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ABSTRACT 1 INTRODUCTION i
Motivation: In our previous approach, we proposed a hybrid — protein secondary structure prediction is to predict protein second- 3
method for protein secondary structure prediction called HYPROSP, ary structure based only on its sequence, where each amino acids
which combined our proposed knowledge-based prediction algorithm is assigned a structure state, helix (H), strand (E) or coil (C). Pro- g

PROSP and PSIPRED. The knowledge base constructed for PROSP
contains small peptides together with their secondary structural
information. The hybrid strategy of HYPROSP uses a global quantitat-
ive measure, match rate, to determine whether PROSP or PSIPRED
is to be used for the prediction of a target protein. HYPROSP made
slight improvement of Q3 over PSIPRED because PROSP predicted
well for proteins with match rate >80%. As the portion of proteins with
match rate >80% is quite small and as the performance of PSIPRED
also improves, the advantage of HYPROSP is diluted. To overcome
this limitation and further improve the hybrid prediction method, we
present in this paper a new hybrid strategy HYPROSP Il that is based
on a new guantitative measure called local match rate.

Results: Local match rate indicates the amount of structural informa-
tion that each amino acid can extract from the knowledge base. With
the local match rate, we are able to define a confidence level of
the PROSP prediction results for each amino acid. Our new hybrid
approach, HYPROSP I, is proposed as follows: for each amino acid
in a target protein, we combine the prediction results of PROSP and
PSIPRED using a hybrid function defined on their respective confid-
ence levels. Two datasets in nrDSSP and EVA are used to perform a
10-fold cross validation. The average Q3 of HYPROSP Il is 81.8%
and 80.7% on nrDSSP and EVA datasets, respectively, which is
2.0% and 1.1% better than that of PSIPRED. For local structures
with match rate >80%, the average Qs improvement is 4.4% on the
nrDSSP dataset. The use of local match rate improves the accur-
acy better than global match rate. There has been a long history
of attempts to improve secondary structure prediction. We believe
that HYPROSP Il has greatly utilized the power of peptide know-
ledge base and raised the prediction accuracy to a new high. The
method we developed in this paper could have a profound effect on
the general use of knowledge base techniques for various prediction
algorithms.

Availability:  The Linux executable file of HYPROSP II, as well
as both nrDSSP and EVA datasets can be downloaded from
http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/

Contact: hsu@iis.sinica.edu.tw
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tein secondary structure prediction plays an important role in tertiary S
structure prediction as it can be used to generate templates for tertiaryg'
structure predictions. Fischer and Eisenberg (1996) improved the ter-S
tiary structure prediction accuracy from 59.0 to 71.0% by using PHD
to predict secondary structures. In Yang and Wang'’s paper (2003), 3
the tertiary structure prediction accuracy was reduced from 79.0 to
71.9% after switching off the secondary structure prediction in the
prediction procedure. McGuffin and Jones (2003) reported that the 3
predicted secondary structure information definitely contributesto a =
better performance for tertiary structure prediction.
For a better prediction of secondary structure, Rost and Sanderz:
proposed a novel prediction method PHD, which uses evolution-
ary information and has gained significant improvements (Rost and =
Sander, 1993, 1994; Rost, 2001). Jones (1999) improved the predic-2
tion by using PSI-BLAST searches over large databases to obtain3
better evolutionary information. These two prevailing methods are >
based on the neural network approach and can achieve an accureﬁ
acy of ~80%. The advantage of the neural network approach is J
that evolutionary information, amino acid and structure propensit- &
ies as well as global sequence compositions can all be taken into@
account. A drawback of this approach is that, it is unclear how the &
additional evolutionary information affects the prediction accuracy. S
The inside of neural network algorithms is hard to understand and to 3
translate into useful knowledge. Machine learning approaches other§
than the neural network are also used for secondary structure pre-g
diction (Hua and Sun, 2001; Kim and Park, 2003), and they have N
different limitations. N
As local structural libraries are frequently encoded in short seg-
ments of protein sequences (Aétral., 2002; Yang and Wang, 2003),
another line of prediction approach is to use local structure-based
sequence databases. This motivated us to design a knowledge-
based prediction algorithm PROSP (Wi al., 2004), which
uses a peptide sequence-structure knowledge base and a voting
scheme for prediction. In order to combine the strength of machine
learning approaches, we proposed a hybrid prediction method
called HYPROSP (Wt al., 2004), which combines PROSP and
PSIPRED. We used a quantitative measure called match rate to
determine whether PROSP or PSIPRED should be used to predict the

[e}o)

/

10JUI0Iq

Z2/a|olle/sane

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

3227


http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/

H.-N.Lin et al.

gi|2622094 (AEODO0872) conserved protein [Mechanobacterium thermoautotrophicum]
Length = 143

Score = §94.7 bits (206), ExXpect = 4e-16

Identities = 56/156 (35%), Positives = 81/156 (51%), Gaps = 16/156 (10%)
Query: 4 MYKKILYPTDFSETAEIALKHVEAFKTLKAEEVILLHVIDEREIKKRDIFSLLLGVAGLN 63
MY KIL PTD S+ A & +H E+I L V++ S L+4G+
Sbjct: 1 HYSKILLPTDGSKOQANKAAEHAIVIARESGAEIIALTVHET-——====—~ SSLVGLPA-- 49

Query: 64 KSVEEFENELENKLTEEAKNEKHMHENIKKELEDVGFRKVEDIIVV--GIPHEEIVKIAEDEGV 121
++ L+ L EEA +E +KK +E+ G +K + G P E I++ E EGV
Sbjct: 50 ---DDLIIRLREMLEEEASRSLEAVEKLVEESGADIEKLTVRTDEGSPAEAILRTVEKEGV 106

Query: 122 DIIIHGSHGKTNLEEILLGSVTENVIKESNEKPVLVV 157
D+++HMG+ GK L LLGSV E V++ + PVLVV
Shijct: 107 DLVVHMGTSGKHGLDRFLLGSVAEKVVRSAGCPVLVVY 142

peojumo(

Fig. 1. An example of HSP found by PSI-BLAST. The first peptide pairs as marked by the box are similar, and we assign the secondary structure elemgnt of
each amino acid in MYKKILY to its counterpart in MYSKILL.
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structure of atarget protein (i.e. a protein whose structure is unknowmethods use the PSSM profile as the source of evolutionary information. Since_g
and targeted for prediction). The match rate defined in HYPROSRve assume that the counterpart sequence (denoted by ‘Sbjct’ in the PS5
(referred to as the global match rate in this paper) is a global mead®3LAST output) in an HSP has a similar structure to the input sequence
ure for the amount of structural information that a target protein carfdenoted by ‘Query’ in the PSI-BLAST output) we use the HSPs instead, @
extract from the knowledge base. Our experiments show that th@(h":h provide explicit information of sequence variations. Peptides in HSPs =

L . L L ._will be chosen according to a similarity criterion (explained later) to be ©
prediction accuracy of PROSP has a significant positive correlatlori1nCIu ded in the knowledge base 5
with the global match rate. The hybrid strategy of HYPROSP is as : 9

. . 0 To construct the peptide sequence-structure knowledge base (SSKB), W%
follows: if the global match rate of a target protein is at least 80%, 4 proteins of a structure database and select those proteins-26% 3

we use PROSP to predict the protein; otherwise, we use PSIPREDsequence identity among each other. PSI-BLAST is used to search homologS.
HYPROSP made a slight improvement of [e. the average of  ous proteins from a sequence database of each protein, where the parametér
Qs(p)] over PSIPRED in several datasets. However, there are twg is 3 (three iterations), is 10 (E-value < 10) and the sequence database is
limitations. First, the proportion of proteins with global match rate NCBI nr. If the input protein (Query) has homologous proteins, PSI-BLAST
>80%is often notlarge enough, so the improvement could be dilutedwill return a number of HSPs. An example of an HSP is shown in Figure 1,
Second, as the prediction accuracy, @ PSIPRED has also been yvhere the homologous protein (Sbjct) i$2§22094 and the alignment score
improved from 76% as reported in EVA web site to 79% using version'> 84.7. o ) ) )
2.45 on the nrDSSP dataset, the marginal advantage of HYPRO%PGNen an HSP, we choose ‘similar’ peptides to be included in the know-

N edge base as follows. Use a sliding window of lengtfwherew is chosen
becomes small. To reduce the effect of these two limitations, qu be 7 according to our previous work on HYPROSP) in HSPs to define

introduce two new concepts: (1) we consider a new quantitative,eige segments (in short, peptides). Define the similarity level between two
measure called local match rate as opposed to the global match raigrresponding peptides in an HSP as the number of exact matches and po
defined in HYPROSP; (2) we propose a new hybrid strategy callegive signs in the aligned amino acids. Two peptides are considered similar
HYPROSP Il, which combines the results of PROSP and PSIPRELF the similarity level between those two peptides is at l¢astis chosen to

based on their confidence levels. This new method achieves mudfe 3 by Wuet al. (2004). For example, the two peptides in the box shown in &
better Q than both HYPROSP and PSIPRED. TheddHYPROSP Figure 1 have the similarity level 5 and are considered similar. If two peptides ©

Il on the NrDSSP and EVA datasets are 2.0% and 1.1% better tha@€ Similar, the peptide in Sbjct would inherit the structure of its counterpart 3
that of PSIPRED, respectively. in Query. Note that if two similar peptides contain one or more gaps, then o

they are discarded. Besides the sequence and structural information, theiﬁ)
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amino acid) with a confidence scaf¢ép rqs) = (t x5)/7, wherer (>2) isthe
knOWIGdge base (SSK B) similarity level betweerp ; andg s ands is the alignment score. Intuitively,
Our knowledge base is constructed from a structure database, e.g. DS3&gert ands generate a larger confidence sc6t@ rq ). Finally, for each
that contains peptide sequences and their structural information. The successchg ¢, we store the recordgyf, structure op ¢, S(prq )] in SSKB.
of knowledge-based prediction approaches depends heavily on the size of When adding a new peptide to the knowledge base, if an identical peptide is
the knowledge base. In order to amplify the knowledge base, we use PSfeund, we simply add the new confidence score to the corresponding structure
BLAST (Altschul et al., 1997) to find in a chosen sequence database (e.gof each amino acid in the peptide record regardless of whether their structural
NCBI nr) proteins remotely homologous to those in a structure databaséformation is identical or not. Table 1 illustrates an example of a peptide
so that peptides of these remotely homologous proteins would inherit theecord, where the peptide MYSKILL is added into the knowledge base twice
structures of their counterparts in the structure database. (note that only MYKKILY is illustrated in Figure 1) since it is similar to
Taking a protein sequence as input, PSI-BLAST can generate a large nunipoth MYKKILY and MYSSIIL and inherits their structures. To determine
ber of significant local pairwise alignments called high-scoring segment pairthe representative structure of a peptide record, we choose the structure type
(HSPs) between the input protein and homologous proteins, as well as a profil@ith maximum score at each position. The representative structure of this
called position-specific scoring matri$3M). Most structure prediction example is ‘CCHHHHC'. After all HSPs of known structure proteins are

confidence score will also be stored in the knowledge base. The confidenceg

2 METHODS score is defined as follows: Lty andg, denote a pair of similar peptides,
2.1 Constructing apeptldesequmcestructure wherep s isin Query and; ; is in Sbjct. We assign the structure op s (per z
o

N

N
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Table 1. Example of a peptide record denoted by ; andq s, wherep  is a peptide in the target protejn Let O ¢
be the collection of all thosg's. Note that not ally ;'s are in SSKB. The
global match rate of the target proteiris defined as follows:

Peptide Alignment Similarity Confidence Structure A SSKB
score level score Global match rate= 197 NSSKB| x 100%
1 Of |
A The global match rate represents the percentage of peptides of the target pro-
MYKKILY 85 5 60.7 CCHHHHC tein that can find similar peptides in the knowledge base. Intuitively, when the
MYSSIIL 76 4 43.4 HHHCCCC global match rate is higher, the structural information obtained for prediction
is more reliable. HYPROSP uses PROSP to predict proteins whose global
) N :
Peptide fragment M v s K | L L match rate is at least 80% and relies on PSIPRED for tk@¥%. However,

it is relatively hard for target proteins to attain a global match re88%
when the knowledge base is not big enough.

@)

B To improve HYPROSP and to further utilize the knowledge in SSKB, we %

H 434 434 1041 60.7 607 60.7 0.0 consider anew guantitative measure called local match rate, which is defined g

E 00 00 060 00 00 00 0.0 on each position of the target proteinp. Let Qs (x) be the collection of all 2

c 60.7  60.7 00 434 434 434 1041 gimjlar peptidegs s containing the position. We define the local match rate 2

as follows: 3

(A) Two p_eptides with known ;tructure that are similar to the peptide MYSKILL. | Of (x) N SSKB] 3

(B) A peptide record MYSKILL in the knowledge base constructed from MYKKILY Local match ratex) = ————— x 100% =

and MYSSIIL. Each record stores the confidence scores of three secondary structure | Q¢ ()] ﬁ
states at each position. The local match rate can be regarded as the confidence level of using PROS

to predict the structure at positian Note that we can have high local match
scanned, we can generate tens of millions diverse peptide records with theif{€S at many positions even though the global match rate is low.

structural information in the SSKB. 24 HYPROSP II: ahybrid method based on
2.2 PROSP: a structure prediction method based on local prediction confidence

the SSKB InHYPROSP (Wietal., 2004), the hybrid strategy is to use either the result of
The construction of our secondary structure prediction procedurePROSP or that of PSIPRED for prediction. In contrast, HYPROSP Il predicts

PROSP (Wt al., 2004), consists of three parts: the structure at each position by combining the results of these two methods. 5
Given atarget proteip, we can obtain two prediction results by PROSP and
(1) Construct the knowledge base SSKB; PSIPRED. The source code of PSIPRED was modified to report not only
(2) Use PSI-BLAST to find all peptides similar to those of the target the prediction result but also three confidence valpsisf (x), psi_e(x) and

protein; psi_c(x). For each amino acid at locatianof p, the confidence of PROSP
(3) Use similar peptides found in the SSKB to vote for the dominant is defined as follows:
structure of each amino acid in the target protein. b Local match ratér) x H (x)
To predict the secondary structure of a target progeiwe first use PSI- pro_h(x) = H(x) + E(x) + C(x)
BLAST to find all HSPs. The parameters and the sequence database used in Local match ratéer) x E(x)
PSI-BLAST are the same as those used in the construction of SSKB. For each pro_e(x) = HO+E® +C0)
HSP, we use a sliding window of length 7 to divide the aligned sequences into
peptides. Define the similarity level between two peptides the same way as pro_c(x) = Local match rater) x C(x)

before. Each amino acid at positierof p is associated with three variables: H(x) + E(x) +Cx)

H(x), E(x) andC (x), which are the confidence levels corresponding to the And the final predicted structure at positiefis determined by the following
three secondary structure elements, H, E and C, respectively. The structuretfbrid function callechyprosp_I1(x):

x is predicted to be H, E or C dependingldrax{ H (x), E(x), C(x)}. We use

similar peptides obtained from HSPs to calculBter), E(x) andC (x). Let H if pro_h(x) + psi_h(x) is max;
pr andqg ; be a pair of similar peptides with a similarity leveand alignment hyprosp_llI(x) = { E  if pro_e(x) + psi_e(x) is max;
scores in an HSP, wherey is a peptide in the target protejnandg is a C if pro_c(x) + psi_c(x) is max.

peptide of a sequence in the NCBI nr databasg Iis not in SSKB, then it
is ignored. Otherwise, all structural information contained jris added to In case the sums of these three structure states are equal, the selection priori
pr,and is updated will be C followed by H and thenE, which is based on their occurrence

’ frequencies in the structure database.

20z USIep 0Z U0 158nb AQ 22/561/222€/S1/12/910IHE/SONEWIONUIOIG /W00 dNO"0IWepEoEY)

H(psliD) < H(pslil) + H(qylil) x s x t/7,
E(psli]) < E(ps[D) + E(qr[iD x s x 1/7, 3 IMPLEMENTATION

C(pylil) < C(psliD) + Clgslil) x s x 1/7, HYPROSP llis developed under Linux Redhat 9.0; itis implemented
wherep[i] andq [i] for 1 < i <7 denote the-th position ofp andq, as a G-+ MPI appllcanon suit thatrunsonaPC clusterpf 13 nodes_;
respectively. Repeat the above calculation for all similar peptides containin@@Ch node contains a Pentium-4 Xeon 2.8 GHz CPU with 2 GB main

positionx and assign the structureaaccording tvl ax{ H (x), E (x), C(x)}. memory and a 30 GB hard disk.

2.3 Two match rates 3.1 Datasets

In this section, we define the global match rate for a target protein and thd WO datasets are used to evaluate HYPROSP II. We download 25 288
local match rate for a residue in a target protein. Given a target prptein proteins from the DSSP database (dated September 22, 2004), and
we obtain all of its similar peptides using HSP. A pair of similar peptides is Separate these proteins into 46 745 protein chains. Each protein chain
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is then checked to find out whether it has homologous protein chains

or not by PSI-BLAST and pairwise sequence alignment. If homo- 3¢ |
logous protein chains with sequence identit®5% are found, only 84 r .
one of them is retained. Moreover, we filter out protein chains of g |

length <80. At the end, we have a non-redundant DSSP dataset, 5g |, ._a--—A-&—-&- -4

called nrDSSP, that contains 3925 unique protein chains @a&Po T | e
mutual sequence identity). © o

Another dataset, EVA, containing 2217 protein chains is down- e . [EpT——
loaded from the EVA server http://cubic.bioc.columbia.edu/eva/ 7 | o .#-PROSP
doc/ftp.html, which has long been regarded as a benchmark to evalu- 72 1 . --&-- PSIPRED
ate protein secondary structure algorithms. The original EVA dataset 7o L*""" A
contains 3107 protein chains (latest list: 2004/05/09); however, only =0 =10 =20 =30 =40 =50 =60 =70 =80 =90
2217 of them can be identified among 46 745 protein chains in the Global Match Rate (%)

DSSP database. The ‘EVA dataset’ mentioned in the rest of the paper

refers to these 2217 protein chains. . .
. g. 2. Qz of HYPROSP II, PROSP and PSIPRED with respect to global

The DSSP dataset has eight structure_ states, H, I, G, E, B’ S, atch rate on the nrDSSP dataset. Note that the prediction accuracy ofg‘
and -’ (blank). We follow EVA's convention to reduce them into vprosp can be easily derived from the figure: Its i§ the same as
three states: H, G, | to H; E, B to E; and other states to C. Theps|PRED if target proteins have global match rag9%; on the other hand,
proportions of the three structural states, H, E and C are 36.36, 22.2f Q; is the same as PROSP if target proteins have global match rate of a
and 41.43%, respectively, in the nrDSSP dataset, and 36.28, 22.18ast 80%.
41.53%, respectively, in the EVA dataset.

papeojumoq
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. _ (67%) with an average improvement of 3.6%. HYPROSP Il is inferior
3.2 Experiment design to PSIPRED in 928 protein chains (24%) with an average reduction &

We use nrDSSP and EVA datasets to test the performance dif 1.7%. And the remaining 363 proteins chains (9%) have the sames

wepeoe//

HYPROSP II. All experiments are performed in a 10-fold crossaccuracies for both methods. 3
validation. In a 1Q fold cross validation, we_ divide the dataset_ |nto3_4 Experimental results on the EVA dataset 5
10 subsets in which one of the 10 subsets is used as the testing set, . ] <)
the other 9 subsets are pooled together to form the training set, afd9ure 3 shows the experimental results using the EVA dataset. Notes,

the procedure is repeated 10 times for each subset to be chosen as {i@t the @ marked at global match ratek% represents the
testing set in turn. For each chosen testing set, the knowledge baf@y Proteins with global match rate at least. Because the size
SSKB is reconstructed from proteins in the corresponding training®’ SSKB constructed from the training set of the EVA dataset is

set. The knowledge bases generated by using nrDSSP and EVA dafRuch less than that constructed from the nrDSSP dataset (31 342 754

sets contain in average 48 298 002 and 31 342 754 peptide recordE"sus 48298002), the averagg i@provement of HYPROSP I

respectively. We use £and SOV (Segment OVerlap measure) to V€T PSIPRED for all proteins is only 1.1%. Nonetheless, the aver-
evaluate the performance of different prediction methods. age improvement Qover PSIPRED is 4.0% for proteins with the
Finally, we download the latest three months of prOtEinSgIObal match rate of at least 80%. And at global match rate 80%,

(September 2004-November 2004) from EVA server (iolal. PROSP turns better than PSIPRED. It means that even though th

2003) as testing dataset and use the nrDSSP dataset as training d&i4€ 0f SSKB constructed from the EVA dataset is not big enough, (¢

set to evaluate the performance of HYPROSP Il and compare witkhe prediction accuracy for those proteins with global match rates of J
other methods. at least 80% is still satisfactory. The averagea@d SOV scores of

HYPROSP, HYPROSP Il and PSIPRED are listed in Table 2.

33 Bxperimental results on the nrDSSP dataset 3.5 Experimental results on the new EVA dataset

The prediction accuracy Lusing nrDSSP dataset with respect to . . .
the global match rate for HYPROSP Il, PROSP and PSIPRED iSThere are 27 testing proteins obtained from the latest three monthsg,

(]
shown in Figure 2. Note that, the accuracysbown at global match ?onr thr(:: dE'(\;ﬁlsetLv:; t:Nst ursee;?tehggle?;eqrz?;asigtsoecsoenstguncctesligr%
rate >k% represents the £of proteins with global match rates at predicting uctu proteins w qu ! 3

o 0 ;
leastk%. For example, we can find from Figure 2 that theadall tities are all<25% against the nrDSSP dataset. The average globalg

o 0
proteins (i.e. global match rate at least 0%) in the nrDSSP dataset aWeatCh rate of these proteins is only 24.7%, where the largest oneg

=
81.8, 70.6 and 79.9% using HYPROSP II, PROSP and PSIPREDS < /2% The average Qand SOV scores are 77.5 and 74.3%.

. g . - The average @improvement of HYPROSP Il over PSIPRED is
0
respectively, and 85.2, 81.5 and 81.2% for prediction of proteins Wlth>2.l%. Table 3 shows the comparisons of @d SOV scores of

0 " .
e e 2 DL FYPROSP I PSIPRED, PROFec, HDpS (P nd s,
2002), SABLE2 (Porollaet al., 2003) and PROF_king (Ouali and

match rate. Note thatthere is amonotone positive correlation between: .
prediction accuracy of PROSP and the global match rateefvél, eISQgDR(Z)OSOF()))” :]Z'g]sfggégported on the EVA server except for

2004). The average{and SOV scores of HYPROSP, HYPROSP |l
and PSIPRED are listed in Table 2.

To further compare HYPROSP Il and PSIPRED, we examine th¢t DISCUSSION
prediction accuracies of 3925 protein chains in the nrDSSP dataFhere are two factors affecting the performance of HYPROSP I,
set. Among them, HYPROSP Il surpasses PSIPRED in 2634 chainghich are discussed in this section.

2Z¢/S /1 Z/810H¥e/SolewIO,
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Table 2. The average @and SOV scores of HYPROSP, HYPROSP Il and PSIPRED on nrDSSP and EVA datasets

Q3 QzH_O QH_P QE_O QE_P QC O QC P Sov SOVH SOVE SovC
A. nrDSSP dataset
HYPROSP I 81.8 81.2 80.9 71.9 78.9 80.0 79.4 78.1 80.8 76.7 73.4
Errsig 0.1 0.3 0.3 0.4 0.3 0.2 0.2 0.2 0.3 0.4 0.2
HYPROSP 80.0 79.6 79.3 72.2 73.6 76.7 78.3 76.4 79.4 76.2 70.8
Errsig 0.1 0.4 0.3 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.2
PSIPRED 79.9 78.4 80.6 70.4 73.4 77.2 78.0 76.9 78.5 74.8 71.9
Errsig 0.1 0.4 0.3 0.4 0.3 0.2 0.1 0.2 0.4 0.4 0.2
B. EVA dataset
HYPROSP I 80.8 79.8 80.0 69.1 76.6 79.5 78.5 77.0 79.5 74.2 72.7
Errsig 0.2 0.5 0.4 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.3
HYPROSP 79.8 78.3 80.1 70.6 72.7 77.0 78.2 76.6 78.6 74.7 71.6
Errsig 0.2 0.5 0.4 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.3
PSIPRED 79.8 77.8 80.6 70.2 72.8 77.2 78.1 76.9 78.1 74.5 72.2
Errsig 0.2 0.5 0.4 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.3

Errsig is the significant difference margin for each score and is defined as the standard dev)aticer the square root of the number of proteig&\). QsH/E/C and SOVH/E/C
values are the specific@nd SOV scores of the predicted helix, strand and coil regions, respectiyely@(QE_O and QC_O, respectively) represents correctly predicted helix
(strand and coil, respectively) residues (percentage of helix observed)sehdQQE_P and QC_P, respectively) represents correctly predicted helix (strand and coil, respectively)
residues (percentage of helix predicted).

with known structures increases in the future, the knowledge base
will be increased, and so will the prediction accuracies of PROSP

85 and HYPROSP II.

4.2 Evaluation of the hybrid function

The performance of a hybrid prediction approach depends on the =

L underlying prediction methods and the hybrid function. In this sec-

o tion, we analyze our hybrid strategy and introduce a measure called =

g —=— HYPROSP II hybrid precision to analyze its performance; we use experimental

@ PROSP results on the nrDSSP dataset for discussion.

L® ~~A-- PSIPRED For each position in a target proteirp, let prosp(x), psipred(x)

65 — ' ' ' ' ' ' ' ' : and hyprosp_ll(x) denote the prediction results af by PROSP,

: =10 =20 =30 =40 =50 =60 =70 =80 =90 PSIPRED and HYPROSP I, respectively. (Recall thygrosp Il (x)
Global Match Rate (%) is defined in Section 2.4.) We first consider the case whresp(x) =

psipred(x). Note thaprosp(x) = psipred(x) implieshyprosp_II(x) =
Fig. 3. The Q of HYPROSP Il, PROSP and PSIPRED with respect to global prosp(x). Then all three predictions are correct or none is correct.

match rate using EVA dataset. Note that the prediction accuracy of HYPROSEXF"?“memaI results show that 71.1% of the entire dataset bt_alo_ngsc%
can also be easily derived from the figure: Itsi@the same as PSIPRED if 1o this case, and 86.7% of this case can generate correct predictionsg

target proteins have global match rat80%; on the other hand, its@s the However, 13.3% of this case cannot generate correct predictionsg

same as PROSP if target proteins have global match rate of at least 80%. which is 9.46% £13.3% x 0.711) of the entire dataset; and any
hybrid function based on PROSP and PSIPRED can hardly improve
the prediction on this part.

4.1 Theeffect of dataset size on the performance Now we consider the remaining case whemesp(X) # psipred(x).

To analyze the effect of dataset size on the performance, we calculateY PROSP Il makes a hybrid prediction accordingnyprosp_lI (x).

the numbers of proteins with different global match rates. In Table 4The measure hybrid precision to evaluate the performance of the

we show the proportions of proteins in nrDSSP and EVA dataset§Yybrid functionhyprosp_II(x) of HYPROSP Il is defined as follows:

with respect to different global match rates. For example, the pro-

portion of proteins with global match rates at least 50% in nrDSSP  hybrid precision=

is 51.8%; namely, over half of proteins in the nrDSSP dataset have

global match rates at least 50%. At the same threshold of global

match rate, however, the proportion of proteins in the EVA dataset is

only 24.5%. The size of SSKB affects the proportion of proteins at x 100%

different global match rates. Intuitively, the more peptides contained

in the knowledge base, the more proteins obtain higher global matcHybrid precision indicates the proportion of the data in this case that

rates, and we get better prediction accuracy. If the number of proteinsan generate correct prediction in spite of the underlying prediction

80

Q3 (%)

70

IV
)
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number of residues correctly assignedhyprosp_II(x)
number of cases, whepeosp(x) # psipred(x)
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Table 3. The average @and SOV scores of the latest 27 testing proteins from the EVA server by different methods

Qs QH_ O QH_P QE O QE_P QC O QC_P sov SOVH SOVE sovc
HYPROSP II 775 738 75.3 58.7 64.7 81.6 77.7 743 79.3 65.1 745
Errsig 2.2 5.7 6.0 7.5 6.3 2.7 2.6 3.2 5.5 6.4 3.0
PSIPRED 75.4 71.9 71.2 61.3 57.3 76.7 78.4 72.4 73.2 66.2 72.0
Errsig 2.3 6.5 6.3 7.4 7.0 3.0 2.4 3.2 6.3 6.7 2.9
PROFsec 74.4 63.5 67.1 48.4 46.4 76.8 74.0 72.0 79.7 69.1 69.9
Errsig 2.1 6.0 6.4 7.0 7.0 2.5 2.2 3.6 47 5.8 3.7
PHDpsi 73.9 69.7 66.0 43.1 432 747 75.0 70.6 83.0 62.0 68.8
Errsig 2.4 6.2 6.1 6.7 7.1 3.1 2.3 3.6 46 6.1 3.7
SABLE2 734 64.5 70.6 44.7 45.1 76.1 74.2 69.5 78.0 63.4 69.2
Errsig 2.3 6.2 6.3 6.9 7.2 2.8 2.7 3.4 43 6.4 3.3
PROF_king 72.0 57.0 68.7 422 38.1 78.0 70.8 67.1 70.5 61.3 65.8
Errsig 2.1 6.0 6.6 7.5 7.2 2.4 3.1 3.3 5.7 7.1 3.5

95

Table 4. The proportions of proteins in NrDSSP and EVA datasets with
respect to different global match rates

90
s

(%) nrDSSP (%) EVA (%) S s /
7

>0 100.0 100.0 a 80

>10 97.7 68.6 %

>20 78.5 38.7 75

>30 64.5 33.7

>40 57.7 28.8 0

>50 51.8 245 o o o " "

>60 455 20.2 _ N

>70 38.1 15.1 Hybrid Precision (%)

>80 27.3 9.7

>90 12.3 4.9 Fig. 4. The cubic regression line shows the relationship betwegrofQ

HYPROSP Il and hybrid precision.

Z2€/S L/ 1Z/3191e/So1ewIolulolq/woo dno olwapeoe//:sdiy Woll papeojumo(]

5 CONCLUSIONS

Table 5. Prediction results of the case whepeosp(x) # psipred(x) on For atarget protein, our previous approach, HYPROSP, selects eitherz
nrDSSP PROSP or PSIPRED to predict its secondary structure; the selectionﬁ
is based on a global match rate with a cutoff threshold at 80%. How- 3
ever, such a hybrid approach cannot benefit those target proteing
with <80% global match rate. In this paper, we define a new local €
guantitative measure, local match rate, to further utilize the useful 3
information provided by both PROSP and PSIPRED. According to S

A

Proportion in the Hybrid precision
entire dataset (%) (%)

Eith ipred 26.4 73.3 . - .
Iisirgrr;sg(x) or psipred() local match rate, we can define a prediction confidence level for 3
Neitherprosp(x) nor 25 5.9 each amino acid by each method, which can be used by HYPROSPFs
psipred(x) is correct Il to combine the prediction results of PROSP and PSIPRED effect- 5

ively. When compared with PSIPRED, they @f HYPROSP Il is
2.0% better than that of PSIPRED, which is statistically significant
at p = 1.2E(—203. In contrast to HYPROSP, HYPROSP Il per-
forms better than PSIPRED even when the global match rate is zero.
methods generating inconsistent predictions. Table 5 shows th€his is a great advantage over HYPROSP since the proportion of tar-
prediction results on the nrDSSP dataset. get proteins with global match rates of at least 80% could be limited.
The hybrid precision reflects the performance of the hybrid func-Even if there is no testing protein with global match rat0% in
tion. When one of the underlying prediction methods can generatéhe new EVA dataset, the average i@provement of HYPROSP |l
correct prediction, the accuracy of our hybrid functigprosp_I1(x) still achieves 2.1% against PSIPRED.
is 73.3%. It shows the advantage of our hybrid function. In Figure 4 HYPROSP and HYPROSP Il are hybrid prediction methods
we illustrate the cubic regression analysis of the relationship betweebased on PROSP and PSIPRED. The performances of these hybrid
Qs of HYPROSP Il and hybrid precision. Itis clear that higher hybrid prediction approaches rely largely on the underlying prediction
precision gets better £ methods and the hybrid function. We introduce a measure hybrid

o

=
N
o
N
~
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precision to evaluate the performance of the hybrid function wherFischer,D. and Eisenberg,D. (1996) Protein fold recognition using sequence-derived

the underlying prediction methods generate inconsistent predictions. predictionsProtein ., 5, 947-955.

When PROSP and PSIPRED generate inconsistent predictions aﬁﬁu,D.F.,Shapiro,J.and Taksa,l. (2002) Methods of data fusion in information retrieval:
f th dicti . oS h .. rank vs. score combinatioBIMACS Technical Report 58.

one of t e pre ICIIOF?S IS cqrrect, HYPR P Il has a p_l’eCISIOI’l Ohua,S.J.and Sun,Z.R. (2001) A novel method of protein secondary structure prediction

73.3% using the hybrid functidnyprosp_II (x). A better hybrid func- with high segment overlap measure: Support vector machine apptoadt. Biol.,

tion is desirable to enhance the hybrid precision. However, when 308, 397-407.

neither PROSP nor PSIPRED generates a correct prediction thtenes,D.T. (1999) Protein secondary structure prediction based on position-specific

. . . . scoring matrices). Mol. Biol., 292, 195-202.
hybl’ld approach can hardly Improve the performance’ in which CasEim,H. and Park,H. (2003) Protein secondary structure prediction by support vector

a different strategy Is necessary. machines and position-specific scoring matrié&stein Eng., 16, 553-560.
Koh,.Y.Y. et al. (2003) EVA: evaluation of protein structure prediction servidiigleic
Acids Res,, 31, 3311-3315.
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