
tions is too large for exhaustive enumeration, values from the
posterior distribution over partitions may be generated using
the Metropolis–Hastings algorithm (e.g. Robert and Casella,
1999). In the Metropolis–Hastings algorithm, a Markov chain
defined in a parameter domain may be generated by random
acceptance of proposal values for the next state conditional on
the current state. The acceptance probability of a proposal S∗
generated with probability q(S∗|S), given a current value S,
can be written as

min

(
1,

m(S∗)q(S|S∗)
m(S)q(S∗|S)

)
,
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where q(S|S∗) is the probability of proposing a restoration
of the current state. Here, we make use of several different
proposal distributions specified in the next section.

The analytical integration approach reduces considerably
the computational effort needed in the MCMC, compared with
the Gibbs sampling technique used by Pritchard et al. (2000a),
where values of the allele frequency parameters are explicitly
generated in each iteration. Since the model may comprise
even hundreds of thousands of such parameters for large data-
sets, the Monte Carlo errors related to the Gibbs procedure
can be of considerable magnitude.

ALGORITHM
To facilitate comparison with our earlier paper (Corander
et al., 2003) we have listed here algorithmic improvements
that are implemented in the BAPS program:

Posterior summaries

• Posterior probability estimates for different partitions
are now based on analytically calculated marginal likeli-
hoods, which reduces the amount of MCMC simulation
error compared to the earlier approach that used relative
frequencies of occurrences.

• We have included an ultrametric-tree representation
(dendrogram) of the sampling units, from which a
Bayesian model-averaged partition can be obtained.

Estimation

• The MCMC algorithm includes new move types to
improve mixing within the chains, which is particularly
important for clustering at the individual level.

• It is possible to apply a deterministic or stochastic par-
tition algorithm using an arbitrary number of clusters to
obtain a preferable initial configuration for the MCMC
chains. This may shorten the time needed for convergence
to a large extent.

• Numerical computations inside the chains have been
optimized to obtain up to 50 times faster execution (single
chain in the new program compared to the old algorithm).

Monitoring convergence

• Convergence of the chains can be monitored visually
using built-in graphics.

• A strategy of multiple parallel MCMC chains is used,
which enables a more reliable monitoring of the conver-
gence to representative areas of the parameter space.

Data

• Possibility of using pooled DNA data.

• Support for haploid markers.

To improve the mixing properties of the simulated Markov
chains, especially at individual the level, we have extended the

move types that were available in the algorithm of Corander
et al. (2003). Given the current value of any of nc paral-
lel Markov chains, a new value for that particular chain is
proposed according to the following move types:

(1) With probability 0.5, combine two randomly chosen
classes si , sj .

(2) With probability 0.5, split a randomly chosen class si
into two new classes, whose sizes are uniformly distrib-
uted between 1 and |si |−1 (the cardinality minus one),
and whose elements are randomly chosen from si .

(3) Move an arbitrary sampling unit from a randomly
chosen class si with cardinality |si | > 1, into another
randomly chosen class sj .

(4) Choose one sampling unit randomly from each of two
randomly chosen classes si and sj , and exchange them
between the classes.

In the earlier algorithm, only split and combine moves were
considered, which may lead to insufficient mixing of the
chains. At every iteration for each of the nc simulated Markov
chains, a random choice is made between move types 1 and 2,
followed by the move types 3 and 4, upon rejection or accept-
ance of the first attempted move. This updating strategy is
similar to that used in Dawson and Belkhir (2001) for a single
chain. The proposal probabilities for the four move types
simplify to the following expressions:

(1)

(
k

2

)−1/
2

(2) �|si |/2�−1
(|si |

|sj |
)−1

for |sj | < |si |/2, and �|si |/2�−1

(|si |
|sj |

)−1/
2 for |sj | = |si |/2, where sj is one of the

two new classes built from the split of si , with minimal
cardinality |sj |.

(3) τ(S)−1(k − 1)−1|si |−1, where τ(S) is the number of
classes with cardinality larger than one, and si is the
chosen class.

(4)

(
k

2

)−1

|si |−1|sj |−1.

Clearly, not all move types are available at all states of
the chain, which imposes trivial changes to the proposal
probabilities in those cases.

Our estimate of the posterior probability p(S|data) of a spe-
cific partition S is given by the relative marginal likelihood
m(S)/

∑
S∈� m(S), where the summation is over the class of

all distinct partitions found in the nc simulated chains. Such
an estimate automatically and effectively avoids giving too
much weight to partitions occurring in chains that have been
stuck to local maxima. This is contrary to the typically applied
frequency-based approach, where the relative frequency of
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visits to a particular parameter configuration estimates its pos-
terior probability. For the visual inspection of the convergence
of the chains, our program shows trace plots of the marginal
likelihoods for each chain.

From the above posterior distribution it is possible to cal-
culate the marginal posterior distribution of the number of
latent classes in the range 1, . . . , n, by summing over parti-
tions containing an equal number of classes. Our algorithm
also calculates the marginal posterior probability of the equal-
ity of allele frequencies for all pairs of sampling units. This
is done by summing the posterior probabilities of the parti-
tions having a particular pair of sampling units allocated in
the same class. Thus, a measure of closeness is provided for

all

(
n

2

)
pairs, which can be used as a basis for building a

hierarchical clustering representation of the sampling units in
terms of a dendrogram (see e.g. Mardia et al., 1979). Such
representation was also advocated in Dawson and Belkhir
(2001), and it enables a clustering of the sampling units in
a Bayesian model-averaged sense, since the distance meas-
ure is obtained by averaging over the posterior distribution.
This is particularly important when the data are scarce, since
empirical support for any specific structure in terms of pos-
terior probability may then be very low. However, Dawson and
Belkhir (2001) used the relative frequency of co-occurrence
of individuals in a single simulated chain as an estimate of the
marginal posterior probability, whereas our estimate is based
on the relative marginal likelihoods obtained from all chains.

EMPIRICAL RESULTS AND DISCUSSION
Simulated data analysis
The purpose of the simulated data analysis is to illustrate the
usefulness of the model-averaging approach when there is a
considerable degree of uncertainty in the estimated posterior
distribution. First, we consider a simulated set of 100 individu-
als for which alleles at 50 biallelic loci (j = 1, . . . , 50) were
generated. The population consisted of 10 divergent groups
(i = 1, . . . , 10), with 10 individuals sampled from each, and
with underlying allele frequency parameters (pij) determined
as follows. For i = 1, . . . , 10 and j = 1, . . . , 25, pij were
independently drawn from the uniform(0,1) distribution. Fur-
ther, for j = 26, . . . , 50, pij was set equal for all groups and
independently drawn from the uniform(0,1) distribution for
each locus. Thus, the groups have common allele frequen-
cies at 50% of the loci, while being divergent to a random
extent at the remaining half of the loci. Given these frequency
parameters, we simulated a set of 100 binary vectors repres-
enting multilocus genotypes, where one of the alleles was set
randomly missing at each locus for all individuals.

In the group-level analysis (exact results not shown), the
different sources were rather clearly separated, and the par-
tition with all 10 groups as isolates had the highest posterior
probability (0.502). Some evidence, ranging from minor to

moderate, was given for the equality of allele frequencies
for population pairs 2, 3 and 5, 6. Given the small sample
sizes, it was not surprising that the group structure remained
somewhat uncertain. To mimic a considerable mixing of the
populations, we randomly exchanged half of the individuals
between the groups 1 and 2, as well as 3 and 4. The group-
level analysis then erroneously allocated populations 1,2,3,4
and 6 to the same cluster [with p(S|data) = 0.992], while
the remaining populations were kept isolated. To investigate
whether BAPS could resolve the original population struc-
ture, we re-analyzed the data at individual level. In Figure 1,
a dendrogram representation of the posterior closeness of the
100 individuals is given. The results are based on 100 parallel
chains simulated for 100,000 iterations, which took ∼4 h on
a PC with a 2.8 GHz P4 processor.

Figure 1 provides an illustration of an instance where the
estimated posterior distribution has its probability mass so
widely distributed that the investigation of probabilities of
particular partitions is tedious. The dendrogram, however,
provides a useful summary of the distribution and can be
used to obtain a partition by cutting it at a suitable distance
level. The distance between a pair of sampling units equals
one minus the marginal posterior probability of them being
allocated in the same class. When the dendrogram in Figure 1
is partitioned, say, at distance level 0.4, most of the individuals
are correctly allocated with others in their groups of origins
(17 out of 100 are erroneously allocated at that level).

We also checked for the consistency of our algorithm by
another analysis, where the data was generated as above,
except that the number of available marker loci was doubled.
With the 100 simulated markers having again diverged allele
frequencies at 50% of them, the original structure could be
exactly resolved, both in group and individual level analyses.

Real data analysis
Recently, studies concerning the structure of human popula-
tions (Rosenberg et al., 2002; Bamshad et al., 2003) have
generated a lot of discussion in several scientific forums
(Cooper et al., 2003; Burchard et al., 2003; Calafell, 2003;
Excoffier and Hamilton, 2003; Feldman et al., 2003; Haga
and Venter, 2003). In the study by Rosenberg et al. (2002) the
structure of human populations was investigated by using an
extensive set of microsatellite marker genotypes at 377 loci
for individuals from a worldwide sample of 52 populations.

In their admixture analysis, Rosenberg et al. (2002) used
the Bayesian classification method of Pritchard et al. (2000a)
for assigning genomic segments within individuals into their
hidden population groups. The results displayed five very
well-defined groups that seemed to correspond well to five
major geographic regions excluding the additional outlier, the
Kalash population. However, it was also reported that their
estimation method started to converge to different solutions
in separate runs when the number of population groups was
specified to be higher than six. We re-analyzed their data
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Fig. 1. A dendrogram representation of the posterior closeness of 100 simulated individuals with data from 50 biallelic marker loci, based
on the complete linkage algorithm (Mardia et al., 1979). The individuals are indexed in linear order according to the original 10 groups
(1–10, 11–20, etc.). Individuals that are joined under the marked distance level (horizontal broken line) are allocated in the same cluster in a
model-averaged partition. This figure can be viewed in colour on Bioinformatics online.

using BAPS, however, when comparing the results to those of
Rosenberg et al. (2002), one should keep in mind that unlike
us, Rosenberg et al. (2002) used an admixture rather than the
mixture-based approach for their classifications.

First, to estimate the latent classes among the 52 sampled
populations, we used 100 parallel chains, each of which was
initialized with a partition where all original populations were
treated as separate classes. In Figure 2, trace plots of the log-
arithms of marginal likelihoods for the chains are given for
the first 5000 iterations. These clearly reveal that many chains
are stuck on a considerably lower marginal likelihood level
than the chain associated with the largest values. When the
marginal likelihoods are converted to posterior probabilities,
only a single partition (Table 1) was practically supported by
the data [estimated p(S|data) = 1.000]. Further iterations did
not change the posterior mode estimate, and in fact, Figure 2
reveals that the best chain had converged to the mode value
already after 1000 iterations. The analysis with 5000 itera-
tions took ∼10 h on the same computer used in the previous
analyses.

Our Bayesian partition estimate coincides closely with the
results of Rosenberg et al. (2002), however, it also shows
that more groups are needed to fully represent the genetic
differences at the global level. The largest divergences seem
to appear between American and the remaining populations.
The Africa, East Asia, Eurasia and Oceania clusters in Table 1
are identical to their counterparts obtained in Rosenberg
et al. (2002), except for the Kalash population, which was

considered as an isolate in their six-cluster solution. The pop-
ulations from America were all allocated in a single cluster in
the global analysis of Rosenberg et al. (2002), whereas our res-
ults indicate the following three divergent groups: (Colombia,
Maya, Pima), (Karitiana) and (Surui).

While our results confirm most of the global level find-
ings in Rosenberg et al. (2002), the differences obtained for
the America region seem interesting. At least two reason-
able explanations of the separation of American populations
at the global level of differences can readily be given. First,
the separation among the groups can be of very old origin,
which seems reasonable when geographical distances and the
degree of separation of populations in other continents are
compared. Second, as commented by Rosenberg et al. (2002),
genetic drift acts more rapidly in small and isolated popula-
tions, which makes the comparison of divergence times more
difficult. However, since the latter argument applies to prac-
tically all populations from America included in the sample, at
least the ancient separation of the two Central South American
populations (Karitiana and Surui) from those of more northern
origin (Colombia, Maya, Pima) seems very reasonable.

As noted earlier, events of mixture or admixture between
populations may remain undetected or result in spurious struc-
ture estimates in the population-based comparison of allele
frequencies. For instance, results of Rosenberg et al. (2002)
gave a strong indication of the shared ancestry between Europe
and Africa for two Middle East populations (Mozabite,
Bedouin). In particular, two individuals in the Mozabite and
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Fig. 2. Log marginal-likelihood traces of 100 MCMC chains for the first 5000 iterations in the human data analyzed at population level. This
figure can be viewed in colour on Bioinformatics online.

Table 1. The partition of human populations with maximum posterior
probability [p(S|data) = 1.000]

Cluster 1 (‘East Asia’): Han, Han-N, Dai, Daur, Hezhen, Lahu, Miao,
Orogen, She, Tujia, Tu, Xibo, Yi, Mongola,
Naxi, Cambodian, Japanese, Yakut

Cluster 2 (‘Eurasia’): Orcadian, Adygei, Russian, Basque, French,
Italian, Sardinian, Tuscan, Mozabite,
Bedouin, Druze, Palestinian, Balochi, Brahui,
Burusho, Hazara, Kalash*, Makrani, Pathan,
Sindhi, Uygur

Cluster 3 (‘Africa’): Bantu, Mandenka, Yoruba, BiakaPygmy,
MbutiPygmy, San

Cluster 4 (‘Oceania’): Melanesian, Papuan
Cluster 5 (‘America’): Colombian, Maya, Pima
Cluster 6 Kariatiana*
Cluster 7 Surui*

Populations marked with an asterisk (*) are allocated differently compared with the six
cluster solution given in Rosenberg et al. (2002).

a single individual in the Bedouin population seemed to have
strong African ancestry whereas the other members of these
populations had predominant European ancestry. To investig-
ate the possible (ad)mixture of Middle East populations we
did individual-level clustering of the data from Africa, Europe
and Middle East, by ignoring the known sample origins in the
analysis. The data contained altogether 458 individuals from
18 different populations. The first 8 populations in the Eurasia
cluster in Table 1 represent Europe, and the four populations
following those represent Middle East.

In the estimation, we used 3000 iterations with 100 chains,
which resulted in a single partition with estimated posterior
probability equal to unity. In fact, the posterior estimate
was not altered after ∼2000 iterations. The strong concen-
tration of the posterior distribution in these two analyses of
the human data (at population and individual level) illus-
trates how uncertainty is reduced by extensive data, even
in the case of a vast parameter space. In this case, the
dendrogram representation does not provide any additional
information, since the posterior distribution can be compactly
summarized.

The obtained individual-level partition consisted of two
classes, one with the individuals from Europe and Middle
East, and the other with those of African origin, apart from
some exceptions. Two individuals from the Mozabite popula-
tion and a single individual from the Bedouin population were
allocated to the ‘Africa’ cluster, which is in agreement with the
results of Rosenberg et al. (2002). In addition, one individual
from the Biaka Pygmy population in Africa was allocated
to the ‘Europe’ cluster. However, in Rosenberg et al. (2002)
there were no significant signs of admixture for that particular
population. Using the descriptive genetic distances function
in BAPS, we also compared the genetic profiles of the four
deviantly allocated individuals with the profiles of other indi-
viduals in their population of origin and some populations in
the cluster they were assigned to. The four individuals were
clearly seen more to resemble individuals in the cluster they
were assigned to, than any of the other individuals in their
population of origin.
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Our estimated partitions reflect the divergences among the
human populations that are statistically relevant at the global
level from an evolutionary (drift) point of view. We would
emphasize that the samples used in this study and in Rosenberg
et al. (2002) have not been collected as a random sample
within each geographical region. Instead, they have been
chosen from certain distinctive human populations, based on
prior information about phenotypic and cultural similarities. It
is therefore likely that the correspondence between the genetic
structure and the geographic regions relates more to a histor-
ical colonization pattern (mainly pre European colonial time),
than to present human distribution (Feldman et al., 2003).
Moreover, an arbitrary individual in the dataset is certainly
expected to resemble genetically, individuals from the same
population more than individuals from any other population,
although the differences in the degree of resemblance might
be very small.

In our analyses of simulated and real data we have shown
that the model-based approach as implemented in BAPS, is
capable of resolving genetic structure even in fairly complic-
ated settings. However, we are currently working on some
improvements on the algorithm to facilitate the mixing of the
Markov chains. These, and the other new features, are worth
considering in future upgrades of the BAPS software.
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