
BIOINFORMATICS Vol. 20 no. 18 2004, pages 3363–3369
doi:10.1093/bioinformatics/bth408

Reducing storage requirements for biological
sequence comparison

Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount
and James A. Yorke∗

Institute for Physical Science and Technology, University of Maryland, College Park,
MD 20742-2431, USA

Received on April 16, 2004; revised on July 5, 2004; accepted on July 7, 2004

Advance Access publication July 15, 2004

ABSTRACT
Motivation: Comparison of nucleic acid and protein
sequences is a fundamental tool of modern bioinformatics.
A dominant method of such string matching is the ‘seed-
and-extend’ approach, in which occurrences of short sub-
sequences called ‘seeds’ are used to search for potentially
longer matches in a large database of sequences. Each such
potential match is then checked to see if it extends bey-
ond the seed. To be effective, the seed-and-extend approach
needs to catalogue seeds from virtually every substring in the
database of search strings. Projects such as mammalian gen-
ome assemblies and large-scale protein matching, however,
have such large sequence databases that the resulting list of
seeds cannot be stored in RAM on a single computer. This
significantly slows the matching process.
Results: We present a simple and elegant method in which
only a small fraction of seeds, called ‘minimizers’, needs to be
stored. Using minimizers can speed up string-matching com-
putations by a large factor while missing only a small fraction
of the matches found using all seeds.
Contact : {yorke,bhunt}@ipst.umd.edu

1 INTRODUCTION
Sequence comparison is a fundamental tool of compu-
tational biology, used in applications such as overlap
determination in genome sequence assembly (Myers et al.,
2000; Batzoglou et al., 2002; Ewing and Green, 1994,
http://www.genome.washington.edu or http://www.phrap.org),
as well as gene finding and comparison, and protein sequence
comparison. The dominant method of sequence compar-
ison, used for example by BLAST (Altschul et al., 1990)
is the ‘seed and extend’ approach (Altschul et al., 1990,
1997; Lipman and Pearson, 1985; Pearson and Lipman,
1988; Zhang et al., 2000), although some methods use seeds
without an explicit extend step (Ning et al., 2001). Assume
we wish to find similar subsequences of two strings T1

and T2. In this approach, we first choose a set of short

∗To whom correspondence should be addressed.

subsequences called ‘seeds’ from each of T1 and T2; then,
for each seed common to both, we align T1 and T2 so that
the seeds align, and check to see if the match ‘extends’
beyond the seeds.

Given a set of N strings {Ti}Ni=1 to compare with each other
pairwise, the first step in the seed-and-extend approach is to
choose the set of seeds Si = {si1, si2, . . .} that are to represent
each string Ti . We use seeds that are contiguous k-letter sub-
strings called k-mers. A common approach to finding k-mers
that are contained in more than one string is to store every
k-mer that appears in each string Ti for all i. For example,
the string 2310343 depicted in Figure 1 contains, in order of
position, the 3mers 231, 310, 103, 034 and 343. Given
a database of all k-mers contained in a set of strings, we
can sort the list by k-mer. This conveniently puts identical
k-mers side-by-side, giving us all the required k-mer seeds at
which to apply the extend algorithm in an effort to find longer
matches. We call this ability to recognize matches as soon as
the database is sorted the collection criterion.

However, the number of k-mer entries and the space
required to store the entire list of k-mers can be staggering. If
|Ti | represents the length of the string Ti , then the number of
k-mers in Ti is |Ti |−k+1, or roughly |Ti | assuming k � |Ti |.
Furthermore, each k-mer entry in the database requires k let-
ters of storage for the k-mer string s, plus the pair of integers
(i, p) identifying the string Ti and the position p within Ti at
which s appears. We call (s, i, p) a k-mer triple. If the total
number of letters in all the sequences in the database is L,
then the database size scales roughly as kL. As an example
of the size of such a database, the genome sequence assembly
of Rattus norvegicus uses about 33 × 106 sequences called
reads, with an average of about 600 letters each, giving a total
of 2 × 1010 k-mer entries in the database, each of size k. A
typical k in this application is 20, giving a total database size
of 4×1011 letters! Even utilizing compressed storage (we can
store 4 letters per byte since genomic sequences require only
2 bits per letter), we require 5 bytes to store each k-mer, and
5 bytes to store (i, p). This gives a total of 200 GB for the
entire k-mer database.

Bioinformatics vol. 20 issue 18 © Oxford University Press 2004; all rights reserved. 3363

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

http://www.genome.washington.edu
http://www.phrap.org

M.Roberts et al.

Fig. 1. Illustration of all k-mers in two windows of sequence as well as their minimizers. The sequence in the window and the position
within the window are listed in the first two rows. The adjacent k-mers are listed in the rows below. The minimizer is highlighted in bold.
Note that w adjacent k-mers correspond to a window of l = w + k − 1 letters. (a) Choosing the (5,3)-minimizer from 5 adjacent 3mers
(w = 5, k = 3, l = 7). (b) Choosing the (6,7)-minimizer from 6 adjacent 7mers (w = 6, k = 7, l = 12).

2 MINIMIZERS
To reduce the storage space simply requires storing fewer
k-mers, but which ones? One could store, for example, every
k-th k-mer, so that each letter is covered exactly once. How-
ever, in that case two strings Ti and Tj with long identical
subsequences that start at positions pi and pj need not have
a stored k-mer in common unless pi − pj is a multiple of k.
Thus, the database would not satisfy the collection criterion,
in the sense that sorting it by k-mer would yield seeds for only
a small fraction of matching pairs (Ti , Tj). To find most of the
matches, one would have to make a second pass through the
strings and compare every k-mer to the database. In a BLAST-
like scenario, a second pass is not necessary, because the goal
is to find matches of other strings T to the strings that formed
the database. However, the procedure would still be more effi-
cient if we could compare only a fraction of the k-mers in T to
the database.

Our method uniquely chooses a representative k-mer from
a group of adjacent k-mers in such a way that different strings
Ti and Tj choose the same representative if they share a long
enough subsequence. The method allows us to select from
each Ti a set of special k-mers (to be used as seeds) that we
call minimizers. We choose them so that only a small fraction
of the possible k-mers in a given Ti are minimizers, and so
that they have the following property:

Property 1. If two strings have a significant exact match, then
at least one of the minimizers chosen from one will also be
chosen from the other.

2.1 Interior minimizers
As a first step in choosing minimizers, we select an ordering
for the set of all k-mers. For strings of letters, one conveni-
ent ordering is simply lexicographic, so that, for example,
AAAA is the ‘smallest’ possible 4mer. We defer discussion
of orderings to Section 2.4. For now, our examples will use
strings of digits with numerical ordering for illustrative pur-
poses. Note that, despite all the examples in this paper, the
mapping need not map letters to digits; it simply needs to

apply an ordering to all the possible k-mers, and this order-
ing must be the same for all sequences being processed for
minimizers.

Referring to Figure 1, a set of w consecutive k-mers covers a
string of exactly w+k −1 letters, where ‘consecutive’ means
that each k-mer is shifted by one letter from the previous one.
To find a minimizer, we examine w consecutive k-mers and
select the smallest, in the sense of our chosen ordering. In the
case of a tie, each of the smallest k-mers is a minimizer. We
call w the window size.

We say that a k-mer triple (s, i, p) is a (w, k)-minimizer for
the string Ti if it is a minimizer for some window of w con-
secutive k-mers containing it. For simplicity we often refer
to a (w, k)-minimizer simply as a minimizer. Refer to the
example in Fig. 2, where we have w = 4 and k = 3. There
are five (4,3)-minimizers for the string231032101233101,
namely 032, 012, 123 and 101. Since there are a total of
13 3mers in the string, having only 4 minimizers as seeds
gives substantial space savings over using all 13 3mers. In
practice we have found space savings of a factor of 10 using
w = k = 20, and in general the space savings is about a factor
of 2/(w + 1); see Section 3 for a heuristic explanation of
this factor.

We immediately have the following formalization of
Property 1:

Property 1′. If two strings have a substring of length w+k−1
in common, then they have a (w, k)-minimizer in common.

The common substring implies a common window of w

consecutive k-mers, which generate the same minimizer for
each string.

Not all letters (digits) in Figure 2 are contained in minim-
izers: positions 1–3, 7 and 12 are not covered. Although it
may not be required for every letter to be covered by a minim-
izer, it may be desirable for some applications. Gaps between
minimizers are caused when the minimizers of two adjacent
windows are more than k positions apart, as in the case of
the windows starting in positions 4 and 5 in Figure 2: the
minimizer of the window in position 4 covers positions 4–6,

3364

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

Reducing storage for sting comparison

Fig. 2. Example of choosing the set of all (4,3)-minimizers in a string, i.e. choosing the smallest 3mer from every 4 adjacent 3mers. Note that
in contrast to Figure 1, in this figure each row represents an entire window, with the window’s minimizer highlighted in bold. Successive rows
depict adjacent windows. As we see, adjacent windows often share the same minimizer. This is the fundamental reason why using minimizers
(rather than all k-mers) as seeds reduces storage requirements.

Fig. 3. (w, k)-minimizers with w = k = 3 for the same string as Figure 2; w ≤ k guarantees that every letter is covered by a minimizer
except at most w − 1 letters at the ends.

while the minimizer for the next window covers positions 8–
10, leaving position 7 covered by no minimizer. However,
note that the minimizers of two adjacent windows of size w

can differ in their starting positions by at most w. Thus, gaps
can be at most w − k in size, so setting w ≤ k ensures no
gaps occur between minimizers. Then, all letters are covered
except at most w − 1 at each end of the string (Fig. 3). On the
other hand, if w � k then minimizers are sparse in the string.

For example, suppose we are using 20mers and the win-
dow size is 20. If X is a string of length 400, then it has at
least 19 minimizers: the first minimizer has position at most
20, the second at most 40, etc. Similarly, if two strings have
an exact match of 400 letters, then they must have at least
19 minimizers in common.

2.2 End-minimizers
Having w ≤ k guarantees that no gaps appear between adja-
cent minimizers, but it still allows some (at most w−1) letters
at each end of the string to be outside any minimizers. This

brings up a related question. Suppose two strings match each
other on their ends such that they can be aligned together
to form a longer string; in this case we say that the strings
overlap. (Strictly speaking only one of the strings needs to
match on its end, if for example it is a substring with both
ends matching the interior of a larger string.) If the match is
less than w + k − 1 letters, then it is possible for the strings to
have no (w, k)-minimizer in common even if there are no gaps
between minimizers. This problem is easily fixed (Fig. 4) by
the introduction of end-minimizers. A (u, k)-end-minimizer
is a (u, k)-minimizer chosen from a window of size u which
is anchored to one end of the string, and the set of k-end-
minimizers are comprised of all such (u, k)-end-minimizers
for u from 1 up to some maximum window size v.

End-minimizers are ideal for matching the ends of strings,
and satisfy the following property:

Property 2. If the ends of two strings have an exact overlap of
at least k letters and at most k + v − 1 letters, then they share
at least one k-end-minimizer.

3365

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

M.Roberts et al.

Fig. 4. k-end-minimizers (for k = 3) for the left end of a string. We choose the (u, k)-minimizer for every window of length u that is anchored
to the left end of the string, for u = 1, 2, . . . , l − k + 1, where l is at most the length of the string.

Fig. 5. End-minimizers for the same string as in Figure 3. Including both these minimizers and the ones from Figure 3, we are guaranteed to
cover every base with at least one minimizer.

However, since end-minimizers become sparse towards the
interior of a string, two strings with a long but not quite exact
overlap may not have an end-minimizer in common.

2.3 A mixed strategy
If we combine (w, k)-minimizers of a string with (u, k)-end-
minimizers for u = 1, . . . , w − 1 at both ends of the string,
then if w ≤ k, every base in a string will be covered with some
minimizer, and furthermore the ends of strings will be well
covered by minimizers, increasing the likelihood of finding
low-fidelity matches on the ends of strings. Also, Properties 1′
and 2 imply that two strings with an exact overlap of at least
2k bases have a minimizer in common. The end-minimizers
for u = 1, . . . , w−1 for the same string as Figure 2 are shown
in Figure 5.

2.4 Orderings
We now briefly discuss the effect of different orderings in
determining the minimizers for DNA sequence data. Similar
considerations may apply to other types of strings.

Although for illustrative purposes we use lexicographic
ordering in our examples, this has the following undesirable
effect. If a string contains many consecutive zeros (orAs in the

case of genomic data), then several consecutive k-mers may
be minimizers. While this is not a major problem, it counter-
acts our goal of sampling a fraction of the k-mers. One can
mitigate this effect by choosing an ordering in which the let-
ters that occur least frequently are deemed minimal, and/or
by changing the ordering from one letter to the next. In DNA
sequences, the letters C and G often occur less frequently than
A and T. We assign the values 0, 1, 2, 3 to C, A, T, G, respect-
ively, for the odd numbered bases of k-mers, and reverse the
ordering for even numbered bases. This tends to start min-
imizers with the valuable (in the sense of the significance
of a match) letters C and G, and makes the minimum k-mer
CGCGCG There are many other possibilities. For example,
we could first order k-mers by the number of Cs and Gs and
then choose a minimizer from a restricted set containing more
of these letters; or, we could demand that a minimizer has as
many distinct bases as possible in its first four bases (prefer-
ably all four bases different). In general, we want to devise our
ordering to increase the chance of rare k-mers being minim-
izers, thus increasing the statistical significance of matching
minimizers.

These considerations are perhaps most important in the case
that w � k; when minimizers do not cover all the letters

3366

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

Reducing storage for sting comparison

in a string, it is especially important that they cover ‘valu-
able’ substrings. We remark that by avoiding strings such as
AAAA . . . , we avoid regions in DNA that are particularly prone
to sequencing errors.

Finally, for DNA sequences we are also interested in
matches between one string and the reverse complement of
another string. Thus in choosing seeds, we identify each k-mer
with its reverse complement. Then we choose the minimizer
of each window W to be the smaller of the two minimizers
from W and its reverse complement.

3 RESULTS AND DISCUSSION
As the window from which a minimizer is chosen slides along
a random string, a new minimizer occurs about once every
half-window width. This can be seen heuristically as follows.
There are only two cases in which a minimizer changes as we
shift a window to the right: either the minimizer was at the
left end of the old window and is ‘lost’ (as when shifting from
position 4 to position 5 in Fig. 3), or the new k-mer that appears
on the right is smaller than the existing minimizer (as when
shifting from position 5 to position 6 in Fig. 3). Now, consider
two adjacent windows, covering w + 1 adjacent k-mers, and
assume that every k-mer has an equal probability of being a
minimizer. Then the k-mers at position 1 and w+1 each have
equal probability of 1/(w+1) of being minimizers. Thus, the
probability that the minimizers of the two adjacent windows
differ is 2/(w + 1), and hence on average, about a fraction
2/(w + 1) of all k-mers are (w, k)-minimizers, independent
of k. (Owing to correlations between adjacent k-mers, our
assumption that a k-mer at the end of a window is just as
likely as any other to be a minimizer is not quite right. In our
tests on random sequences and DNA sequences, the actual
proportion of k-mers that are minimizers can be a few percent
above 2/(w+1). The effect decreases substantially as the size
of the alphabet increases. For proteins, which have an alphabet
of size 20, the proportion is 2/(w + 1) to at least 4 significant
digits over long random strings.) This is also the fraction by
which the seed database is reduced when minimizers are used
as seeds rather than all k-mers, so that larger values of w

give larger space savings. If it is desired that every base be
covered by a minimizer, then choosing w = k gives the best
space savings that satisfy these constraints. For example, in
the case of the genome assembly of R.norvegicus, we used
k = w = 20, giving a space savings of about a factor of
10, while suffering no detectable loss in quality of overlap
detection.

When not using minimizers, if the RAM of one computer is
too small to store the entire k-mer database, the sequence data
can be distributed in batches across a network, as was done at
Celera during the overlap determination phase of assembling
the human genome (Venter et al., 2001). However, bringing
the appropriate seeds together has a cost that is quadratic in
the number of batches, so the distributed database fails the

collection criterion. Since overlap determination consumed
the vast majority of CPU resources and real time during the
draft assembly of the human genome, using minimizers would
have sped up the process considerably.

The use of minimizers results in the ability to attack the
largest existing genome sequence assembly problems on a
single desktop computer, when they could previously only be
run on a cluster or supercomputer. For example, the 200 GB
k-mer database of the R.norvegicus genome mentioned in the
introduction is now a 20 GB minimizer database. Although
currently there exist computers with 20 GB of RAM, they
are expensive. Another important property of minimizers is
that the list of minimizer triples (s, i, p) can be sorted by
minimizer on disk, with sufficiently good locality of refer-
ence that the sort process is not I/O bound. Furthermore, once
sorted, identical minimizers are conveniently placed side-by-
side, satisfying the collection criterion and facilitating easy
running of the extend algorithm against all potential matches,
again without the seed-and-extend process being I/O bound.
This allows us to compute the read overlaps for R.norvegicus
on a single desktop computer in about 3 days. In comparison,
Celera took about 400 CPU days on a cluster (Venter et al.,
2001). The speed of our procedure also permits us to do high-
quality, multiread-comparison-based error correction (since
the collection criterion holds) and then repeat the entire string
matching procedure on error-corrected strings, significantly
improving the quality of the overlap database and of the sub-
sequent genome assembly (M. Roberts, W. Hayes, C. Ustum,
B. Hunt, J. Yorke and A. Zamin, manuscript in preparation).
We have also used minimizers successfully in assembling
Drosophila melanogaster [M. Roberts, B. Hunt, J. Yorke, R.
Bolanos and A. Delcher (submitted for publication)].

Although in this paper we focus on k-mers as seeds, the
idea could easily be extended to seeds with gaps, significantly
reducing the storage required by methods such as those used
by MEGABLAST (Zhang et al., 2000).

To test the reliability and speed of using minimizers, we used
a faux dataset created by computationally shattering 100 MB
(i.e. 108 letters) of finished Caenorhabditis elegans genome
sequence into faux reads. There were a total of 1 065 846
reads with lengths distributed approximately normally with
a mean of 537 and a standard deviation of about 90, giving
5.7-fold coverage of the genome. Quality values for the bases
were taken from quality values for actual reads of the human
genome. Base errors were then artificially inserted according
to probabilities dictated by the quality values. We then com-
puted overlaps between reads using minimizers with various
window sizes as seeds. The results are in Figure 6. We first
describe the ‘No Sym.’ case, listed in the first five columns.
We see that with w = 1, k = 20, over 99.5% of the true
overlaps can be found, but the number of false positive (spuri-
ous) overlaps is also quite large. (The large number of false
positives is due to repeat regions in C.elegans, giving false
matches that are locally indistinguishable from true matches.)

3367

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

M.Roberts et al.

Fig. 6. Testing the speed and effectiveness of minimizers using a dataset for which all true matches are known. The first column lists the
window size w. Note that w = 1 means ‘use every k-mer’. The second column lists the size of the k-mers used to seed matches. Next are
two groups of three columns, without and with ‘Symmetrizer’ (explained in the text), respectively. Within each group, the first column Tratio,
is the percentage of true matches with at least 40 letters of overlap that were found for the given value of m; the second column, F/T , is the
‘false to true ratio’, i.e. the ratio of false-positive matches to true-positive matches; the third column lists the run time to compute all matches
in hours and minutes on a dual-processor Linux computer.

As w is increased to 20, the fraction of true overlaps found
drops to about 97.5%, but the number of false positives drops
by a much larger factor. Comparing to the last two rows, we
see that using w = 20 is comparable to using all k-mers of
size 28 or 30 in terms of Tratio, while attaining a lower false-
positive rate. In the last three columns we have improved the
Tratio to well beyond 99.9% by adding a ‘Symmetrizer’ step.
Symmetrizer was introduced in M. Roberts, B. Hunt, J. Yorke,
R. Bolanos and A. Delcher (submitted for publication), and
finds the vast majority of missing overlaps. It simply notes
that if read X plausibly overlaps reads Y and Z and the offsets
of Y and Z relative to X suggest that Y and Z overlap, then
Y and Z are checked for overlap. As can be seen, applying
Symmetrizer after using minimizers with w = k = 20 finds
virtually all missing overlaps, while having a total runtime
about half that of using w = 1, k = 30 and using about 1/10th
the memory. (With w = 20, the runtime is dominated by the
extension part of the algorithm, which is why the speedup is
significantly less than a factor of 10.)

As with any method of choosing seeds, the parameters
k and w that determine our minimizers are subject to a
trade-off between specificity (the proportion of seeds that
are indicative of longer matches) and sensitivity (the pro-
portion of the desired matches that are represented by a
seed). Increasing k increases the specificity and decreases the
sensitivity. The results above indicate that, not surprisingly,
increasing w also decreases the sensitivity. They also indicate
that (w, k)-minimizers achieve similar sensitivity to using all
(k + w/2)-mers. We conjecture that this is true more gener-
ally, for the following reason. Recall that a (w, k)-minimizer
occurs on average every (w + 1)/2 letters along a string. If
minimizers occurred exactly every (w + 1)/2 letters, then
every substring of length k + (w − 1)/2 would contain a min-
imizer. Thus, if two strings have a (k+w/2)-mer in common,
then they are likely to have a (w, k)-minimizer in common.

Whether the specificity of (w, k)-minimizers is comparable to
that of (k + w/2)-mers depends on how large k is relative to
the size of the string database, as we now discuss.

Consider a string database of length L. The expected fre-
quency of a given base-b k-mer s is every bk places (b = 4
for DNA and b = 20 for proteins), for a grand total of about
L/bk matches. That is, we expect a given base-b k-mer s to
occur L/bk times in a random string of length L. If k is chosen
large enough that L/bk � 1, then if s occurs twice in L, the
match is unlikely to have occurred at random. Assuming fur-
ther that non-random matches tend to be long compared to
k, the specificity of k-mers is then close to 1, and increasing
k further does not improve it significantly. For example, in
computing overlaps for reads from a mammalian-sized gen-
ome, we have L ≈ 1010 (corresponding to multiple coverage
of a gigabase-sized genome), and b = 4. We choose k = 20
in this case since L/bk ≈ 0.01. Furthermore, we store only
those k-mers that actually appear in the read database (rather
than an index with all bk of them, most of which do not appear
in the read database). Using (w, k)-minimizers instead of all
k-mers reduces the number of k-mers we store by a factor of
2/(w + 1), as described above.

On the other hand, if k is chosen so that L/bk is greater
than 1, then a typical k-mer will occur multiple times in a
random string of length L. Choosing such a small value of k

will result in low specificity, but may be necessary to achieve
acceptable sensitivity when one is looking for low-fidelity
matches, such as those between the genomes of different spe-
cies. In this case, the value of k is limited by the expected
size of exact matches within longer matches of the desired
minimum fidelity. For example, suppose that again L ≈ 1010

and b = 4, but that we want to use seeds of at most 15 let-
ters. Based on the discussion above, we might expect similar
sensitivity from using (10, 10)-minimizers as from using all
15-mers. However, the specificity of (10, 10)-minimizers will

3368

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

Reducing storage for sting comparison

be much worse. For k = 15, we have L/bk ≈ 10, while for
k = 10, we have L/bk ≈ 10, 000. Even though a given 10-
mer may be a minimizer only a fraction of the times it appears
in the string database, using (10, 10)-minimizers will yield
vastly more spurious seeds than using 15-mers. In this case,
since we expect most 15-mers to appear in the string data-
base, it may be most efficient to create a lookup table of every
possible 15-mer, along with the list of places that that 15-mer
occurs. Thus, minimizers may not be useful in the case of
searching for small matches in a large database, or when the
fidelity of long matches is low. On the other hand, if one is
interested only in finding longer, high-fidelity matches, then
large k-mers and thus minimizers, can be used to great effect.

In summary, compared to using every k-mer, using minim-
izers as seeds for large-scale, high-fidelity seed-and-extend
string matching problems can significantly reduce storage
requirements. It can also significantly reduce CPU require-
ments by restricting the number of seeds that need to
be considered, and by satisfying the collection criterion.
Finally, can achieve these gains without significant loss in
sensitivity.

ACKNOWLEDGEMENTS
This material is based on work supported by National Science
Foundation Grants 0104087, 0312360, and 0114792, as well
as The National Institutes of Health grant 1R01HG0294501.

REFERENCES
Altschul,S.F. Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.

(1990) Basic local alignment search tool. J. Mol. Biol., 215,
403–410.

Altschul,S. Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W., and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

Batzoglou,S., Jaffe,D.B., Stanley,K., Butler,J., Gnerre,S.,
Mauceli,E., Berger,B., Mesirov,J.P. and Lander,E.S. (2002)
ARACHNE: A whole genome shotgun assembler. Genome
Res., 12, 177–189.

Lipman,D. and Pearson,W. (1985) Rapid and sensitive protein
similarity searches. Science, 227, 1435–1441.

Myers,E., Sutton,G., Delecher,A.L., Dene,I.M., Fasulo,D.P.,
Flanigan,M.J., Kravitz,S.A., Mobarry,C.M., Reinert,K.H.,
Remington,K.A. et al. (2000) A whole-genome assembly of
Drosophila. Science, 287, 2196–2204.

Ning,Z., Cox,A.J. and Mullikin,J.C. (2001) SSAHA: a fast search
method for large dna databases. Genome Res., 11, 1725–1729.

Pearson,W. and Lipman,D. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci., USA, 85, 2444–2448.

Venter,J.C., Adams,M.D., Myers,E.W., Li,P.W., Mural,R.J., Sut-
ton,G.G., Smith,H.O., Yandell,M., Evans,C.A., Holt,R.A. et al.
(2001) The sequence of the human genome. Science, 291,
1304–1351.

Zhang,Z., Schwartz,S., Wagner,L. and Miller,W. (2000) A greedy
algorithm for aligning DNA sequences. J. Comp. Biol., 7,
203–214.

3369

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/20/18/3363/202143 by guest on 25 April 2024

