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ABSTRACT
Motivation: Signaling pathways are dynamic events that take
place over a given period of time. In order to identify these
pathways, expression data over time are required. Dynamic
Bayesian network (DBN) is an important approach for predict-
ing the gene regulatory networks from time course expression
data. However, two fundamental problems greatly reduce
the effectiveness of current DBN methods. The first problem
is the relatively low accuracy of prediction, and the second is
the excessive computational time.
Results: In this paper, we present a DBN-based approach
with increased accuracy and reduced computational time com-
pared with existing DBN methods. Unlike previous methods,
our approach limits potential regulators to those genes with
either earlier or simultaneous expression changes (up- or
down-regulation) in relation to their target genes. This allows
us to limit the number of potential regulators and consequently
reduce the search space. Furthermore, we use the time differ-
ence between the initial change in the expression of a given
regulator gene and its potential target gene to estimate the
transcriptional time lag between these two genes. This method
of time lag estimation increases the accuracy of predicting
gene regulatory networks. Our approach is evaluated using
time-series expression data measured during the yeast cell
cycle. The results demonstrate that this approach can pre-
dict regulatory networks with significantly improved accuracy
and reduced computational time compared with existing DBN
approaches.
Availability: The programs described in this paper can be
obtained from the corresponding author upon request.
Contact: sconzen@medicine.bsd.uchicago.edu

INTRODUCTION
Genome-wide DNA microarrays are powerful tools, provid-
ing a glimpse of the signals and interactions within
regulatory pathways of the cell. They enable the simultaneous

∗To whom correspondence should be addressed.

measurement of mRNA abundance of most, if not all,
identified genes in a genome under different physiological
conditions. Because signaling pathways are dynamic events
that take place over time, single time point expression profiles
may not allow us to identify temporal events. This problem can
be approached by performing a DNA microarray experiment
with a series of time points following a physiological event.

Dynamic Bayesian network (DBN) analysis (Murphy and
Mian, 1999; Imoto et al., 2002; Kim et al., 2003; Perrin et al.,
2003) is well-suited for handling time-series gene expression
data. To our knowledge, Murphy and Mian (1999) are to be
credited with first employing DBN for modeling time-series
expression data. In the DBN analysis, regulator–target gene
pairs are usually identified based on a statistical analysis of
their expression relationships across different time slices. For
example, time slices T1 for the regulator and T2 for the tar-
get gene, where T1 precedes T2. The time period between the
time slices of the regulator and target (T2 − T1) is considered
as the transcriptional time lag. Specifically, it is the time that
it takes for the regulator gene to express its protein product
and the transcription of the target gene to be affected (dir-
ectly or indirectly) by this regulator protein. Consequently,
we are more likely to observe a significant statistical correl-
ation between the expression of a regulator and its target if
biologically relevant time slices are used.

There are two major problems with current DBN meth-
ods that greatly reduce their effectiveness. The first problem
is the lack of a systematic way to determine a biologically
relevant transcriptional time lag, which results in relat-
ively low accuracy of predicting gene regulatory networks.
The second problem is the excessive computational cost
of these analyses, which limits the applicability of current
DBN analyses to a large-scale microarray data. Therefore,
this paper introduces a DBN-based analysis that can pre-
dict gene regulatory networks from time course expression
data with significantly increased accuracy and reduced com-
putational time. Our approach differs from existing DBN
methods [typified by Murphy’s Bayes Net Toolbox (BNT) at

Bioinformatics vol. 21 issue 1 © Oxford University Press 2004; all rights reserved. 71

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/1/71/212416 by guest on 09 April 2024



M.Zou and S.D.Conzen

www.ai.mit.edu/∼murphyk/Software/BNT/bnt.html] in two
major ways. First, in BNT, all the genes in the dataset are
considered as potential regulators of a given target gene. In
contrast, our method focuses on employing the biological fact
that most transcriptional regulators exhibit either an earlier or
simultaneous change in the expression level when compared
to their targets (Yu et al., 2003). This limits the potential regu-
lators of each target gene and thus significantly reduces the
computational time. Second, in order to perform a statistical
analysis of gene expression relationships, BNT generates a
data matrix containing the time course expression profiles of
the potential regulators and a given target gene. In this data
matrix, the time course expression levels of all the potential
regulators are aligned perfectly with each other throughout the
time course. However, the expression levels of the target genes
are misaligned with those of the potential regulators by one
time unit. For example, the expression levels of the potential
regulators at time point 1 are aligned with the expression level
of the target gene at time point 2, where the time lag is just one
time unit. Therefore, BNT automatically assumes that the time
unit in a time course microarray experiment is the transcrip-
tional time lag for all potential regulator–target pairs. This
estimation of the transcriptional time lag can be inaccurate and
results in a relatively low accuracy of predicting gene relation-
ships using BNT. In contrast, our method proposes to use the
time difference between the initial gene expression change of
a potential regulator and its target as a reasonable estimation
of the transcriptional time lag between these two genes, which
can vary from zero (roughly simultaneous expression changes
of the regulator and its target) to several time units. Based
on these improvements, we expect that our DBN approach
will uncover gene–gene relationships with a significantly
increased accuracy and reduced computational time com-
pared with existing DBN methods. The final steps in both our
method and BNT are to calculate the conditional probabilities
of the target gene expression in relation to the expression of its
potential regulators, and subsequently the ‘log marginal like-
lihood score’. Potential regulator(s) with the highest log mar-
ginal likelihood score will be ultimately selected as the final set
of regulators for the given target gene. A conceptual represent-
ation of our approach is presented in Figure 1, and a detailed
description of our method is presented in the Methods section.

MATERIALS: DATA AND SOFTWARE
To evaluate our approach, we report the analysis of the
yeast cell cycle time-series gene expression data from Chou
et al. (1998). This dataset has a large number of time points
(n = 16) with relatively small time intervals (10 min), thus
making it ideal for testing our approach. In addition, the yeast
cell cycle has many previously established gene regulatory
relationships (Simon et al., 2001), allowing ready confirma-
tion of the accuracy of our algorithm-derived gene–gene
relationships. For example, the Chou et al. (1998) yeast
dataset contains 116 known cell cycle genes that encode

either transcription factors (TFs) or their established targets.
These genes can be inputted into our algorithm and pre-
dicted relationships are then verified by the comparison with
established relationships.

Since Murphy’s BNT already provides the necessary func-
tionalities for building Bayesian networks, we implemented
our new DBN analysis within the framework of BNT. The
details of our approach are described in the ‘Methods’ section.
The supporting programs to initially determine up- or down-
regulation of individual genes and the transcriptional time lags
between potential regulators and their targets are written in
Java. These programs can be obtained from the corresponding
author upon request.

METHODS
In this section, we describe the details of our DBN approach
using the analysis of a set of hypothetical expression data as
an example. This example includes four hypothetical genes
A–D and their expression data at six evenly spaced time
points T1–T6.

Step 1: Selection of potential regulators for
each gene
We first determined the time points of the initial changes in
the expression (up- or down-regulation) of genes A–D based
up on their time-series expression data. Although there is cur-
rently no gold standard for determining what this threshold
is for up- or down-regulation, we decided to use ≥1.2-fold
(up-regulation) and ≤0.70-fold (down-regulation) compared
to baseline gene expression as the cutoffs. Although these are
relatively modest cutoffs, we did not want to miss genes with
small, but potentially important changes in gene expression.
We then determined the time points of the initial up- or down-
regulation of genes A–D, and assigned genes with earlier or
simultaneous changes in expression as the potential regulators
of those genes with a later change in expression. In this way,
we were able to select a subset of potential regulator genes for
any given target gene.

The results of this potential regulator pre-selection for genes
A–D are shown in Figure 2. Based on the criteria above
for determining up- or down-regulated expression, the initial
up-regulation of genes A and B occurs at T2, gene C is ini-
tially up-regulated at T3, and gene D is initially up-regulated
at T4. We selected genes A–C as the potential regulators of
gene D because the initial up-regulation of genes A–C pre-
cedes that of gene D. This is followed by similar selection
of potential regulators for other genes. In Figure 2, we illus-
trate a case of up-regulated expression, but similar potential
regulator selection applies to down-regulated genes as well.

Step 2: Estimation of biologically relevant
transcriptional time lag
After potential regulator selection, we next performed an
estimation of the transcriptional time lag between potential

72

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/1/71/212416 by guest on 09 April 2024



Bayesian network analysis

B

3

5

A

A

B

A

B

A

B

T - t               T               T + t

 t: Transcriptional time lag between 
gene A and gene B. 

4 Up-regulation
at T1

Up-regulation
at T2

Gene A

Gene B

R

Transcriptional time lag = 
T2 – T1

Gene A2
Up-regulation
at T1

Gene A 

Gene B 

1
T1

T2 Up-regulation
at T2

 Up-regulation
 at T1

 Up-regulation
 at T2

Gene B

R

Fig. 1. A conceptual view of our DBN-based approach. 1, Identification of the time point of the initial expression change (up- or down-
regulation) of each gene based on the microarray time course expression data. 2, Potential regulators are limited to those with simultaneous
or antecedent expression changes when compared with their target genes (R, potential regulation). 3, Estimation of the transcriptional time
lag between the potential regulator and its target gene as the time difference between initial expression changes of these two genes. 4,
DBN: statistical analysis of the expression relationship between the potential regulator and its target gene in time slices that represent the
transcriptional time lag between these two genes (as estimated in 3). 5, Predicted gene regulatory network.

regulators and their target genes. We propose that the time
difference between the initial expression change of a potential
regulator and its target gene represents a biologically relevant
time period. This is expected to allow a more accurate estim-
ation of the transcriptional time lag between potential regu-
lators and their targets, because it takes into account variable
expression relationships of different regulator–target pairs.

As an example, we illustrate the estimated time lags between
target gene D and its potential regulators in Figure 3. We estim-
ated that the time lags between potential regulators of genes
A–C and their potential target gene D are two time units, two
time units and one time unit, respectively. We then performed
similar predictions for other potential regulator–target pairs.
Of note, the transcriptional time lag estimated by our method
can vary from zero to several time units. Since each target
gene can have more than one regulator, we divided the poten-
tial regulators of each gene into different groups based on the
individual transcriptional time lag with the target gene. As an
example, we put genes A and B into one group since they have
the same transcriptional time lag of two time units with respect

to target gene D; gene C was placed in another group because
it has a time lag of only one time unit with respect to gene D.
The rationale for separating potential regulators into different
groups is that different regulators may regulate the same tar-
get gene in either different time frames or in the same time
frame. This allows us to analyze different potential regulators
separately while grouping potential co-regulators together.

Step 3: Gene regulatory network modeling
The variables in our DBN analysis are the gene expression
levels across different time points in the time course expres-
sion data. However, we did not use the absolute fold-change
values, instead, we assigned ‘2’ if the expression level is equal
to or higher than the average expression level for that gene
across all time points, and ‘1’ if the expression level is lower
than the average level. Note that we did not use the ≥1.2- or
≤0.70-fold cutoffs (see Step 1) to assign absolute up- or down-
regulation to the expression level at each time point, instead
we focused on the relative increase or decrease in expression
levels. This is because the main focus of DBN is to identify the
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Fig. 2. Step 1: the dynamic expression profiles of genes A–D and the time points of their initial up-regulated expressions. Potential regulators
are selected based on their simultaneous or antecedent expression change when compared with the expression change of their respective
target gene.
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Fig. 3. Step 2: the transcriptional time lag between the potential regulator and its target gene is estimated as the time difference between the
initial expression change of these two genes.

correlation between gene expression patterns, rather then their
absolute expression value at any one particular time point.

We then used the results from Steps 1 and 2 to more
accurately predict gene regulatory networks from time-series
expression data, which are demonstrated by using the same
example as in Steps 1 and 2. As stated in Step 2, we divided
potential regulators of gene D into two groups based on their
transcriptional time lags with gene D: a group of genes A

and B with two time units as the transcriptional time lag
with gene D, and gene C with one time unit as the time lag
with gene D. For each group of potential regulators, we then
generated all the subsets of this group, based on the user’s
pre-defined minimum and maximum number of regulators.
This is because the number of co-regulators of a given target
gene is unknown. The generation of the subsets of each group
of potential regulators allows us to examine the expression
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Fig. 4. Step 3: (A) Discrete expression values of potential regulator gene A and its target gene D are placed in a data matrix, where the
expression level of gene A at time point T is aligned with the expression level of gene D at time point T + t (t is the transcriptional time lag
between genes A and D as estimated in Step 2). (B) The conditional probabilities of the expression of target gene D in relation to its potential
regulator gene A are then calculated based on this data matrix.

relationships between all possible sets of co-regulators and
their target gene. Therefore, the subsets of genes A and B are
{gene A}, {gene B} and {gene A, gene B}; the subset of gene
C is itself: {gene C}. Then, for each subset of potential regu-
lators, we used the transcriptional time lag estimated in Step 2
to organize the expression data of the potential regulators and
their target gene into an N × M matrix, where N is the num-
ber of the potential regulators plus the target gene, T is the
number of time points in the original time series expression
data, t is the estimated transcriptional time lag (represented
by the number of time units) and M is the number of time
points in the data matrix which is equal to T − t . Therefore,
in this matrix, the expression value of the potential regulators
at time T1 are aligned with the expression value of the target
gene at time T1 + t , where t is the estimated transcriptional
time lag. Note that the t-value (transcriptional time lag in time
point units) may vary in different expression data matrices. In
Figure 4A, we illustrate the data matrix for subset gene A with
its target gene D.

After constructing expression data matrices of all tar-
get genes with their potential regulators, we calculated the
conditional probabilities of each target gene in relation to its
regulator genes based on the data matrices. The conditional
probabilities of the expression of gene D in relation to the

expression of gene A are shown in Figure 4B. Marginal like-
lihood scores were then calculated using these conditional
probabilities. For each target gene, we then selected the
subset of potential regulator(s) that gives the highest log mar-
ginal likelihood score as the final set of regulators for this
target gene.

RESULTS
In DBN analyses of time-series expression data, at least
two situations can exist. First, one might have some prior
knowledge of the system studied, such as the identity of TFs
in the system even though the targets of the TFs are unknown.
Indeed, if we know the identity of the TFs in the system, we
can use this prior knowledge to limit the potential regulators
of each gene in the dataset to only these TFs, and then identify
the targets of these TFs. In the second situation, we may
not have any prior knowledge of the system, and thus need
to identify regulatory networks by considering all potential
regulator–target pairs. Therefore, in this work, we performed
two sets of experiments to represent both of these possibilities.

In each experiment, we used both our approach and
Murphy’s BNT to analyze Chou et al.’s yeast cell cycle data,
and compared the accuracy and the computational cost of the
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Table 1. The results of Experiment 1 (incorporating prior knowledge of TFs)

Network Correctly Misdirected Specificity Computational
identified relationship (%) time (s)
relationships

(I) DBNour_1 46 1 40 10
(II) DBNBNT_1 18 4 11 60

Table 2. The results of Experiment 2 (no prior knowledge of TFs)

Network Correctly Misdirected Specificity Computational
identified relationship (%) time
relationships

(I) DBNour_2 17 3 10 15 min
(II) DBNBNT_2 8 7 3 8 h

two methods. In Experiment 1, we only allowed the nine TFs
to be the possible regulators of the 116 genes in the dataset
(including the nine TFs, because a given TF can be regu-
lated by other TFs), and we identified the targets of these nine
TFs. We denote the learned networks using our method and
BNT as DBNour_1 and DBNBNT_1, respectively. In Experi-
ment 2, we excluded any prior knowledge of the yeast cell
cycle, thus allowing all potential regulator–target pairs and
subsequently identified the relationships between these 116
genes solely based on the time course microarray data. Reg-
ulatory networks identified using our method versus BNT in
Experiment 2 are listed as DBNour_2 and DBNBNT_2.

The results of Experiment 1 are summarized in Table 1, and
the results of Experiment 2 are listed in Table 2. In both tables,
row (I) represents the network identified by our method, and
row (II) represents the network learned using BNT. ‘Correctly
identified relationships’ specifies predicted relationships that
have been established in yeast cell cycle regulation. ‘Mis-
directed relationship’ represents a gene relationship that is
predicted to be in the reverse order of a known relationship.
‘Specificity’ is the percentage of correctly predicted known
gene relationships out of the total number of predicted gene
relationships. ‘Computational time’ is the running time of
the analysis.

Experiment 1
Since we only allow the nine TFs to be the potential regulators
in Experiment 1, the search space is relatively small and thus
the computational time for both methods is relatively short.
However, a close comparison of the computational times
demonstrates a completion time of 10 s for our method and 60 s
for Murphy’s method (Table 1). The difference between the
computational times is much more dramatic when the number
of potential regulators increases as in Experiment 2.

In DBNour_1, by selecting potential regulators based on
their concurrent or antecedent change in expression in relation
to the target genes, the number of misdirected relationships
decreases from four (DBNBNT_1) to one (DBNour_1) (Table 1).
Interestingly, the four misdirected relationships in DBNBNT_1

were all correctly reversed in DBNour_1. Examination of the
expression profiles of these four misdirected relationships
reveals an earlier expression change of the known regulator
gene compared with the target gene. For example, SWI4, a
TF, is known to regulate gene NDD1 (Simon et al., 2001).
However, SWI4 was erroneously determined to be the target
of NDD1 in DBNBNT_1. Interestingly, using our method,
SWI4 becomes a regulator of NDD1. SWI4’s expression is
up-regulated for 10 min compared with NDD1’s up-regulation
for 20 min. However, NDD1 apparently has a strong statistical
relationship with SWI4 based on their expression data, which
results in the regulation of SWI4 by NDD1 in DBNBNT_1. In
our method, NDD1 is excluded from being a potential reg-
ulator of SWI4 because it has a delayed expression change
compared with SWI4, and thus is not likely to be a regulator
of SWI4. This results in assigning SWI4 as a potential reg-
ulator of NDD1, and our statistical analysis confirmed that
SWI4 is a regulator of NDD1. Therefore, the misdirected rela-
tionship NDD1 → SWI4 in DBNBNT_1 was correctly reversed
to SWI4 → NDD1 in DBNour_1.

Interestingly, there is only one misdirected relationship in
DBNour_1. In this relationship, SWI5, although known to
be a transcriptional target of NDD1 (Simon et al., 2001),
is predicted by our method to be a regulator of NDD1
(SWI5 → NDD1). This misdirected relationship is caused by
the antecedent up-regulation of SWI5 for 10 min compared
with NDD1’s up-regulation for 20 min. Therefore, SWI5 was
selected by our method to be the regulator of NDD1, instead of
vice versa. A further statistical analysis also confirmed the reg-
ulation directed from SWI5 to NDD1. This finding indicates
that even though most transcriptional regulators have either an
earlier or simultaneous change in expression compared with
their targets, there are exceptions. Earlier expression change
of the target gene in comparison with that of the regulator
gene may be caused by the different mRNA half-lives of
the regulator gene and target gene, and may also suggest a
feedback loop, where a target gene can in turn regulates its
regulator. However, a further examination of Chou et al.’s
yeast cell cycle time-series data showed that in 70% of the
known yeast gene–gene relationships, the regulator gene has
either an earlier or simultaneous expression change compared
with its target gene. This suggests the general applicability of
our method in discovering gene regulatory relationships.

The results from our analysis of yeast cell cycle expres-
sion data demonstrate that our method is capable of identi-
fying a higher number of known gene–gene relationships
compared with BNT. The number of correctly identified,
already established gene–gene relationships increased signi-
ficantly from 18 in DBNBNT_1 to 46 in DBNour_1 (Table 1).
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Table 3. Correctly identified known gene–gene relationships in Experiment 1

Regulator Target Regulator Target Regulator Target

(A) DBNour_1

SWI4 PCL1 SWI4 NDD1 FKH1 SWI6
SWI4 CLN2 FKH1 ACE2 SWI4 MBP1
SWI4 OCH1 NDD1 ACE2 SWI4 PCL2
SWI4 HO SWI6 SIM1 SWI4 CLB6
MCM1 STE6 SWI4 FKS1 MCM1 SIM1
MCM1 PIR3 FKH2 GIC1 FKH2 CLB4
SWI4 SWE1 SWI4 SPT21 SWI6 CDC6
SWI4 GIN4 SWI4 RSR1 SWI6 AGA1
FKH1 BUD8 SWI4 CWP1 MCM1 MFA1
ACE2 SPO12 MCM1 CLN3 SWI5 MFA2
MCM1 CLN2 FKH1 UTR2 SWI4 CLB2
SWI4 RNR1 MCM1 GIN4 SWI4 PLB3
FKH1 HHF_1 SWI4 YBR071W SWI5 YLR463
SWI6 HTB2 SWI6 YPR075 SWI6 SPO12
SWI5 EGT2 NDD1 CDC20
SWI4 MNN1 SWI4 BUD4

(B) DBNBNT_1

SWI4 PCL1 ACE2 SPO12 MBP1 CLB6
SWI4 CLN2 SWI4 GIN4 SWI4 HTA2
SWI4 HO FKH1 BUD8 SWI6 RSR1
SWI4 OCH1 MCM1 PIR3 FKH2 ACE2
MCM1 STE6 SWI4 BUD9 FKH1 SWI5
SWI4 SWE1 SWI6 CIS3 SWI5 HSP150

(A) By our method. (B) By BNT. Relationships in italicized bold face type were identi-
fied by both our method and BNT. Relationships in normal font were identified by the
corresponding method and not be the other method.

A close examination of the 36 gene–gene relationships cor-
rectly identified by our method (Table 3) and not by BNT
reveals that all 36 relationships have a much stronger statist-
ical correlation using the estimated transcriptional time lags
compared with using the single time unit (10 min) as the
time lag. As an example, SWI4, a TF, is known to tran-
scriptionally regulate MBP1 (Simon et al., 2001). However,
this relationship was rejected by BNT because there is no
significant statistical correlation between SWI4 and MBP1
expression when using a single time unit as the transcrip-
tional time lag for the statistical analysis. This is illustrated
by the low conditional probability of MBP1’s expression cor-
relating with SWI4’s expression using the 10 minute time
lag (Fig. 5A). However, when using a 30 min time differ-
ence (three time units) between the initial expression change
of SWI4 and MBP1, a strong statistical correlation was
uncovered (Fig. 5B).

In contrast to the 36 known gene–gene relationships
identified by our method exclusively, there are only eight
relationships that are identified exclusively by BNT (Table 3).
Three of these eight relationships have a better correlation if
using 10 min as the transcriptional time lag compared with
using the zero minute time lag estimated by our analysis.

The other five relationships resulted from earlier expression
changes of the target gene compared with their regulators.

Experiment 2
In this experiment, we compared the accuracy and efficiency
of our method with BNT when no prior knowledge of yeast cell
cycle TFs was inputted into the DBN model. This experiment
allowed all the genes being analyzed to be potential regulators
rather than only the nine TFs as in Experiment 1.

The difference between the computational cost of our
method and BNT is even more dramatic in this experiment
than in Experiment 1. The completion time for running our
analysis on the dataset of 116 genes was only 15 min, while
it took 8 h using BNT (Table 2).

As in Experiment 1, the number of misdirected relation-
ships drops significantly from seven in DBNBNT_2 to three in
DBNour_2 (Table 2). One misdirected relationship occurs in
both networks. A close examination of the other six misdirec-
ted relationships in DBNBNT_2 reveals that these relationships
include known regulators, which have an earlier initial expres-
sion change than their targets. Since the statistical analysis
is the only measure to determine regulator–target pairs in
BNT, the apparent statistical correlation erroneously determ-
ined the regulation from the known target gene to the known
regulator gene in these six misdirected relationships. Inter-
estingly, five of these six misdirected relationships were
successfully reversed in our analysis. The other misdirected
relationship was not reversed in our analysis due to an insigni-
ficant statistical correlation between the genes in this known
relationship. Compared with the seven misdirected relation-
ships in DBNBNT_2, there are only three in DBNour_2. The
three misdirected relationships were caused by the fact that
the known regulator has a later change in expression than its
known target.

The advantage of using a more biologically relevant estima-
tion of the transcriptional time lag is clearly reflected in
these results. Twelve established relationships were correctly
identified by our approach and not by BNT. Out of these
12 relationships, 10 have estimated transcriptional time lags
other than 10 min, which is the arbitrary time lag used in
BNT. In addition, all of the 10 relationships have much
stronger statistical correlations when using their transcrip-
tional time lags estimated in our method compared with using
the 10 min time lag. Compared with the 12 known relation-
ships identified in DBNour_2 (and not in DBNBNT_2), there are
only three that are identified exclusively in DBNBNT_2. Two
of the three relationships were not identified by our method
because the known regulators in these relationships have later
changes in expression than their targets. The other relation-
ship was not identified by our method because it has a better
statistical correlation if using a 10 min time lag compared with
using the 20 min time lag we estimated in our analysis.

From the results of both experiments, we can see that the
number of correctly identified known relationships decreases
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Fig. 5. (A) Known relationship SWI4 → MBP1 was not identified by BNT, due to the insignificant statistical correlation between these two
genes as a result of using an incorrect transcriptional time lag (10 min = one time unit) for the statistical analysis. (B) Known relationship
SWI4 → MBP1 was identified by our method, due to the significant statistical correlation between these two genes as a result of using a
correct transcriptional time lag (30 min = three time units) for the statistical analysis.

in Experiment 2 when compared with Experiment 1. This
finding reflects the fact that when we increase the number
of potential regulators, the number of possible false posit-
ive predictions increases. However, if we reduce the number
of potential regulators, we might miss uncovering interesting
regulator–target pairs. This dilemma may be solved when we
possess a more thorough understanding of the transcriptional
regulation.

CONCLUSIONS
In this paper, we address two fundamental problems asso-
ciated with current DBN analyses: (1) a low accuracy of
predicted gene–gene relationships attributed to the arbitrary
assignment of a transcriptional time lag and (2) an extremely
long computational time due to the lack of an efficient
approach to reduce the search space. In our approach, we
consider the fact that gene regulators usually have either a sim-
ultaneous or antecedent changes in expression when compared
to their targets. This consideration allows us to limit possible

regulators of each gene thus reducing the search space. Fur-
thermore, we use the time difference between the initial
change in expression of a given regulator gene and its poten-
tial target gene to estimate the transcriptional time lag between
these two genes. This estimation of transcriptional time lag
increases the accuracy of predicting gene regulatory net-
works. In our current analysis, we used established TF–target
relationships as measured by a genome-wide screen of pro-
moter binding by tagged TFs to define correct gene–gene
interactions (Simon et al., 2001). Additional large-scale
promoter binding screens have also been performed (Horak
et al., 2002) and are complementary approaches to a DBN-
based analysis of global gene expression. Although assess-
ment of the absolute predictive accuracy of any DBN method
is limited by our current knowledge of established gene–gene
interactions, our new method appears to be more accurate than
traditional BNT in predicting gene–gene relationships.

In our analysis, we estimated the transcriptional time lag
between a regulator gene and a target gene as the time
difference between their initial expression change. The
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time points of the initial expression change (up- or
down-regulation) of a gene could be affected by the cutoffs
we use to determine the significantly up- or down-regulated
expression. Therefore, there can be error associated with
the transcriptional time lag estimated by our method. Fur-
ther work on how to most accurately determine thresholds of
significant up- or down-regulation needs to be conducted.

Another important consideration is the noise in microarray
gene expression data. One approach to deal with uncertainty in
expression data is to perform replicate experiments of the same
time course microarray experiment. Experiments can then be
analyzed in at least two different ways. The first approach
is to consider each dataset separately, which will result in
independent gene regulatory networks for each dataset. We
could then identify gene relationships that occur in the major-
ity of the independently predicted networks. This approach
may filter out false gene relationships that are caused by ran-
dom noise, and therefore are not likely to occur consistently
in different experiments. The second approach is to average
the expression levels of each gene from independent replic-
ates, and assign a standard error (SE) to each averaged value.
We can then perform similar DBN analysis on this averaged
data as described in the ‘Methods’ section. We could then use
a scoring function that takes the standard errors into account
instead of the ‘log marginal likelihood’ score that assumes
the certainty of the expression values. We could redesign the
scoring function so that gene relationships that have small
standard errors for the averaged expression of its regulator
genes and target genes will have a higher score, and will be
given more weight than those gene relationships with higher
standard errors. However, the first approach may be a better
choice, because averaging may cause the loss of a significant
relationship if the expression values of one experiment are
particularly noisy.

Finally, we have shown that occasionally the expression of
a target gene precedes that of the regulator gene. While this
is an uncommon phenomenon, especially in eukaryotic cells,
the occurrence of this phenomenon may be caused by several
factors. The first factor is the variability of mRNA half-lives.
For example, if the regulator gene’s encoded mRNA has a sig-
nificantly shorter half-life than that of its target gene, it may
take the regulator’s mRNA much longer to reach a signific-
antly up- or down-regulated steady-state level when compared
with the time it takes for the target’s mRNA to undergo a signi-
ficant change in steady-state expression level. This could lead
to an apparently earlier time of threshold expression change of
the target gene compared to its regulator gene. Taking variable
mRNA half-lives into account is a current challenge for DBN
developers. The second factor is the existence of gene reg-
ulatory feedback loops. The fact that a known target gene’s
change in expression occurs earlier than that of its known

regulator gene may suggest a feedback loop, where the target
gene can also regulate the regulator gene. However, a further
examination of Chou et al.’s yeast cell cycle time-series data
showed that in 70% of the known yeast gene–gene relation-
ships, the regulator gene has either an earlier or simultaneous
expression change compared with its target gene. This sug-
gests a general applicability of our method in discovering
gene regulatory relationships and providing testable hypo-
theses. Because many biological signaling networks involve
key transcriptional events, this approach may be used to pre-
dict hypothetical gene regulatory networks from time course
microarray data. For example, the transcriptional changes that
follow growth factor or nuclear hormone receptor activation
will lend themselves to this type of analysis.
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