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ABSTRACT
Motivation: The processing of the Affymetrix GeneChip data
has been a recent focus for data analysts. Alternatives to the
original procedure have been proposed and some of these
new methods are widely used.
Results: The affy package is an R package of functions and
classes for the analysis of oligonucleotide arrays manufactured
by Affymetrix. The package is currently in its second release,
affy provides the user with extreme flexibility when carrying
out an analysis and make it possible to access and manipulate
probe intensity data. In this paper, we present the main classes
and functions in the package and demonstrate how they can
be used to process probe-level data. We also demonstrate the
importance of probe-level analysis when using the Affymetrix
GeneChip platform.
Contact: laurent@cbs.dtu.dk

INTRODUCTION
Expression microarrays are now standard tools in genetic
research. It is easy to forget that just a few years ago micro-
array technology was a cottage industry. Chips were custom
made in individual labs by the very researchers who used them
and analyzed the results. It is now possible to purchase high
quality microarray chips ready-made, complete with a suite of
equipment and proprietary analytic software. One can carry
out the entire process without considering the analytic pro-
cedure for converting a scanner image into final measures
of expression. Statisticians naturally believe that it is always
important to consider the analytic process. This is especially
important when working with microarrays because the techno-
logy is still very immature.Analytic procedures for microarray
expression data even lag behind the physical technology and
users should proceed with eyes wide open.

∗To whom correspondence should be addressed.

Affymetrix oligonucleotide chips (Lockhart et al., 1996) are
a primary example of the commercial microarray product.
Affymetrix GeneChip use a set of 11–20, oligonucleotide
probes, each 25 bases long, to represent a gene. The per-
fect match (pm) probe is designed to hybridize only with
transcripts from the intended gene. In most arrays, Affy-
metrix pairs each pm probe with a mismatch (mm) probe,
designed to measure non-specific hybridization. The mm
probe differs from the pm only in the 13th base. The expres-
sion level for a gene is a summary of the data from the
entire probe set. The manufacturer provides analytic soft-
ware (Affymetrix, 1999, 2002) requiring very little input
from the user. GeneChip enjoys widespread use, and because
of this, alternative probe set summary methods have been
implemented by outside organizations. Two examples are
dChip (Li and Wong, 2001a) and GAPS (Selinger et al.,
2000).

These tools have been well received and widely used. The
simple availability of high quality alternatives is beneficial to
the researcher who can now often find an off-the-shelf product
to meet her needs. Still further benefit can be obtained with
the open source implementation of such tools in a common
scripting language.

In this paper, we present affy, a package of functions for
the storage, management and analysis of Affymetrix probe
level data. The affy package is written in the open source,
statistical scripting language R, and released under the GPL
license to guarantee the continuing availability of the source
code. Complete, ready to use analytic routines are available
in the package, including implementations of some of the
most popular and successful algorithms. With a young tech-
nology however, real strength lies in flexibility. The extensive
library of statistical routines built into R makes is easy to
customize or extend existing functions. Also affy is integrated
into the Bioconductor project (http://www.bioconductor.org/),
a collaborative effort to provide a single flexible environment
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for the management and analysis of data from any microarray
technology.

Section 1 describes the general design of the package.
In Section 2, some of the main features are summarized.
Section 3 demonstrates some of the benefits of careful
attention to probe level data, and to the details of analysis.

SYSTEMS AND METHODS
We chose to implement the affy package in the R statistical
software program and scripting language for several reasons.
R is an open source program, freely available for most com-
mon computing platforms. There is an extensive built-in
library of mathematical, statistical and graphical functions,
with many more available as add-on packages. The object-
oriented programming approach (Chambers, 1998) offers an
intuitive working environment. In sum, R makes it is quite
easy to store, manipulate and analyze data, and this is exactly
what we want. We believe that the researcher using micro-
arrays should be actively involved in analysis, and the primary
goal of the affy package is to make this easy to do.

A few words about object-oriented programming will make
the remainder of this section easier to follow. More in-depth
discussions can be found in references like Nerson (1992) and
Nierstrasz (1989). A class is the description or definition of
objects of a particular type. It is a data structure consisting of
attributes and methods, i.e. a set of variables and functions,
belonging to objects of that type. An instance of a class is a
specific object of that type. Class-specific definitions of gen-
eric functions, like plot and print, allow a user to access
complex procedures for specific data structures using uniform
calls. Additional comments about the integration of the Affy-
metrix design in a R package can be found in Irizarry et al.
(2003).

Data structures
Consider a typical GeneChip microarray experiment. A total
of m samples are hybridized to n ≥ m chips, according to
a predetermined experimental design. All n chips are of the
same type and a common Chip Description File (CDF file),
summarizes identifying information for each probe cell on the
chip. After each chip is scanned and the image analyzed, probe
intensity data for the chip is recorded in a CEL file. Unless one
wishes to revisit pixel-level image analysis, n CEL files and
1 CDF file contain all data necessary for further work. The
affy package is not intended to be imaging software, there-
fore it does not specifically accommodate pixel-level data.
The CDF and CEL files are therefore our natural starting
point.

The most fundamental data structures in the package are
defined in the classes Cdf and Cel, corresponding to the files
of the same types. Like CEL files, the Cel data structure is
very simple, primarily storing all the probe intensities for a
single chip. Information about probe identity, the location of
each probe on the chip, and very limited sequence data is

Table 1. Brief textual description of the classes and data structures

Cdf This structure stores probe identity data read from a
Chip Definition File. Cdf data is not chip-specific, but
is common to all chips of a given type

Cdf environment This associative data structure is used to map probe
identifying information to the corresponding probe
intensities

Cel This structure stores probe intensity data from a single
chip. Data is read from the CEL data file
corresponding to that chip

AffyBatch This structure groups Cel data from a set of chips with
common Cdf into a single structure. The object also
includes variables for experiment documentation

ProbeSet This structure contains the signal intensity data for a
single probe set across several chips

stored in a Cdf object. An additional structure called a Cdf
environment is also defined. Using hash tables, this environ-
ment allows efficient mapping of probe set identifiers to probe
indexes. Using these indexes, Cel the intensity for any named
probe can be extracted and associated with the correspond-
ing Cdf information. A large number of Cdf environments are
provided for download, and facilities are provided to build Cdf
environments from CDF files for which they are not currently
available.

The AffyBatch class is designed to organize the data from a
single microarray experiment. This data structure is foremost
a container for several Cel objects, but also includes forms for
extensive documentation of an experiment. One of its attrib-
utes is of class MIAME, allowing a user to enter and retrieve
documentation rapidly in accordance with the MIAME stand-
ard (Brazma et al., 2001). The ProbeSet class accommodates
probe intensity data for a single probe set. Table 1 summarizes
the main classes and structures.

Functional structures
Even the best data storage structure is useless without func-
tions to enter, retrieve and process the data stored there. We
have implemented class-specific versions of several standard
R functions. Generic commands for plotting or summariz-
ing data, including plot(x), boxplot(x), hist(x),
summary(x), x do different things, depending on the class
of the object x. Additional built-in functions offer quick, intu-
itive access to subsets of a Cel or an AffyBatch object. Thus
pm(x) and mm(x) retrieve pm and mm probe data, respect-
ively, while the command geneNames(x) returns a list of
probe set identifiers. See package documentation for a full list
of accessor functions.

When designing the classes, their respective attributes and
methods, particular care was taken to balance efficiency
and flexibility for the most common Use Case: the pro-
cessing of probe level data into gene expression measures. As
presented in Figure 1 we distinguish four separate processing
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Fig. 1. A common Use Case is to go from the raw data to expression summary values. Here, we start with an AffyBatch object. The call
to the method normalize performs the normalizing transformation of the probe level data. The call to the method computeExprSet performs
the summary of the probe-level intensities in a probe set into one expression value. Background correction and normalization typically use
chip-wide features of the data, while the pm correction and probe set summary steps usually use features specific to a probe set.

steps: background correction, normalization, pm correc-
tion and summary expression value computation. A detailed
description of these steps and of the algorithms currently
implemented for each is given in the next section.

The user picks one algorithm for each step, and a
single function expresso runs them in sequence. Affy-
metrix’s current algorithm, MAS 5.0, their original method
MAS 4.0, and Li and Wong’s dChip are among the
methods implemented in the package. It should be noted
that the implementations of these methods included in
the package may differ slightly from the release versions
available from the authors. The versions included in the
package were prepared from published descriptions of the
algorithm, and without access to final, low-level program-
ming decisions. In at least one case, an attempt was made
to quantify the differences. The results are available on
the webpage http://www.stat.berkeley.edu/bolstad/MAS5diff/
Mas5difference.html. The modular design makes it easy to
mix and match algorithms as well. For example, one could
write her own routine to correct for background noise in the
image, skip the normalization procedure, and then proceed
according to Affymetrix’s MAS 5.0 algorithm.

Several convenience features are included in the package
as well. Although these features are not fully implemented
in the current release, there are forms for convenient entry of
some documenting data, and graphical user interface access
to some of the analytic functions. Those who wish to use
one of the popular expression measures in its entirety and
with push-button convenience will find simple commands to
do this.

ALGORITHMS AND IMPLEMENTATION
In this section we describe some of the features of the package
in detail. In particular, we will focus on methods for acquiring

data from CEL and CDF files and on algorithms for processing
probe intensities into expression measures.

Entering data
It is very easy to read CEL file data into Cel and
AffyBatch objects. The functions read.celfile and
read.affybatch, included in the package, do this.
MIAME experiment description data, information on experi-
mental design, and supplemental covariate information can
be read in from formatted files at the same time. Those who
prefer a graphical user interface for data entry can use the
function ReadAffy in place of read.affybatch. The
functions merge.AffyBatch and split.AffyBatch
facilitate re-organization of experimental data once it is in the
R environment.

Cdf environments for the most widely used GeneChip are
available from Bioconductor as add-on packages so there is
often no need to read in Cdf data. Those using custom chips, or
chips for which Cdf packages are not yet available can import
CDF file data using the read.cdffile command. Biocon-
ductor includes facilities for building new Cdf environments
as well.

It is important to note that the class structure is independent
of the file formats. Thus, if Affymetrix makes changes to the
file format, only the reading functions will change. The class
structure will be preserved.

Processing steps
There are several built-in methods for each step in the pro-
cess of turning probe intensity data into expression measures.
Individual users can easily modify these, or add their own. In
the following paragraphs, we review the currently available
methods.

Background correction There is some amount of back-
ground noise in every scanner image. Sterile water can be
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labeled and hybridized to a microarray. Even though there
is then no RNA in the sample, the scanner will detect low
levels of fluorescence on the chip. In both MAS algorithms,
the distribution of probe intensities is used to estimate overall
background noise level and adjust for it. Another method of
estimating background is the convolution of signal and noise
distributions used by the RMA method (Irizarry et al., 2003).

Normalization No step in the hybridization process can be
perfectly controlled. The quantity of RNA in a sample varies
slightly from chip to chip. Even if the exact same sample is
used on each of several chips, there will be chip to chip dif-
ferences in the overall distribution of probe intensity values.
Normalization procedures attempt to detect and correct sys-
tematic differences between chips so that data from different
chips can be directly compared. Studies show that the normal-
izing procedure has a marked impact on the final expression
measures (Bolstad et al., 2002). A number of normalization
procedures for Affymetrix GeneChip have been proposed and
implemented and several are included in the affy package.

Details concerning the normalization methods included
in the package can be found in their respective references:
loess (Åstrand, 2003), invariantset (Li and Wong,
2001b), qspline (Workman et al., 2002) and quantiles
(Bolstad, 2001). Since the current release of the package,
Huber et al. (2002) have added an additional normalization
method, and developed R code to aid in developing nor-
malization methods. While the code remains in an external
package, the functions are easily integrated with those in the
affy package through its extension capabilities.

pm correction Mismatch probes are included on Affymetrix
GeneChips to quantify non-specific and cross-hybridization.
Originally, mm signal was subtracted from the pm signal to
correct for non-specific and cross hybridization (Affymetrix,
1999). In the current release of the software (Affymetrix,
2002), Affymetrix uses a different approach in which an ideal-
ized version of the mm signal is subtracted from each mm
probe. Many researchers prefer to ignore the mm probes
entirely and use uncorrected pm probes alone. Others use
detailed probe sequence information to develop sophistic-
ated correction methods. At this time only the MAS 4.0 and
MAS 5.0 pm correction methods are implemented.

Computation of expression values from probe intensities
Each gene is represented on the GeneChip by one or more
probe sets. Each probe set includes 11–20 probe pairs. We
think of an expression value for a gene as a summary of
the corresponding probe-level data. Several researchers have
developed their own summaries of Affymetrix probe-level
data, and this is an area of continuing research. A number of
summary methods are implemented in the current release
of the affy package. These include the simple trimmed average
of MAS 4.0 and the more robust procedure of MAS 5.0, based
on Tukey’s biweight. In addition, the model-based method

implemented in dChip by Li and Wong (2001a), the non-
parametric model suggested by Lazaridis et al. (2002) and a
method fitting an additive model using Tukey’s median polish
procedure are implemented.

DISCUSSION
The benefits of probe level analysis
The affy package is designed to balance user control of data
analysis with convenience. Graphical user interfaces, object
oriented programming and modular function design enhance
the convenience of the package. Nonetheless, the balance is
skewed greatly in favor of user control. We believe that this
is appropriate. Microarray technology is still quite new and
although the benefits of easy to use, commercial chips cannot
be overestimated, the cautious user will retain as much hands
on control of the process as possible.

We firmly believe that the open source philosophy is com-
patible with the spirit of scientific research. Both R and the
Bioconductor project are open source efforts, encouraging
contributions from independent researchers. In this spirit, we
offer the affy package not as a finished product, but as a begin-
ning. In the following paragraphs, we describe some of the
benefits we see in the approach taken here. Some of the dis-
cussion will focus on features already implemented in the
package. Other portions describe areas of future research, and
functionality that could be added by any interested party. We
used a publicly available data set of reasonably large size to
illustrate the discussion: the 102 chips of type HG-U95Av2
from Singh et al. (2002). We refer to it as the prostate tumor
data set below.

The package includes implementations of the most popu-
lar expression measures for Affymetrix GeneChip. Modular
function design allows the user to compare easily competing
methods and mix and match the best features of each. Another
advantage of modular design is the ability to isolate a single
step in the process and examine it in detail.

The affy package includes a suite of quality control checks.
Hybridization is a complicated chemical process and there are
several points at which things can go wrong.

Histograms and boxplots of PM probe data [hist(x) and
boxplot(x)] offer a picture of the overall distribution of
probe intensities found on each array. One or more arrays with
probe intensity distributions very different from the others in
an experiment may be flawed. Histograms showing a great
deal of mass at high intensity values could indicate a satur-
ation problem. RNA molecules are unstable and subject to
degradation characteristically starting from the 5′ end of each
transcript. Individual probes in each probe set are numbered
starting from the 5′ end of the transcript, so relative posi-
tion within the transcript is known. The RNA degradation
plot [plotAffyRNAdeg(x)] shows mean expression as
a function of relative position to detect poor quality RNA.
A routine visual inspection of the scanner image from each
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Fig. 2. A reconstruction of the original scanner image, perhaps augmented by an appropriate numerical transformation of the data, may reveal
defects on a chip. Here, we see an air bubble or a scratch [data from Workman et al. (2002)].

chip, in order to detect obvious experimental artifacts such
as air bubbles or salt stains caused by a problem during one
of the washing steps, is a recommended quality control step.
Theimage(x) function reconstructs the scanner image from
Cel data (Fig. 2). Notice that ‘zooming-in’ Figure 2 would
make clearer the existence of an artifact. With access to the
probe-level data this is relatively simple to do.

It is easy to manipulate and visualize probe level data using
the affy package and custom quality control procedures can
easily be implemented. On each GeneChip there are several
probe sets corresponding to controls. These are easily identi-
fied by the letters AFFX at the beginning of the probe identifier.
Some of them are spiked-in control genes. The matching tar-
gets are added in precise quantities and at different steps in
the labeling and hybridization process. These transcripts have
predictable expression levels and so the probe sets play an
important quality control role in the MAS algorithm. Several
independent researchers have successfully implemented their
own spike-in protocols in conjunction with specialized qual-
ity control tests. Because input is controlled, outcomes are
predictable, and it is possible to discover and correct sources
of error. Using the affy package, it is straightforward to isol-
ate and examine the data from these probe sets, as shown in
Figures 3 and 4.

Data visualization is important for expression level data,
both for quality control, and to evaluate competing expression
measures. As a example, we applied two different expression
methods to the prostate tumor data set (Fig. 5). In this particu-
lar case, prior biological knowledge leads us to expect that the
vast majority of genes will be similarly expressed in normal

and tumor samples. Thus we prefer a measure that results
in a single common distribution of expression values over
one that shows different distributions for tumor and normal
samples.

Finally, we present an example that demonstrates the flex-
ibility one has using the package. One of the experimental
protocols described by Affymetrix consists of adding 50pM

of an internal control called biotinylated B2. This control
sequence hybridizes to probes located all along the edges of
the chip, delimiting the outer boundary.

The biotinylated B2 probes are among a large group that do
not have probe set identifiers in the CDF file. We refer to these
as the unnamed probes. Figure 4 shows how easily one could
retrieve the X and Y positions for the unnamed probes and plot
them over the summary image of CEL data. Figure 6 shows the
resulting graph which corroborates that the bounding probes
are among those unnamed probes. Regularly spaced groups
of probes can also be observed across the surface of the chip.

With this data available, it is now easy to perform statistical
assessments using the R language. Figure 6 shows a histogram
of the intensity values of the unnamed probes, which sug-
gest there are both low- and high-intensity signal populations.
Figure 6 also shows the results of a k-means cluster analysis
of 6000 unnamed probes on a HG-U95Av2, corroborating the
existence of the two groups.

Because details about these probes are not made public
by Affymetrix we can only speculate about possible applica-
tions based on the information they provide. There are several
potentially interesting applications to explore. For example, it
might be possible to improve quality control by monitoring
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Fig. 3. Scatter plot of the probe intensities on the two first chips from the prostate tumor data set (N01 and N02 respectively). The probes
corresponding to the Affymetrix spike-in controls (identifiers starting with AFFX) are plotted in grey. This figure can be viewed in colour as
Supplementary Data at Bioinformatics online.

## abatch is an AffyBatch

controls.gni <- grep("AFFX.+", geneNames(abatch))

controls.names <- geneNames(abatch)[controls.gni]

controls.indices <- indexProbes(abatch, which="pm", controls.names)

## subset the probe intensities

controls.intensities <- intensity(abatch)[control.indices, ]

## import CDF data from a file

cdf <- read.cdffile("HG-U95Av2.CDF")

cel <- read.celfile("N01.CEL")

probe.type <- pmormm(cdf)

## obtain X and Y coordinates for the ‘unknown probes’

unknown <- which(is.na(probe.type), arr.ind=TRUE)

image(cel)

points(unknown[, 1], unknown[,2], col="red")

Fig. 4. Short examples of R. (top) Indices for the AFFX controls are
easily found, and the corresponding probe intensities can be isolated.
(bottom) The unknown probes are plotted over the image of a chip.

the relative strength of the signal. Since these probes are
spread all around the chip, they might also contribute to new
data normalization procedures. Hopefully the details will be
shared with the scientific community sometime in the near
future.

Integration to the Bioconductor project
The affy package can be used on a stand alone basis, and
expression values can be saved in a tabulated text file. How-
ever it is fully integrated into the Bioconductor project, and is
compatible with other analysis tools included in that project.
The Bioconductor project is an open source effort toward a
universal system for the storage, manipulation and analysis
of microarray data of all kinds. When necessary, we have
developed unique data structures suitable for GeneChip data,
but when possible we have incorporated standard Biocon-
ductor structures. Expression data structures, e.g. are not
unique to the affy package. GeneChip data can easily be incor-
porated with data from other sources since there is a common
environment for both. In the paragraphs that follow, we high-
light a couple of the most relevant features available in the
Bioconductor project.

Data sets Bioconductor offers an extensive and flexible set
of structures for gene annotation. Built-in functions provide
convenient access to popular databases, and Bioconductor
offers complete, regularly updated annotation packages for
several Affymetrix GeneChip. For each probe set on a
chip the following information is accessible: ACCNUM
(GenBank accession number), UNIGENE (UniGene cluster
IDs), LOCUSID (Unique integer ID for locus), MAP
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Fig. 5. Density estimates of the gene expression values for the 102 chips of the prostate tumor data set. The curves corresponding to normal
tissues are plotted in black while the ones corresponding to tumor samples are plotted in red. (top) The expression values were obtained by
subtracting an estimated background (as done in MAS 5.0), then by correcting the PM values of the probe set and computing a summary
expression values as described in the MAS 5.0 white paper. (bottom) The expression values were obtained by subtracting the same estimated
background as before, normalizing the probe intensities as done in the dChip software, using only the PM values in the probe set to compute a
summary expression value as described by Li and Wong (2001a, This figure can be viewed in colour as Supplementary Data at Bioinformatics
online).
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Fig. 6. Visualization of the unlabeled probes on a HG-U95Av2 chip. The upper left plot shows an histogram of the probe intensities. Two
populations of probes can be assumed: the first population has a low-intensity signal while the second population has a high-intensity signal.
The lower left plot presents a scatter plot and a rug plot (ticks on the x-axis correspond to the x-coordinate of the points shown) of the probe
intensities, colored according to which one of two classes they were assigned by k-means clustering. The right plot shows the spatial locations
of these probes. The bounding probes and some of the regularly spaced groups of probes across the chip are thought to be ‘biotinylated B2’
probes.

(the chromosome assignment), CHR (chromosome number),
PMID (a sub set of PubMed unique IDs), GRIF (PubMed
unique identifier), SUMFUNC (summary of the function of
genes), GO (gene ontology ID), CHRLOC (chromosomal
location of genes), CHRORI (chromosomal orientation of
genes), ENZYME [Enzyme Commission identifier (EC)],
PATH (pathway name). A complete set of tools to build
packages of annotations is available on Bioconductor and is
described elsewhere (Zhang et al., 2003).

tkWidgets Some graphical user interfaces are currently
available in the affy package and others are under develop-
ment. We have used the tkWidget package in the Bioconductor
project to develop these. A combination of prepared forms
and development tools make it easy to build-up interfaces for
R functions. Researchers can use these tools to customize user

interfaces for their own more convenient use, building tighter
links between users and developers of the methods.

Performance
Although modularity and object-oriented design offer appre-
ciable advantages, a price is paid in computational efficiency.
However, computation of expression values seldom represents
an appreciable expense. In typical cases, where an experiment
includes 10–30 chips, the computation of expression values
takes only several minutes on the average desktop PC.

At the extreme upper end of 32 bit architectures, the package
has been used successfully on a data set of 102 HG-U95Av2
arrays. This analysis was performed on a PC running the Linux
operating system and equipped with 2 GB of memory. For lar-
ger data sets, it may be necessary to work on subsets of the
data and integrate results at the end. Improvements in memory
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management within the package are underway, and prelim-
inary tests suggest that it may be soon possible to process
250–300 arrays at once.

Additionally, R and the affy package can be compiled for
64 bit architectures. If this is done, much more is possible.
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