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Functional proteins are known to contain stretches of amino acid
sequences highly conserved in different protein families and across
species. These conserved sequences constitute protein domains that
are generally integral structural units, conferring specific function-
alities and often self-folding. The observation of highly conserved
protein domains dispersed across different families and organisms
provoked the question whether the domains were reused in some
way during evolution.

A compelling mechanism for reusing the domains was put forth
by the exon shuffling theory (Gilbert, 1978). In many eukaryotic
species, the coding sequences of genes, or exons, are frequently
interrupted by non-coding sequences, the introns. When the exon–
intron split structure of genes correlates with the organization of
protein domains, i.e. the exons match the domains, then duplication,
permutation and rearrangement of such exons would create novel
genes with reused functional properties. Shuffling of exons could be
accomplished through various biological processes such as illegitim-
ate recombination or retrotransposition (van Rijk and Bloemendal,
2003). Studies on individual proteins, groups of ancient proteins
and genome-wide surveys of alpha helices and beta strands indic-
ated gene-structure and protein-structure correlation (Barik, 2004;
de Souza et al., 1996; Holmes and Parham, 1985). Intron phase match
studies suggested that domains tend to be bounded by symmetric-
ally phased exons, another trait of exon shuffling process (de Souza
et al., 1998; Holmes and Parham, 1985; Kaessmann et al., 2002;
Patthy, 1996).

A ‘one domain ↔ one exon’ match can be often obscured due to
either the loss of bordering introns or the insertion of other introns
into the domain-encoding sequence. To compensate for these effects,
one can analyze the match only between the borders of domains
and exons, thus taking into account cases such as ‘one domain ↔
many exons’ and ‘one exon ↔ many domains’. High-quality domain
border annotations can be obtained by analyzing protein sequences
with the domain definitions from the Pfam database, which is built
from conserved protein sequences in a wide spectrum of species.
Using this approach, we have recently demonstrated that correlation
between the borders of protein domains and their encoding exons is
a genome-wide phenomenon in multiple eukaryotic organisms (Liu
and Grigoriev, 2004). Further, we have shown that exon-bordering
domains probably contributed more to the expansion and diversifica-
tion of proteomes than other domains as a result of duplications
and exon shuffling, as they preferentially expanded into more genes
than other domains during evolution (Liu et al., 2005). To highlight
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the fact of their remarkable genomic mobility, we use the terms
‘mobile domains’ and ‘exon-bordering domains’ interchangeably in
the text below. In this study, we consider two main corollaries of
this exon–domain correlation: (1) the impact of mobile domains on
the domain network and (2) possible refinement of definitions of
individual protein domains.

EXON–DOMAIN CORRELATION AND
DOMAIN NETWORKS
Global properties of various networks, such as World Wide Web
or biological networks (of interacting and co-occurring protein
domains, as well as metabolic networks and those of protein–protein
interactions, transcriptional regulation, etc.), have received signific-
ant attention in recent years (Apic et al., 2001; Jeong et al., 2000;
Luscombe et al., 2002; Ye and Godzik, 2004). Graph representation
of such networks abstracts them as nodes connected by edges (e.g.
proteins connected by their interactions); the number of edges of a
given node is called the node’s degree; nodes with many edges are
often called ‘hubs’. Network properties are mainly analyzed from the
prospective of their node connectivity (or degree distribution). Many
of the networks have been shown to possess scale free property, which
means that their degree distribution follows a power law

N(d) ∼ d−c, (1)

where N(d) is the number of nodes of degree d and c is a constant
(generally, 2 < c < 3 for biological networks). Thus there are many
poorly connected nodes and very few hubs in such networks.

Earlier, we have shown (Liu et al., 2005) that as a result of
preferential amplification exon-bordering domains became on aver-
age more abundant and present in more genes than other protein
domains. Exon-bordering domains also co-occur with a larger num-
ber of different domains to form mosaic proteins with diverse domain
architectures. This property suggests that exon-bordering domains
should be found among the highly connected hubs and that the evol-
ution of domain networks (at least in terms of degree distribution) is
likely to be largely driven by the evolution of exon-bordering domains
and their propagation into genes via exon shuffling and duplication
mechanisms.

Indeed, many properties of the network of co-occurring pro-
tein domains, where each domains in human is a node and an
edge represents co-occurrence of two domains (not necessarily
adjacent) in one protein, are similar to other biological networks
described. As in many of these networks, there is one large com-
ponent, containing >42% of all nodes and >93% of all edges
(Fig. 1A), 172 much smaller components with 311 total edges and
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Fig. 1. (A) Snapshot of network representation using PINS software (Grigoriev, 2004). (Left) Statistics of the complete network, including elements hidden
from view. (Right) Mobile (red parallelograms) and other domains (green rectangles) are shown as nodes, while edges correspond to one or more human
proteins, harboring connected pairs (thick edges indicate 10 or more proteins). Shaded nodes (such as ig or VWD) are connected to additional nodes, which
are hidden from view. Red edges connect pairs of mobile domains. (B) Number of domain pairs is plotted versus the number of proteins containing these pairs,
together with the power law trendline. (C) Network parameters after removal of nodes representing mobile domains or the corresponding number of random
nodes. Means, SDs and Z-scores (difference with the mean in SD units) calculated from 1000 trials, exon-bordering domain selection was done using two
E-value thresholds as described previously (Liu et al., 2005), resulting in groups of 112 and 235 domains; results are similar for both groups and data are
shown in the case of 235 domains. Removal of mobile domains results in substantial fragmentation of the network and a drop in the average degree (all values
are significantly different between mobile and random nodes, as shown by the Z-scores of at least 13 SD units).

many singletons (44% of all nodes). We found that this undir-
ected network is also scale-free [data not shown, this result is
analogous to already published reports (Apic et al., 2001; Ye and
Godzik, 2004)]. In addition to this property we also observed that
a distribution of the number of different pairs of domains con-
tained in human proteins also follows power law [Equation (1)],
in this case N(d) being the number of domain pairs connected by

d proteins and c = 2.08 (Fig. 1B). Thus, most of the domain pairs
can be found only in one protein per pair. For example, out of 4677
detected domain pairs, only ∼200 pairs occur in more than 10 human
proteins. Such proteins, however, are often domain-rich.

We also calculated the expected distribution of co-occurring pairs
by modeling domain co-occurrence as a Bernoulli process (where a
pair frequency would be proportional to the product of frequencies
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Fig. 2. Exon–domain correlation and domain definitions. (A) The exon–domain correlation graph for Ig domain shows the amino acid positions near the
domain border, where the numbers of exon boundaries are compared with the random expectation. Y -axis shows logarithm of χ2 P -value calculated from
expected and observed numbers of exon boundaries for each amino acid position as described previously (Liu et al., 2005), with negative log used when the
observed value is higher than the expected. The Pfam Ig domain shows a ‘negative correlation’ as there were less exon borders observed than expected at
every amino acid position inside the [−10, +10] domain border boxes (blue diamonds). However, when we switched to using the SMART definitions of Ig
and IGc1, both of which are longer than Pfam Ig definition, we observed a much higher than expected number of exon borders inside domain border boxes at
positions −6 and −1 (red squares and green triangles), respectively. (B) The gene structure (top) and protein domain organization (bottom) for gene DDR2
are shown. In this instance, the FA58C domain correlates with exons 2–4 and is annotated by HmmPfam as from amino acid positions 33–182 on DDR2
protein (ENSP00000294781). However, when we examined the amino acid sequences close to the domain borders, the two highly conserved cystein residues
at positions 30 and 185 (marked by arrowheads) were conspicuously outside the HmmPfam annotation. If exon borders between exons 1 and 2 and exons 4 and
5 were chosen to represent the start and end of this domain, respectively, all the conserved residues (highlighted by red font) would be included in the domain.

of individual domains, derived in this case from the number of
proteins containing a domain, rather than domain numbers). Best-
fit power law trendline for the expected distribution generated a
much less steeper curve (c = 0.88, R2 = 0.74), indicating that
a large proportion of pairwise domain combinations are under-
represented in human proteins. Similar findings obtained by other
methods have been very recently published for the domain famil-
ies in SCOP (Vogel et al., 2005), which annotates domains based
on structural data, in contrast to the sequence-based Pfam that we
had used.

As a group, exon-bordering domains show a much higher con-
nectivity (Fig. 1) and, as expected, they comprise most of the hubs in
the network. We analyzed the level of network fragmentation after
the removal of mobile domains by calculating the number of com-
ponents, or remaining connected subgraphs, and average degree.
We also estimated the distributions of these parameters for 1000
networks obtained from the network we studied by removal of the
corresponding number of random nodes. Removal of mobile domains
results in substantial fragmentation of the network and a drop in the
average degree, significantly different from random node removals

(Fig. 1C). Thus, mobile domains appear to be the major determinants
of the network topology and evolution.

EXON–DOMAIN CORRELATION COULD HELP
RESOLVE CONFLICTS BETWEEN DOMAIN
DEFINITIONS FROM DIFFERENT DATABASES
In our method, exon–domain correlation was analyzed as follows.
For computational prediction of protein domains in human proteins
retrieved from the Ensembl (Birney et al., 2004) genome database,
we used HmmPfam (Eddy, 1998) with domain definitions from Pfam
(Bateman et al., 2002). For comparison, we also used CD-search
(Marchler-Bauer and Bryant, 2004) with domain definitions from
SMART (Letunic et al., 2004), a database that uses a mixture of
analyses to create protein alignments and domain definitions for
a relatively small number of signaling and extracellular domains.
We collected statistics for only one multi-exon transcript per gene
whose protein translation had at least one domain. Domain predic-
tion may not be exact, so for each domain border, frequencies of
exon boundaries were calculated for a window of 10 amino acids
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immediately outside the domain and 10 amino acids inside it (marked
as [−10;10] window). If a window contained one or more amino
acid positions with frequencies significantly different from random
expectation (threshold of P < 10−7), the domain was deemed exon
bordering.

Remarkably, when we detected correlation of the borders of pro-
tein domains with encoding exons, it was nearly always positive,
i.e. we observed significantly higher numbers of exon borders than
that expected in the domain border boxes. However, there was one
notable exception: the immunoglobulin domain displayed a negative
correlation with exons, with the number of exon borders contained
in its border boxes being much smaller than expected. This was
rather surprising since the immunoglobulin domain was considered
to be mobile and its bounding introns to have phase 1–1, which is
the characteristic of mobile domains (Kolkman and Stemmer, 2001).
Upon further investigation, we noticed that the Pfam definition of Ig
domain was actually 8–20 amino acids shorter than its counterpart
domain definition from the SMART database. Owing to this reason,
the amino acid positions immediately outside the Ig domain border
boxes as defined by Pfam were actually right inside the domain bor-
der boxes as defined by SMART. This indicates a preference for the
SMART domain definition because we consistently observed lower
numbers of exon borders inside Pfam-specific Ig domain border
boxes (Fig. 2A) than expected.

When we switched to using SMART domain definition for Ig
domains, we discovered that the two most prevalent Ig-related
domains in SMART, IGc1 and IG, were ranked #2 and #7, respect-
ively, out of all human mobile domains, with both having positive
correlation with exons in contrast to the results obtained from Pfam’s
Ig domain definition. This contrast is even more obvious on the cor-
relation graph for these domains (Fig. 2A). SMART’s IG definition
produced perfect correlation with exons with the peak correlation
position at −1, the first amino acid outside the domain. IGc1 also has
a strong positive correlation peak outside the domain, while Pfam’s
Ig domain showed a negative correlation with exon border at every
position in the domain border box, both inside and outside of the
domain borders.

In addition, if we separate statistics collected from the domain
border boxes at the start and at the end of domains, we could pro-
duce a correlation graph that gives us information on where the exon
borders preferentially fall at the start and end of domains (data not
shown). Interestingly, SMART IG domain has a few peaks from posi-
tions −10 to −6 amino acids outside starting position of IG domain,
and has a major peak at the first amino acid outside the ending posi-
tion of the domain. This suggests that the exons correlate with the
actual IG domain quite well and that additional analysis of residue
conservation between positions −10 and −1 preceding the IG might
further improve the domain annotation.

Another interesting example is the FA58C (F5/8 type C) domain
present in blood coagulation factors that is thought to be involved in
cell adhesion. Our study identified FA58C as a mobile domain that
correlates with multiple exons and displays a very strong preference
for phase 1–1 introns. The majority of the exon borders inside the
two domain border boxes for FA58C fall onto positions −3 to −8,
somewhat distant to the domain borders. We investigated the proper-
ties of this domain and found that its Pfam prediction of FA58C
could be improved by taking into account the exon border posi-
tions. In the illustrated example (Fig. 2B), the DDR2 protein contains

Pfam-annotated FA58C domain at the N-terminus (amino acids 33–
182). However, the highly conserved cystein residues at both ends of
the domain that form a disulfide bond were actually at positions 30
and 185, both excluded by the HmmPfam prediction yet right inside
the exon borders at both ends of FA58C domain. We also found that
the domain annotation by pfscan program using Prosite profile is
closer to the exon borders and it included the two cystein residues.

From these examples, it is apparent that at least for identified
mobile domains, exon borders could in some cases serve as indicators
of domain coordinates to improve (or choose between) predictions
of computational tools. In fact, presence of exon borders in the
vicinity of domain borders may potentially be used prediction tools
themselves.
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