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ABSTRACT
Motivation: We focus on the prediction of disulfide bridges
in proteins starting from their amino acid sequence and from
the knowledge of the disulfide bonding state of each cysteine.
The location of disulfide bridges is a structural feature that
conveys important information about the protein main chain
conformation and can therefore help towards the solution of
the folding problem. Existing approaches based on weighted
graph matching algorithms do not take advantage of evol-
utionary information. Recursive neural networks (RNN), on
the other hand, can handle in a natural way complex data
structures such as graphs whose vertices are labeled by real
vectors, allowing us to incorporate multiple alignment pro-
files in the graphical representation of disulfide connectivity
patterns.
Results: The core of the method is the use of machine
learning tools to rank alternative disulfide connectivity pat-
terns. We develop an ad-hoc RNN architecture for scoring
labeled undirected graphs that represent connectivity patterns.
In order to compare our algorithm with previous methods,
we report experimental results on the SWISS-PROT 39 data-
set. We find that using multiple alignment profiles allows
us to obtain significant prediction accuracy improvements,
clearly demonstrating the important role played by evolutionary
information.
Availability: The Web interface of the predictor is available at
http://neural.dsi.unifi.it/cysteines
Contact: vullo@dsi.unifi.it

1 INTRODUCTION
Proteins which contain cysteine residues are subject to post-
translational covalent modifications and cysteines can occur
either in oxidized or thiol form. Two oxidized cysteines
uniquely pair to form a covalent bond, known as disulfide
bridge. As reported by experiments in protein engineering
(Matsumura et al., 1989), disulfide bridges can increase
the thermodynamic stability of the native state, because
they contribute to a reduction of the number of unfolded
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conformations, thus of the entropic cost of folding a poly-
peptide chain into its native state (Harrison and Sternberg,
1994; Wedemeyer et al., 2000). Depending on their number
and location, these bonds may connect very distant portions of
the sequence. Therefore, they add strong structural constraints
that can be very helpful towards the ab-initio prediction of 3D
structure.

In the absence of an experimentally determined structure,
sequence archives do not report reliable information relating
either the oxidized form of cysteines or disulfide bridge loca-
tions. The prediction task can thus be conveniently decom-
posed in two steps. First, the disulfide-bonding state of each
cysteine is predicted from sequence, a binary classification
problem that has been solved using several machine learning
algorithms such as neural networks, (Fariselli et al., 1999;
Fiser and Simon, 2000), support vector machines (Frasconi
et al., 2002) and Hidden Markov models (Martelli et al., 2002).
Second, the location of disulfide bridges is predicted starting
from knowledge of bonded cystines. This paper focuses on the
second task which has received relatively scarce attention in
the literature. To the best of our knowledge, the only published
method (Fariselli and Casadio, 2001) is based on a weighted
graph representation of disulfide bridges, where vertices are
oxidized cysteines and undirected edges are labeled by the
strength of interaction (contact potential) in the associated pair
of cysteines. First, stochastic optimization is used to find an
optimal set of weights. After a complete labeled graph is
obtained, candidate bridges are located by finding the max-
imum weight perfect matching1. The problem can be solved
in polynomial time using linear programming. Nevertheless,
the computation of contact potentials is a time consuming
process. In a subsequent improvement (Fariselli et al., 2002),
neural network predictions were used for labeling edges with
cysteines pairwise interaction values, increasing the predict-
ive power and concomitantly reducing the training time. This
method achieves satisfactory results for the simplest cases
(four and occasionally six oxidized cysteines).

1 A perfect matching of a graph (V , E) is a subset E′ ⊆ E such that each
vertex v ∈ V is met by only one vertex.
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Fig. 1. Distribution of cysteine-rich sequences in two subsequent releases of the SWISS-PROT archive. Chains are grouped according to the
number of disulfide bonds.

The method we propose in this paper is based on extended
recursive neural networks (RNN) (Frasconi et al., 1998), a
connectionist model which allow us to formulate classification
and regression tasks on structured data, like the graphs repres-
enting disulfide connectivity patterns. The network is trained
to score candidate graphs according to a similarity metric with
respect to the correct graph. During prediction, the score com-
puted by the network is used to exhaustively explore the space
of candidate graphs. We show how our method can easily
incorporate and effectively exploit evolutionary information
and how it can efficiently deal with a broad spectrum of
sequences for the disulfide bridge prediction problem.

2 SYSTEM AND METHODS
2.1 The datasets of protein sequences
In order to compare our method to the alternative algorithm
described in Fariselli and Casadio (2001), Fariselli et al.
(2002), we replicated the same experimental setting. In
particular, we extracted the same set of sequences from the
SWISS-PROT database release no. 39 (SP39), October 2000
(Bairoch and Apweiler, 2000). We applied the same fil-
tering procedure in order to include only high quality and
experimentally verified intra-chain disulfide bridge annota-
tions. Also, the experiments were carried out by excluding
from the datasets all the chains having more than 10 oxidized
cysteines. Less than 20% of SWISS-PROT sequences have
more that five disulfide bridges (Fig. 1).

Table 1 reports the number of sequences used in our experi-
ments, grouped by the number of disulfide bonds B and
by structural classification taken from the SCOP database
(Murzin et al., 1995), latest release (1.63, May 2003). As

Table 1. Number of chains in the experimental dataset, grouped by number
of disulfide bridges (B) and topology class

Fold type B = 2 B = 3 B = 4 B = 5 B = 2 . . . 5

α 6 6 4 1 17
β 13 9 4 2 28
α/β 5 3 1 1 10
α + β 9 9 10 0 28
Small proteins 0 21 18 4 43
Peptides 8 2 1 0 11
Unclassified 115 96 61 37 309
All 156 146 99 45 446

can be seen from Table 1, most of the proteins in dataset have
not yet been classified.

2.2 Prediction of the location of disulfide bridges
A disulfide connectivity pattern has a simple representation in
terms of an undirected graph G = (V , E). The vertex set V

represents the set of bonded cysteines and an edge e ∈ E cor-
responds to a disulfide bridge between its adjacent cysteines.
Admissible vertex and edge sets are constrained because an
even number of intra-chain bonded cysteines is required and
a cysteine can be bridged to only one different cysteine. Thus,
we have |V | = 2B, |E| = B and degree(v) = 1 for any v ∈ V

(perfect matching), where B denotes the number of disulfide
bonds in a chain.

We introduce a simple formulation for the problem of pre-
dicting the correct connectivity pattern for a given disulfide
bonded chain: find the best possible candidate as given by
a suitable scoring function. This function maps undirected
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graphs to real numbers. Let G� = (V , E�) denote the target
connectivity pattern. Let G be the set of candidate solutions
and let s(E, V ) : G �−→ [0, 1] be a scoring function mapping
G ∈ G into [0,1] and satisfying the following assumptions:

1. s(E, V ) = 1 iff E = E�;

2. for every pair (E1, E2) of edge sets,
|E1 ∩ E�| ≥ |E2 ∩ E�| ⇒ s(E1, V ) ≥ s(E2, V )

The function s(G) induces a partial order relation over the
set of candidate pattern graphs sharing the same vertex set V .
In other words, if s(G) > s(G′) then G 
 G′. Given s(E, V )

or an approximation of this function, a pattern can be predicted
by a simple procedure enumerating all possible candidates and
giving as output one graph with maximal score. The predicted
pattern G̃ = (V , Ẽ) is formally computed as:

Ẽ = arg maxE∈Es(E, V ) (1)

where E is the set of possible edge sets satisfying the given
perfect matching constraints.

It can be easily shown that the function

s�(E) = |E ∩ E�|
|E| (2)

satisfies the required assumptions and can be effectively used
in the procedure of Equation (1). The given scoring function
represents the fraction of correct pairs in the candidate solu-
tion. The definition of Equation (2) implies that s: G �−→
[0, 1] is neither injective nor onto [0, 1]. The codomain is
the finite discrete set {s0, . . . , sB−2, sB−1}, with si = i/B,
i = 0 . . . B − 2 and sB−1 = 1. In this case, many different
candidates are mapped into the same value, but still we have
that G = G� if sB−1 = 1. Therefore, given the true or a
nearly perfect function, the search guarantees to find the target
solution.

To analyze the computational complexity involved, first
observe that we need to generate the whole set E of possible
solutions. Given a chain with |V | = 2B = n cysteines, the
size of this set is

(n − 1)!! =
∏

i≤n/2

(2i − 1) = n!
2n/2(n/2)!

By the last equality, it holds that(n

4

)n/2
< (n − 1)!! <

(n

2

)n/2
,

thus �[(√n/2)n] steps are necessary to compute E . Each step
requires the evaluation of the function s for the current can-
didate. Assuming the evaluation of s takes time linear in n, it
follows that the algorithm takes time at least �[n(

√
n/2)n].

This computational complexity limits the application of the
algorithm only to chains with few bridges (1–5 bridges). As
previously noted by Fariselli and Casadio (2001), this is not
a severe problem, since the constraint B ≤ 5 is satisfied for
most of the chains of interest (Fig. 1).

3 ALGORITHM
The apparent simplicity for finding G� with the above pro-
cedure is due to the existence of an oracle that is able to
compute s(E, V ) for every candidate graph: this requires the
knowledge of E�, a kind of information which is obviously
unknown at prediction time. In realistic situations, the scoring
function for the algorithm of Equation (1) must rely only on
V to assign scores to candidate solutions. In the following we
propose a connectionist model capable of learning s(E, V )

from examples of known disulfide bond patterns.

3.1 Bi-recursive neural network architecture
A labeled graph on a set X is a pair G = (V , E), with
E ⊂ V × V , and with a function x : V → X that associates
a label xv with each vertex v ∈ V . The set of all finite size
labeled graphs on X is denoted X #. Classification or regres-
sion tasks for which the input portion consists of a labeled
graph can be formulated as a mapping from X # to a set of cat-
egories (classification) or to real numbers (regression). Since
graphs have variable size, regression in this case need to be
represented as the composition of two functions, a mapping
F : X # → � that transforms input graphs to an intermediate
representation in a vector space �, and a mapping g: � → IR

from vectors to real numbers.
The solution used in this paper is based on a generalization

of RNN. In this class of models, the mapping F : X # → � is
adaptive and � is a low-dimensional space. This is in contrast
to alternative approaches based for example on convolution
kernels (Haussler, 1999), where � is a high-dimensional (or
infinite dimensional) feature space and F is a fixed map.

The theory developed in Frasconi et al. (1998), briefly sum-
marized below, holds in the case of directed ordered acyclic
graphs (DOAG) with bounded connectivity and that possess
a supersource. Ordered in this context refers to the existence
of a total order defined on the set of children of each vertex.
A supersource r is a vertex having the property that for every
other vertex v ∈ V there exists a directed path from r to v.
Under these assumptions, F can be written recursively as fol-
lows. For each vertex v, we introduce a representation vector
φv ∈ IRn recursively computed as:

φv =
{

0 if chv = ∅ (Base step)
f (xv , φchv

; ϑ) otherwise (Induction)
(3)

where φchv
= (φch1

v
, . . . , φchk

v
) is the k-tuple of labels of v’s

children, chi
v denotes the i-th child of v and k is the maximum

outdegree in the class of graphs being considered. In RNNs,
functions f (·) and g(·) are implemented by adaptive neural
networks with connection weights ϑ and θ , respectively. We
assume xv , the label of vertex v, to be encoded by a real vector
in IRm. Thus, the network of f (·) has m + kn input units and
n output units. The computation in Equation (3) proceeds in
a bottom-up fashion, from ‘leaf’ vertices to the supersource.
Since we assume that G is acyclic, propagation order can be
obtained by sorting topologically the vertex set. The adaptive
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mapping from graphs to features is simply accomplished by
taking the label at the supersource: F(G) = φr . It turns out
that for each vertexv, vectorφv is the encoding of the subgraph
induced by v and all its descendants.

Training is performed using a set of pairs {(Gi , yi), i =
1, . . . , N} where yi ∈ [0, 1] is the desired output for graph
Gi and g[F(Gi); θ ] = g(φi

r ; θ) is its network global out-
put. Parameters θ and ϑ are adjusted by minimizing the error
function

C(θ , ϑ) = 1

2

N∑
i=1

(
yi − g(φi

r ; θ)
)2

(4)

A gradient descent algorithm can be obtained by propagating
errors backward in structure (i.e. in a top-down fashion, start-
ing from the supersource and following a reverse topological
sort of G) and taking into account the fact that weights are
shared across different vertices v in Equation (3).

Graphs describing disulfide connectivity do not match the
above framework since they are undirected, disconnected and
unordered. However, we can introduce a suitable transform-
ation that converts a disulfide graph G = (V , E) into a
DOAG G′ having a supersource. The resulting model [bi-
recursive neural networks (BiRnns)] was introduced in Vullo
and Frasconi (2003) and proved to be effective for the predic-
tion of protein coarse contact maps. First, note that the set of
vertices V can be ordered reading the protein sequence from
left to right. Edges can be thus oriented so that the source
vertex precedes in sequence the target vertex. In this way,
G is converted into a directed graph. Moreover, additional
sequential edges can be added to connect vertices that are
adjacent in sequence. After doing so G is connected and has
a supersource. In practice, if we use a model like the one
described by Equation (3), the role played by sequential links
is to propagate information from left to right. More precisely,
the feature vector φv associated with each half-cystine v would
summarize information about all the upstream half-cystines
and candidate bridges. Note, however, that dependencies in
biological sequences are not unidirectional from left to right.
To propagate information in both direction we can duplicate
G and transpose the edge set of the copy, as shown in Figure 2.
A similar approach already proved to be effective for the pre-
diction of protein secondary structure (Baldi et al., 1999). In
our implementation, the recursive computation described by
Equation (3) is actually piecewise stationary: ϑv = ϑu if and
only if v and u are both in the original graph or in the trans-
posed copy. This means that we have three sets of adjustable
weights for function F : one for vertices linked upstream to
downstream, one for vertices linked downstream to upstream,
and a distinguished set of weights for the supersource. It
turns out that φv (v �= r), is now represented by coupling
the outputs of two functions f (·) and b(·) computed by two
neural networks respectively with the up-to-downstream and
down-to-upstream connection weights.

r

Fig. 2. Transforming a disulfide graph (top) into a supersource
DOAG (bottom).

4 IMPLEMENTATION
4.1 Performance measures
Let D denote a set of proteins and let Gi = (Vi , Ei) and G�

i =
(Vi , E�

i ) denote the predicted and correct connectivity patterns
for the i-th protein in the setD, respectively. Prediction indices
are defined as

Qp =
∑|D|

i=1 δ(Ei , E�
i )

|D| , Qc =
∑|D|

i=1 |Ei ∩ E�
i |∑|D|

i=1 |Ei |
(5)

where δ(x, y) = 1 if x = y and 0 otherwise. The prediction
index Qp is pattern-based and measures the fraction of cor-
rectly assigned connectivity patterns. It estimates predictive
performance at the protein level, namely the probability that
a whole prediction is correct. Note that Qp can be decreased
by proteins having large values of B and yet the location of
several bridges could have been predicted correctly. For this
reason we also use the complementary couple-based predic-
tion index Qc, defined as the fraction of correctly predicted
disulfide bridges.

4.2 Dataset generation and input data
For each chain in the dataset we generated connectivity
graphs by including all the possible B!! connectivity patterns.
We obtained 55 683 undirected graphs for the SP39 dataset.
Training is performed by assigning a target output score to
each connectivity graph. More formally, if G�

i = (Vi , E�
i ) is

the i-th instance for a dataset D with N chains and Ei =
{Gi1 , . . . , Gi|Ei | } is the set of candidate patterns for chain i, we
used the set of pairs {(Gij , yij ), i = 1, . . . , N j = 1, . . . , |Ei |},
where yij represents the similarity between the candidate Gij

and the true pattern G�
i , as computed by Equation (2).

Each vertex in a connectivity graph contains information
describing the local environment of the corresponding bonded
cysteine. More precisely, we used a window of size 2k + 1
amino acids centered around the bonded cysteine and we
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encoded each amino acid position by a vector of 20 com-
ponents. By comparison, Fariselli and Casadio (2001) used
edge-labeled graphs where each edge was annotated by the
contact potential between two adjacent vertices. As pointed
out in the statistical analysis of Harrison and Sternberg (1994),
sequence separation between bonded cysteines and sequence
length correlate with specific connectivity patterns. To take
advantage of this information we enriched label vectors with
two additional features: the normalized sequence position t/L

(where t is the cysteine position along the chain and L is
the chain length in residues) and the relative sequence length
L/Lmax (where Lmax is the maximum chain length observed
in the database).

We consider two different encodings for the positions along
the window: single-sequence and profile-based. In the single-
sequence case, an all-zero-but-one binary vector identifies
the residue type at a given window position. In this case the
cysteine in the center of window is not taken into account,
being always present and carrying no information. In profile-
based encoding, each amino acid position is described by the
vector of multiple sequence alignments profile. In this case the
central position corresponding to the cysteine is retained. In
all our experiments we used a window of size 5 (k = 2) result-
ing in label vectors of dimension 82 (single-sequence) or 102
(profile-based). The position-specific scoring matrix of each
chain in the filtered SP39 dataset was created by running two
iterations of the PSI-BLAST program (Altschul et al., 1997)
against the non-redundant SWISS-PROT + TrEmbl dataset of
sequences.

4.3 Experimental protocol
Training and testing of the recursive neural model was
performed according to the same 4-fold cross-validation pro-
cedure as used in Fariselli and Casadio (2001). In order to
automatically stop the four training phases and to control over-
fitting, we adopted two strategies. In the first one, for each fold
we used a validation set composed of 20% of randomly chosen
sequences from the original training set. Compared to Fariselli
and Casadio (2001), in this case we adopted less favorable
training conditions, since test data remains the same. In order
to exploit all available training data, in a second setting we
used a weight-decay updating strategy.

Networks were trained by optimizing the cost function
in Equation (4) using gradient descent—see Frasconi et al.
(1998) for details on backpropagation in RNN. We used the
online stochastic approximation, updating weights after the
presentation of each graph.

Preliminary experiments were carried out testing different
choices of the adjustable parameters. More precisely, model
performances were evaluated varying the architecture of the
neural networks implementing the forward and backward
transition functions [f (·) and b(·), respectively] and the global
output function g(·). All the results showed in the next sec-
tion are relative to transition networks with 20 output units,

Table 2. Comparison among different prediction algorithms

Method B = 2 B = 3 B = 4 B = 5 B = {2 . . . 5}
Qp Qc Qp Qc Qp Qc Qp Qc Qp Qc

Frequency 0.58 0.58 0.29 0.37 0.01 0.10 0.00 0.23 0.29 0.32
MC graph-

matching
0.56 0.56 0.21 0.36 0.17 0.37 0.02 0.21 0.29 0.38

NN graph-
matching

0.68 0.68 0.22 0.37 0.20 0.37 0.02 0.26 0.34 0.42

BiRnn-1
sequence

0.59 0.59 0.17 0.30 0.10 0.22 0.04 0.18 0.28 0.32

BiRnn-1
profile

0.65 0.65 0.46 0.56 0.24 0.32 0.08 0.27 0.42 0.46

BiRnn-2
sequence

0.59 0.59 0.22 0.34 0.18 0.30 0.08 0.24 0.31 0.37

BiRnn-2
profile

0.73 0.73 0.41 0.51 0.24 0.37 0.13 0.30 0.44 0.49

Prediction indices Qp and Qc as in Equation (5). Methods as described in section 5.
Results in bold indicate a statistically significant difference in performance between
sequence-based and profile-based BiRNNs trained according to the same protocol
(4-fold paired t-test, p < 0.01).

no hidden layers and a single sigmoid unit representing the
global output function (the score of a graph). During prelimin-
ary experiments we found that training separate networks for
the sets of proteins having the same number of bridges helps
improving generalization. In all the subsequent experiments
we therefore used four separate networks for predicting the
connectivity of proteins having B = 2, 3, 4 and 5, respect-
ively. On average, a whole cross-validation procedure applied
to the SP39 dataset took about 12 h on a single processor PIII
1GHz workstation.

5 RESULTS AND DISCUSSION
Table 2 summarizes the results obtained by running the exper-
iments with the B-specialized networks, as described in the
previous section. We report the estimated pattern-based and
couple-based prediction indices Qp and Qc for each group of
chains having the same number of bonds. The rows report
prediction results as obtained by the algorithms indicated
under the column labeled Method. ‘Frequency’ is a trivial
method consisting of always predicting the most frequent
pattern observed in the training set. We use it to compare
the algorithms against baseline performance in order to eval-
uate whether a network has learned more than simple first
order statistics from the distribution of training instances.
For the sake of comparison, the rows labeled MC and NN
graph-matching report previous results published respectively
in Fariselli and Casadio (2001) and Fariselli et al. (2002).
The fourth and fifth rows report performances obtained by the
BiRNN trained with validation sets and using as input respect-
ively only the information encoded in the sequence (BiRnn-1
sequence) and multiple alignment profiles (BiRnn-1 profile).
Similarly, the last two rows show results of the same model
trained using weight-decay as stopping procedure.
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Table 3. BiRnns pair-based performance

Fold type B = 2 B = 3 B = 4 B = 5 B = {2 . . . 5}
Q2 Qnc Qc Q2 Qnc Qc Q2 Qnc Qc Q2 Qnc Qc Q2 Qnc Qc

α 0.83 0.88 0.75 0.68 0.80 0.20 0.90 0.94 0.67 1.0 1.0 1.0 0.81 0.88 0.56
β 0.76 0.82 0.64 0.73 0.83 0.32 0.86 0.92 0.50 0.80 0.89 0.10 0.78 0.85 0.47
α/β 0.92 0.94 0.88 0.60 0.75 0.00 0.79 0.88 0.25 0.78 0.88 0.00 0.77 0.86 0.27
α + β 0.81 0.86 0.72 0.88 0.92 0.69 0.75 0.86 0.14 — — — 0.79 0.86 0.45
Small proteins — — — 0.90 0.94 0.75 0.79 0.88 0.27 0.79 0.88 0.05 0.82 0.89 0.37
Peptides 0.83 0.88 0.75 1.0 1.0 1.0 0.71 0.83 0.00 — — — 0.85 0.89 0.69
Unclassified 0.83 0.87 0.74 0.80 0.87 0.49 0.82 0.89 0.37 0.85 0.92 0.33 0.82 0.88 0.50
All 0.82 0.87 0.73 0.80 0.88 0.51 0.81 0.89 0.37 0.84 0.91 0.30 0.82 0.88 0.49

Network model trained with multiple alignment profiles. Index Q2 is the fraction of correctly assigned pairs and Qnc is the fraction of correctly predicted pairs not involved in a
disulfide bridge. Index Qc as in Equation (5).

Surprisingly, the baseline method performs quite well in the
case of 2 and 3 bonds. Apart for the case of 4 bonds, results of
MC graph-matching and the sequence-based RNNs (BiRnn-1
sequence and BiRnn-2 sequence) are not significantly differ-
ent from the trivial algorithm. This method is even better when
the task is to predict connectivity on six cysteines. NN graph-
matching performs better than single-sequence RNNs partly
because it uses richer information compared to the input pro-
cessed by the recursive model. Training RNNs with multiple
alignment profiles allows us to obtain improvement in per-
formance for all groups of chains. The difference is more sig-
nificant for B = 2, 3 (p < 0.025) and less for B = 4, 5 (p ≤
0.1)2. In BiRnn-2 profile, we use the same amount of training
data as in NN graph-matching and we are able to consistently
outperform this method. Even though the BiRnn-2 profile
method outperforms other algorithms in the case of 4 and
5 bonds, this performance is still substantially low compared
to the case of 2 and 3 bonds. This highlights the increased dif-
ficulty of choosing the correct pattern among 105 (B = 4) and
945 (B = 5) possible candidates. On a global basis (see last
column of Table 2), our methodology achieves correct predic-
tion on slightly less than half of patterns and pairs. Overall,
the combination of RNNs and profiles is not generally applic-
able, but considering the distribution of B (Fig. 1), it can be
very informative in a real predictive context for a large subset
of the sequences of interest (those with 2 and 3 bonds).

Since disulfide bridges can be seen as a special case of
residue contacts, we analyzed in more detail the perform-
ance of our best method (BiRnn-2 profile, last row in Table 2)
with the use of appropriate indices. Note that in this case
the number of predicted contacts is constrained to be the
same as the number of actual contacts. By this, precision and
recall (considering respectively false positives and false neg-
atives) have the same values and can be represented with a
single index: Qnc for pairs not in contact and Qc for those
in contact. The latter is obviously identical to the fraction

2 In the latter case, note that the t-test is not maximally reliable, since the
number of chains with 4 or 5 bonds in each fold is <30.

of correctly predicted disulfide bridges in Equation (5). One
additional index we use is Q2, which estimates the probability
of correct prediction at the level of individual pairs of bonded
cysteines, either in contact or not. Table 3 shows the results of
this kind of analysis. We report performance grouped accord-
ing to the topology class and the number of disulfide bonds
of each chain. From the last row and column we see that our
approach yields 82% correct prediction at the level of indi-
vidual pairs corresponding to about half of the contacts and
88% of non-contacts correctly classified. Not surprisingly, the
values in the last row are nearly the same as those obtained
for the scop-unclassified chains, since these belong to the over
represented class in our dataset. The index Qnc monotonically
increases with B, as the proportion of non-contacts increases
with the number of disulfide bonds. Overall, the fraction of
correctly predicted pairs is consistently above 80%. By simple
computation, we can compare the performance of our net-
works in each case against the baseline values for Q2 and
Qnc which are respectively 33% and 50% for B = 2, 60%
and 75% for B = 3, 71% and 83% for B = 4 and 78% and
88% for B = 5. As expected, the performance on the differ-
ent fold types deviates from the global results, especially for
chains having more than two bridges. This clearly depends
on the unbalanced representation of the various classes (see
Table 1). Despite this, the network operating on four bonded
cysteines produces accurate and similar results for each of the
represented topology classes. In this case the task is to predict
the correct pattern among three possible alternatives and it is
more likely that these classes share similar patterns.

6 CONCLUSIONS
We have proposed and tested a novel machine learning method
for predicting disulfide connectivity patterns in cysteine-
rich proteins. Performance is comparable or better than
other algorithms in the literature. In addition, our model
guarantees a significant decrease in training time and can
easily incorporate and process evolutionary information in
the form of multiple alignment profiles. Experimental studies
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demonstrate the benefit of using this type of information. One
obvious direction for further study is to combine cysteine
bonding state predictors with a pairing algorithm like the one
presented in this paper, in order to build a complete pre-
dictor of disulfide bridges. In this perspective, the use of
neural networks for solving the pairing problem is potentially
advantageous as it allows global optimization of the recursive
network together with the parameters of the bonding state pre-
dictor. As previously stated, disulfide bridges can also be seen
as a special (and important) case of residue contacts. There-
fore it may be important to compare and combine predictors
of disulfide bridges with predictors of contact maps whose
performance is improving but still appears unsatisfactory for
long ranged interactions.
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