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ABSTRACT
Motivation: Converting the vast quantity of free-format text
found in journals into a concise, structured format makes
the researcher’s quest for information easier. Recently, sev-
eral information extraction systems have been developed that
attempt to simplify the retrieval and analysis of biological and
medical data. Most of this work has used the abstract alone,
owing to the convenience of access and the quality of data.
Abstracts are generally available through central collections
with easy direct access (e.g. PubMed). The full-text papers
contain more information, but are distributed across many
locations (e.g. publishers’ web sites, journal web sites and
local repositories), making access more difficult.

In this paper, we present BioRAT, a new information extrac-
tion (IE) tool, specifically designed to perform biomedical IE,
and which is able to locate and analyse both abstracts and
full-length papers. BioRAT is a Biological Research Assistant
for Text mining, and incorporates a document search ability
with domain-specific IE.
Results: We show first, that BioRAT performs as well as exist-
ing systems, when applied to abstracts; and second, that
significantly more information is available to BioRAT through
the full-length papers than via the abstracts alone. Typically,
less than half of the available information is extracted from the
abstract, with the majority coming from the body of each paper.
Overall, BioRAT recalled 20.31% of the target facts from the
abstracts with 55.07% precision, and achieved 43.6% recall
with 51.25% precision on full-length papers.
Availability: The software and documentation can be found
at http://bioinf.cs.ucl.ac.uk/biorat
Contact: d.corney@cs.ucl.ac.uk; dtj@cs.ucl.ac.uk

1 INTRODUCTION
The rapid and ongoing growth in the number of biological and
medical publications means that researchers can no longer
read more than a small proportion of the literature in their
field. Yet interesting and useful information, relevant to the

∗To whom correspondence should be addressed.

researcher, could appear in papers they have not read and
therefore be missed entirely. Accompanying this growth in
literature is the increasing proportion of electronically avail-
able papers, as most publishers now produce on-line versions
of their journals. But while this may ease access, there is still
a vast quantity that a researcher may feel they should read,
with no concomitant increase in their ability to do so.

Information retrieval helps researchers to find papers, but it
still leaves a large amount of reading to be done. Information
extraction (IE) goes one stage further, and analyses the papers
on behalf of the researcher. IE systems achieve this by identi-
fying semantic structures in the text, and in so doing, distill
an entire document down to the key facts.

BioRAT can be regarded as a research assistant that is given
a query and, autonomously, finds a set of papers, reads them
and highlights the most relevant facts in each. BioRAT uses
natural language processing techniques and domain-specific
knowledge to search for patterns in documents, with the aim
of identifying interesting facts. These facts can then be extrac-
ted to produce a database of information, which has a higher
‘information density’ than a pile of papers. This is similar
to an information extraction system that has recently been
developed by Blaschke and Valencia (2001, 2002), and which
will be discussed in more detail below.

There have been several attempts to apply IE techniques
to scientific papers, but these have used only the abstract
of each paper. Example applications include protein–protein
interactions (Thomas et al., 2000); using machine learning to
classify biological relationships (Craven and Kumlien, 1999);
and protein structure and residues (Gaizauskas et al., 2003).

Abstracts are readily available in large numbers (e.g.
through PubMed, http://www.ncbi.nlm.nih.gov/entrez/), are
available in plain text, and typically have no superscript or
subscript characters, no footnotes and so forth. This avoids
potential difficulties in interpreting unusual symbols, Greek
letters, etc. However, the abstract is only a summary of the
paper in question; the full text will typically include more
detail that may be of direct interest to the reader. BioRAT
is designed to extract information both from abstracts and
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from full text, and in this work, we use BioRAT to compare
information extraction from abstracts and from full-length
papers.

A ‘challenge evaluation’ has recently been proposed, to
encourage researchers to focus on a particular task, allow-
ing a direct comparison of their systems. As described by Yeh
et al. (2003), full-length articles were used in the challenge,
after they had been manually ‘cleaned’ to convert Greek let-
ters, superscripts and subscripts and italics, into marked-up
plain text. Furthermore, a list of genes mentioned in each
paper was also available to entrants. While necessary for a
formal evaluation, such resources are not generally available
to text mining systems, so we have not used them here. Also,
Yeh et al. (2003) state that PDF papers ‘were not suitable for
processing by most text mining systems’, and so the contest
was limited to those papers that were available in the HTML
format. BioRAT uses the full-length paper whenever it is avail-
able, instead of just the abstract and uses PDF files directly
from the Internet. PDF is one of the most widely used formats
for research papers on the Internet.

The rest of this paper is organized as follows. In the next
section, we describe the BioRAT system and its key com-
ponents. We then discuss two experiments which evaluate
BioRAT using the DIP database and discuss the results. We
follow the advice of Blaschke and Valencia (2001), who spe-
cifically recommend the use of DIP as a ‘realistic scenario for
the comparison of IE systems’.

2 SYSTEM OUTLINE
We designed BioRAT to give people with no IE experience
a powerful tool to help them locate and analyse research
papers. The system therefore combines tools to locate papers,
to download full-length papers, to extract information from
papers and to design templates to allow this extraction.

Typically, the user enters a query into BioRAT, which is then
passed on to PubMed. The user is then presented with a list
of papers, from which they can choose to download abstracts
or, where available, full-length papers. Having obtained some
text, the user can then apply some pre-existing templates or
create their own. In either case, the templates match patterns in
the text that contains ‘useful’ information, which is extracted
for display to the user and for possible incorporation into a
database. Figure 1 shows screenshots of this process.

2.1 Web spidering
One distinctive feature of BioRAT is that it automatically loc-
ates and acquires full-length papers wherever possible, instead
of just using abstracts. It does this via the Internet, by follow-
ing a series of hyperlinks to find each target paper. To find
a particular paper, BioRAT starts with a URL (web address)
provided by the PubMed database. It then goes to that web
page and identifies the hyperlinks there, and recursively fol-
lows links until it finds the target paper, in PDF format. This

is downloaded and converted into a text-only version, ready
for the IE engine.

Finding the target paper is non-trivial for such a tool. The
URL provided by PubMed (and ultimately, by the journal
publishers) does not point to the paper itself, but rather to a web
page from which the paper can be accessed. The spider’s task
is to find the target paper by following a series of hyperlinks.

The system works by downloading the web page, identify-
ing and evaluating all the links in it, and iteratively following
the highest-scoring link, with scores based on simple keyword
matching. Having located and downloaded a PDF file, it is
converted into plain text for later analysis. To ensure that the
correct paper has been identified, and that the text conversion
process has succeeded, the first part of the plain text file is
compared with the corresponding abstract obtained directly
from PubMed, using a fuzzy string matching routine.

BioRAT only attempts to locate and download PDF papers,
as this is by far the most widely used format. Although some
have suggested a move towards using XML for distributing
research papers (Murray-Rust and Rzepa, 2002), papers in this
format are not generally available to biological researchers. It
is also unlikely that existing archives would be marked-up
manually.

Having obtained some relevant documents, the system then
attempts to extract interesting facts from them.

2.2 Information extraction engine
Information extraction (IE) is a key part of BioRAT’s function-
ality. The aim of IE is to extract from a set of documents the
key facts about prespecified types of events, objects and rela-
tionships. These facts are then used automatically to populate
a database. This can then be used to ease on-line access.

The heart of BioRAT is an IE engine, based on the
GATE toolbox (General Architecture for Text Engineer-
ing, http://gate.ac.uk/), produced at Sheffield University
(Cunningham et al., 2002). GATE is a general purpose
text engineering system, whose modular and flexible design
allows us to use it to create a more specialized biological
IE system. One issue common to any biological information
extraction system is that many protein and gene names are
easily mistaken for common words. For example, the Swiss-
Prot database includes entries with names ‘mice’, ‘was’ and
‘alpha’, as well as 26 single-letter gene names. The prob-
lem is to distinguish whether the word ‘was’ refers to a gene
or is simply the past tense of the verb ‘to be’, for example.
Sometimes, this can be resolved by considering the case of the
letters, but this is not reliable. Instead, BioRAT uses GATE to
label words according to their parts of speech, and then applies
a filter that rejects determinants verbs, etc. as not being pro-
teins. This provides one possible advantage of BioRAT. Two
components of GATE that must be modified for our domain-
specific application are gazetteers and templates, which we
shall now discuss in turn.
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(a) Finding papers on the web

(b) Designing a template

(c) Extracting information

Fig. 1. Screen shots showing BioRAT in use. (a) The document search interface. The user enters a query at the top and BioRAT accesses
PubMed via the Internet. A list of matching titles (with date of publication, author, etc.) is shown on the left and the user can select any item
to view the abstract, on the right or to download the full-length paper. (b) The BioRAT template design component. The user can view a
document, select target words (or a phrase) from it, and then define a template in terms of parts of speech, gazetteer headings, word stems
or the words themselves. Gazetteers can also be viewed and edited through the same interface. (c) The results from templates designed to
recognize protein–protein interactions. Four interactions are shown, with the context quoted from the source text. A command line interface
is also available.
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2.2.1 Gazetteers One task in IE is ‘named entity recog-
nition’, which aims to identify key items within text. For
example, we may want to identify words that are people’s
names, company names, proteins, genes and so on. Once
identified, these words or phrases can then be matched by
the templates. One simple approach that we adopt is to use a
gazetteer.

A gazetteer is a list of words identifying members of a par-
ticular category. For example, one gazetteer may list names
of proteins, while another lists names of people. BioRAT
incorporates gazetteers from three sources, namely MeSH
(Medical Subject Hierarchy, http://www.nlm.nih.gov/mesh/),
Swiss-Prot (http://www.expasy.org/) and hand-made lists.

The top two levels of the MeSH hierarchy contain a total
of approximately 120 entries, each of which was used to
define a separate gazetteer. Each of the almost 22 000 entries
in MeSH was extracted and added to the appropriate gaz-
etteer(s). Further gazetteers were derived from Swiss-Prot.
Each entry from Swiss-Prot describes a single protein, but
proteins often have many synonyms, all of which are included
in the relevant gazetteer. Also, some authors refer to pro-
teins in terms of the genes that encode them, so the gene
names were also extracted, and used to create another
gazetteer.

To supplement these two sources, two further gazetteers
were created by hand. These comprised words that covered
concepts of interest that were not already in other gazetteers.
One consisted of 30 words describing the interaction of
proteins (e.g. ‘bind’, ‘down-regulate’, ‘interact’ and so
on). The other consisted of a few further synonyms
of proteins not already covered by the other gazetteers.
These hand-made gazetteers were initially created follow-
ing domain expert advice, and subsequently modified as
required.

2.2.2 Templates A template is a representation of a text
pattern that allows us to extract information automatically. It
consists of a number of predefined slots to be filled by the
system from information contained in the text. One of the
simplest templates from BioRAT is:

‘interaction of’ (PROTEIN_1) ‘and’ (PROTEIN_2)

Here, ‘PROTEIN_1’ and ‘PROTEIN_2’ are slots to be filled
with names of proteins, as defined by a gazetteer. The con-
textual phrase (‘interaction of’) is a fixed string: only phrases
containing those exact words will be matched by this particu-
lar template. For example, the template shown would identify
the sentence ‘Genetic evidence for the interaction of Pex7p
and Pex13p is provided . . .’ and extract from it the interaction
(Pex7p ↔ Pex13p)1.

1We use the format ‘X ↔ Y’ to represent any form of interaction between
two proteins, X and Y.

A slightly more complicated template is:

(EXPRESSION) ‘of’ (PROTEIN_1)
( WORD )? ( WORD )? ( WORD )?
(‘by’ | ‘to’ | ‘with’)
(PROTEIN_2) ‘and’ (PROTEIN_3)

Here, ‘EXPRESSION’ refers to a gazetteer containing
words relating to protein expression and interaction, such
as ‘bind’ and ‘inhibit’. The slot (WORD)? is a wildcard
that matches any word, but is optional, so the sequence
(WORD)? (WORD)? (WORD)? matches between zero and
three consecutive words of any type. As before, the three
(PROTEIN_x) slots match protein names, and the quoted
strings must be matched exactly. The | character is a logical
‘OR’. For example, this template matches part of the sentence
‘Specific binding of Rna15 in complex with Hrp1 and Rna14
creates a polymerase pause site . . .’, and identifies two inter-
actions: (Rna15 ↔ Hrp1) and (Rna15 ↔ Rna14), with the
expression type ‘binding’.

As with comparable IE systems, such as those mentioned
in the introduction, the templates in BioRAT are written by
hand. There have been attempts at automatic template creation
(Collier, 1998), but these have not been broadly applicable.
Although template design takes time and requires some prac-
tice, it does allow the user to maintain full control over what
information is extracted, and allows experts to incorporate
their knowledge within the system. Because of this, BioRAT
incorporates a template design tool, designed to allow ordin-
ary users to create their own templates with little effort, as
discussed in the next section.

BioRAT produces data in XML format, which can be read-
ily imported into existing database query systems. The same
data are produced simultaneously as HTML and as a comma-
separated list, for viewing in applications such as a browser
or a spreadsheet, if that is more convenient for the user. Each
record in the resulting database represents a single completed
template.

2.3 Template design tool
One feature that BioRAT shares with several other text mining
systems is the need for a set of templates to be developed
for each task. This is often a time-consuming process that
requires expertise in both text mining and the problem domain.
BioRAT includes a template design tool with a graphical user
interface, which allows non-expert users to develop templates
without having to learn a complex new language. To use it, the
user first selects a document that is then displayed. The user
can then click on individual words in that document, whose
properties are then shown on the screen. The properties used
are: part-of-speech tag; gazetteer headings; the word stem;
and the word itself. The user can click on these properties
to append them to the current template pattern, along with
various wildcard and boolean options, and build up a sequence
of terms. This can then be applied as a template to the current
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document, and the results displayed. The user can then cycle
between editing the template and viewing the results, until
satisfied. Once saved, the template can then be applied to a
large set of papers using the main BioRAT template matching
interface. Alternatively, the user can select an entire phrase,
and the system will create a default template based on that
phrase, which the user can subsequently edit as required. The
tool can also be used to view and edit gazetteers.

3 USING DIP TO EVALUATE BioRAT
Having described the BioRAT system, and considered the
documents that it can be used to analyse, we now turn to
a particular study to test the usefulness of the system. For
this, we used the Database of Interacting Proteins (DIP,
http://dip.doe-mbi.ucla.edu) (Xenarios et al., 2002). Blaschke
and Valencia (2001) recommend using DIP as a way of eval-
uating biological IE systems, because it represents a realistic
problem of practical interest to biological researchers. IE
researchers can use their systems to extract protein-protein
interactions, and then compare these with the records in DIP.
This does not rely on the interpretation of the authors, and
so gives greater confidence in the results. By re-creating (a
manageable subset of) DIP, we can calculate the recall and
precision of different systems, and compare the results. The
recall (or ‘sensitivity’) is the fraction of target records that the
IE system correctly re-creates2. Precision is a measure of how
much of the output of an IE system is correct, and is defined
as the ratio of the number of correct positive predictions to the
total number of positive predictions made3.

Each record in DIP defines a pair of proteins that inter-
act with each other, and provides citations of papers that
describe the interaction. Proteins are defined by entry keys to
Swiss-Prot, GenBank or PIR. For simplicity, we only consider
DIP records containing two Swiss-Prot identifiers.

For each experiment, we started by selecting a subset of DIP.
BioRAT can analyse papers rapidly, typically taking just a few
seconds to complete its analysis of each abstract. However, for
our experiments, the results need to be manually checked in
order to calculate the recall and precision rates, and this time-
consuming task forced us to limit the targets to a manageable
subset of DIP.

Having selected some DIP records, as detailed below, we
then used BioRAT to process the corresponding papers, using
both the abstract and full-text versions. We manually com-
pared the predictions made by BioRAT to the source DIP
records to measure the recall. For each record in DIP, we
search through the output of BioRAT corresponding to the
same paper, and checked to see if the interaction mentioned in
DIP had been identified. Similarly, we measured the precision
by manually counting how many of the records produced by

2Recall = No. of true positives
No. of true positives + No. of false negatives

3Precision = No. of true positives
No. of true positives + No. of false positives

BioRAT were correctly extracted from the text. Throughout
this work, we used the January 2003 version (‘dip20030105’)
of DIP, the March 2003 version of Swiss-Prot and the 2003
edition of MeSH.

4 EXPERIMENTS
4.1 Comparison with SUISEKI
In this section, we compare BioRAT with the exist-
ing SUISEKI information extraction engine described by
Blaschke and Valencia (2001, 2002). We compare the per-
formance of BioRAT to that of their system by measuring the
recall of BioRAT on a sample of papers from DIP that were
also used by Blaschke and Valencia (2001). This provides a
suitable benchmark for BioRAT.

The SUISEKI system, like BioRAT, uses gazetteers derived
from Swiss-Prot and DIP to identify protein names. To extract
information, it uses ‘frames’, which are similar to BioRAT’s
templates in that they define patterns of language that form
the basis for IE. However, the frames in SUISEKI make less
use of linguistic knowledge, but more use of statistics. For
example, the frames in SUISEKI distinguish between nouns
and verbs, but do not recognize conjunctions, adjectives or
any other parts of speech. Also, they count the number of
words occurring in a phrase, and favour short phrases over
long ones.

There were 389 records from DIP, which were used by
Blaschke and Valencia (2001) and have a DIP record that refers
to two Swiss-Prot records. These 389 DIP records relate to 229
PubMed citations. We applied BioRAT to all 229 abstracts,
and then analysed the results by hand.

We used a total of 19 templates, initially derived from the
SUISEKI frames and subsequently modified by hand; and
127 gazetteers, derived from MeSH and other sources, as
described earlier. The templates and gazetteers used here can
be accessed from the same website as the BioRAT software,
http://bioinf.cs.ucl.ac.uk/biorat. Initial trials revealed weak-
nesses in both the templates and the gazetteers, which were
subsequently improved.

Table 1 shows the recall from these abstracts by BioRAT,
namely 20.31%. This is a similar recall to that achieved by
SUISEKI. The results can be compared with the larger study
reported by Blaschke and Valencia (2002), where 190 DIP
interactions were correctly detected, from a possible set of
851 interactions, giving a recall score of 22.33%.

We can compare the ‘abstract’ results (Table 1) to the results
in Blaschke and Valencia (2002), if we assume the results
follow a binomial distribution. Our recall rate of 20.31% from
389 trials gives a variance of σ 2 = 389 × 0.2031 × (1 −
0.2031) = 62.96 and hence a SD of σ = 7.934. Blaschke and
Valencia quote a recall of 190 cases from 851 trials, giving
a recall rate of 190/851 = 0.2233. If they had achieved the
same rate on our smaller sample, we would expect them to
achieve 389×0.2233 = 86.86 successes. This is within 1 SD
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Table 1. Comparison of BioRAT and SUISEKI on recall from abstracts

Result BioRAT SUISEKI
Cases Percent Cases Percent

Match 79 20.31 190 22.33
No match 310 79.69 661 77.67
Totals 389 100.00 851 100.00

BioRAT results from 389 DIP records, derived from 229 abstracts. SUISEKI results
from 851 DIP records, derived from 514 abstracts. The former set of records is a subset
of the latter.

of our success score, so we can say that both systems are
performing with approximately the same recall.

4.2 Abstracts versus full-length papers
In the second experiment, we want to assess the benefits of
using the full-length version of a paper, rather than just the
abstract. Clearly, one would expect to extract more inform-
ation from the full paper, than just the abstract. However,
obtaining full-length papers requires extra time and resources,
in terms of locating and downloading them, processing the
extra text, storing extra files and so on. If the gain in recall is
small, this may not be worth the extra effort. Also, we need to
discover whether the conversion of PDF papers to text loses
too much information, such as Greek letters and superscript or
subscript information, and to discover the effect on precision
of having a lot of extra text.

We took a random sample of 211 DIP records, based on
130 different documents, where full text and abstract are both
available. We used BioRAT to extract protein–protein inter-
actions from both, and then compared the results. We were,
of course, limited to articles that are available electronically.
For example, this excluded most papers that were published
before the mid-1990s, when most journals were paper-only.
Also, the experiments described here were carried out using
computers at UCL, and so we could only access full-length
papers from journals to which UCL subscribes or that are
freely available.

Table 2 shows the results. The information extraction rate
obtained from full-length papers was 43.6%, with more than
half of the information coming from the body of the paper,
and the rest from the abstract. This clearly shows the benefit
of locating and analysing the full text of a paper, rather than
restricting information extraction to just the abstract.

Using a similar binomial analysis to that described earlier,
we can also test whether this improvement is signific-
antly better than the information extracted from just the
abstracts. The SD of the recall from the abstracts is σ =√

211 × 0.1800 × (1 − 0.1800) = 5.582. Thus, the recall
score using abstracts is more than 7 SD below the recall score
using full-length papers, clearly a significant result.

Table 2. Recall results from 211 DIP records, derived from 130 full-length
papers; the total recall from full-length papers is 18.0 + 25.6 = 43.6%

Result Cases Percent

Match in abstract 38 18.00
Match in full text (but not in abstract) 54 25.60
No match 119 56.40
Totals 211 100.00

Table 3. Precision analysis

Result Abstracts Full-length
Cases Percent Cases Percent

Correct 239 55.07 205 51.25
Protein id 125 28.80 119 29.75
Template 70 16.13 76 19.00
Totals 434 100.00 400 100.00

Here, ‘correct’ refers to records where the interaction information was extracted correctly
from the text, regardless of whether that interaction is in DIP. ‘Template’ refers to failures
caused by imperfect templates and ‘protein id’ refers to failures to recognize proteins.

4.3 Precision
Having analysed the recall of BioRAT in the previous sections,
we now turn to precision. In our experiments, precision is
somewhat harder to measure than recall, because we need an
estimate of the number of false positives. If a record produced
by BioRAT is not found in DIP, it could be that (a) it is a
false-positive example, reducing the precision of BioRAT; or
(b) the record is missing from DIP. The latter case consists of
interactions that are mentioned in papers, but have not (yet)
been added to DIP.

For the first experiment described earlier, BioRAT pro-
duced 434 interaction records, derived from 229 abstracts.
We manually re-analysed these records with no reference to
DIP but instead we counted how many of BioRAT’s predic-
tions were correctly extracted from the text, and what sort of
mistakes it made. We repeated this for a sample of 400 from
the total of over 10 000 records produced in the analysis of the
corresponding full-length papers. Table 3 shows the results.

Around half of all records produced by BioRAT are cor-
rect, in the sense that the information contained in the papers
was correctly extracted, whether or not the information is
in DIP. In order to understand where BioRAT fails, we ana-
lysed the output when BioRAT failed to extract the correct
information from the documents, also shown in Table 3.
Around two-thirds of the mistakes are caused by failure to
identify the correct proteins. Each protein is typically known
by several different names, and may also be referred to by
its associated gene, which itself may have several distinct
names. Furthermore, long names may be abbreviated by the
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authors, producing further non-standard ways of referring to
the protein. The gazetteer used in these experiments included
more than 230 000 gene names and more than 99 000 pro-
tein names, but still failed to recognize a large number of
proteins.

One example of this protein identification failure comes
from DIP ‘edge’ record DIP:43E. The corresponding Swiss-
Prot entry (P15172) refers to the protein ‘Myoblast deter-
mination protein 1’, and lists synonyms ‘Myogenic factor 3’
and ‘Myf-3’, with gene names ‘MYOD1’ and ‘MYF3’. How-
ever, the paper in question (PMID 9184158) refers repeatedly
to ‘MYOD’. While this is clearly the same protein, a slightly
different abbreviation has been used by the author compared to
those included in Swiss-Prot. The gazetteer used by BioRAT
is derived principally from Swiss-Prot, and so BioRAT failed
to recognize this protein, and hence failed to extract this
interaction.

Most of the remaining failures are due to imperfections in
the set of templates used by BioRAT. Although these errors
could no doubt be reduced by improving the templates, there
is no clear way to achieve this without a significant manual
effort, even with BioRAT’s template design tool. Thus, tem-
plate design remains a major issue in information extraction
research (Cowie and Wilks, 2000).

Even when BioRAT fails to extract the relevant information,
it may still highlight the correct piece of text. For example,
DIP record DIP:800E defines an interaction between proteins
p53 and UBE2I. BioRAT failed to identify this interaction,
but did extract this sentence (PMID 8921390):

Since the tumor suppresser protein p53 and a newly iden-
tified ubiquitin-like protein (UBL1) are implicated in
the RAD51/RAD52 complex . . ., we further tested their
associations with UBE2I.

Note that BioRAT correctly identified the above sentence
as defining the interaction between RAD51 and RAD52, even
though it missed the target interaction.

4.4 Example output
From PubMed ID 9012827, BioRAT found the interaction
(Swi6 ↔ Hrr25), which corresponds to the DIP ‘edge’ record
DIP:250E. BioRAT quoted the following sentence:

These observations show that Swi6 is phosphorylated by
a kinase with the expected properties of Hrr25.

A similar, but slightly more complex template can recog-
nize two interactions at once. The following sentence (PMID
11689698) correctly lead BioRAT to produce two records for
the interactions (Pcf11 ↔ Rna14) and (Pcf11 ↔ Rna15).

Since Pcf11 interacts simultaneously with Rna14 and
Rna15, its role in vivo may also be to stabilize their
interaction.

A less successful example comes from this sentence:

Many interactions between nucleoporins and nuclear
transport receptors have already been identified; how-
ever, we were unable to detect a biochemical interaction
between Cse1p and Nup2p.

BioRAT incorrectly predicted that Cse1p interacted with
Nup2p, whereas the text is less conclusive.

4.5 Speed and memory
The time it takes BioRAT to analyse a piece of text depends on
the size of the text, the size of gazetteers, and the complexity of
the templates. In the work described here, BioRAT typically
took 3–5 s to analyse each abstract, and 6–10 min to analyse
each full-length paper, running on a standard desktop PC (a
single 1.7 GHz CPU), and used ∼500 Mb of RAM. Given
that each paper can be analysed independently, large-scale
applications of text mining lend themselves well to distributed
processing, although we have yet to use BioRAT in that way.
BioRAT can also be used from the command line, allowing
non-interactive batch processing, and potentially reducing the
impact of a slow execution time for full-length papers. Since it
is written in Java, BioRAT can be run on almost any platform,
and has been tested successfully under Linux, Solaris, MacOS
and MS Windows.

5 DISCUSSION
As expected, the density of ‘interesting’ facts found in the
abstract is much higher than the corresponding density in the
full text. This is at least in part because full-length papers
include background discussion, a description of the method,
references and so on. While these are necessary to set the work
in context, and to provide supporting evidence, they may not
contain the kind of information that BioRAT is attempting to
extract.

Figure 2 is one view of information density. It shows the loc-
ation of each fact extracted from the set of full-length papers
used earlier. As different journals divide papers into sections
in different ways, we only consider the location of the inform-
ation relative to the entire paper. The peak on the left shows
that a lot of information is found at the start of the paper, cor-
responding approximately to the title and abstract. The dip in
the graph ∼10–30% shows that relatively little information is
extracted from the next section, typically the Introduction and
Methods sections. There is another larger peak ∼40–80%,
corresponding to the results and discussion sections, which
contain a large amount of relevant information, before tailing
off towards the end of the paper, which is typically a citation
list. Note that many interactions were found more than once,
through repetition within or between papers, and the graph
shows the location of all the extracted information, including
duplicates.

These peaks show from where most of the information has
been extracted, but the troughs are also of interest. Even the
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Fig. 2. Location of information extracted from full-length papers.
Location 0% is the start of the paper; location 100% is the end.
The peak on the left corresponds to the abstract; the larger peak in
the middle corresponds to the results and discussion sections of the
source papers.

least informative parts of papers still contain considerable
amounts of information. This strongly suggests that the entire
paper should be analysed, wherever possible, and not just a
few selected sections. Although the task is different, this con-
trasts with the behaviour of some of the teams described by
Yeh et al. (2003), who restricted analysis to certain sections
of the papers.

Even when BioRAT (or any other IE system) fails to find
a particular relationship, or incorrectly predicts a relationship
not mentioned in the text, it is quite possible that it has found
an interesting part of an interesting document. In this way,
using IE to guide a literature search is perfectly feasible, even
if the recall and precision are a long way from the ideal 100%.

The template design tool allows biological researchers,
with no text mining experience, to design, test and use a
sophisticated template-based information extraction system.
This flexibility allows BioRAT to be applied to a wide range
of problems without a large overhead, in contrast to many
comparable systems, which require both biological and text
mining expertise for them to be used fully.

The results that BioRAT produces can be stored and
retrieved using a variety of interfaces, easing the user’s
access to the information. Furthermore, BioRAT also provides
quotes from the source texts, and links directly to the source
papers and related databases. In this way, BioRAT behaves
like a virtual research assistant, guiding the user towards
interesting papers.

6 CONCLUSIONS
In this paper, we have presented BioRAT, an information
extraction system specially designed to process biological
research papers. A distinguishing feature of BioRAT is that it

uses full-length papers, rather than being limited to abstracts
as previous studies have been. The recall and precision per-
formance of BioRAT was assessed by use of the DIP database
of protein–protein interactions, and the recall was compared
with that of a previous system, SUISEKI, which processed
only the abstracts. The recall performance of BioRAT on the
abstracts alone (20%) was similar to that of SUISEKI. Over-
all, BioRAT achieved 43% recall and over 50% precision on
full-length papers. Extra time is required to obtain the full-
length papers, and there are difficulties in converting them
into a usable plain text format. However, these costs are out-
weighed by the fact that more than twice as much relevant
information can then be extracted automatically.

ACKNOWLEDGEMENTS
This work was sponsored by GlaxoSmithKline.

REFERENCES
Blaschke,C. and Valencia,A. (2001) Can bibliographic pointers for

known biological data be found automatically? Protein interac-
tions as a case study. Comp. Funct. Genomics, 2, 196–206.

Blaschke,C. and Valencia,A. (2002) The frame-based module of the
SUISEKI information extraction system. IEEE Intell. Syst., 17,
14–20.

Collier,R. (1998) Automatic template creation for information
extraction. PhD thesis, Department of Computer Science,
University of Sheffield, UK.

Cowie,J. and Wilks,Y. (2000) Information extraction. In Dale,R.,
Moisl,H. and Somers,H. (eds) Handbook of Natural Language
Processing. Marcel Dekker, New York.

Craven,M. and Kumlien,J. (1999) Constructing biological
knowledge-bases by extracting information from text sources.
Proceedings of the Seventh International Conference on Intel-
ligent Systems for Molecular Biology. Heidelberg, Germany,
pp. 77–86.

Cunningham,H., Maynard,D., Bontcheva,K. and Tablan,V. (2002)
GATE: a framework and graphical development environment
for robust NLP tools and applications. Proceedings of the
40th Anniversary Meeting of the Association for Computational
Linguistics (ACL’02), Philadelphia, USA.

Gaizauskas,R., Demetriou,G., Artymiuk,P. and Willett,P. (2003) Pro-
tein structures and information extraction from biological texts:
the PASTA system. Bioinformatics, 19, 135–143.

Murray-Rust,P. and Rzepa,H.S. (2002) STMML. A markup language
for scientific, technical and medical publishing. Data Science, 1,
1–65.

Thomas,J., Milward,D., Ouzounis,C., Pulman,S. and Carroll,M.
(2000) Automatic extraction of protein interactions from scientific
abstracts. Pac. Symp. Biocomput., 5, 538–549.

Xenarios,I., Salwinski,L., Duan,X., Higney,P., Kim,S. and
Eisenberg,D. (2002) DIP: the database of interacting proteins. A
research tool for studying cellular networks of protein interactions.
Nucleic Acids Res., 30, 303–305.

Yeh,A., Hirschman,L. and Morgan,A. (2003) Evaluation of text data
mining for database curation: lessons learned from the KDD
Challenge Cup. Bioinformatics, 19 (Suppl. 1), i331–i339.

3213

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/17/3206/186999 by guest on 20 M
arch 2024


