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ABSTRACT
Motivation: In our previous approach, we proposed a hybrid
method for protein secondary structure prediction called HYPROSP,
which combined our proposed knowledge-based prediction algorithm
PROSP and PSIPRED. The knowledge base constructed for PROSP
contains small peptides together with their secondary structural
information. The hybrid strategy of HYPROSP uses a global quantitat-
ive measure, match rate, to determine whether PROSP or PSIPRED
is to be used for the prediction of a target protein. HYPROSP made
slight improvement of Q3 over PSIPRED because PROSP predicted
well for proteins with match rate >80%. As the portion of proteins with
match rate >80% is quite small and as the performance of PSIPRED
also improves, the advantage of HYPROSP is diluted. To overcome
this limitation and further improve the hybrid prediction method, we
present in this paper a new hybrid strategy HYPROSP II that is based
on a new quantitative measure called local match rate.
Results: Local match rate indicates the amount of structural informa-
tion that each amino acid can extract from the knowledge base. With
the local match rate, we are able to define a confidence level of
the PROSP prediction results for each amino acid. Our new hybrid
approach, HYPROSP II, is proposed as follows: for each amino acid
in a target protein, we combine the prediction results of PROSP and
PSIPRED using a hybrid function defined on their respective confid-
ence levels. Two datasets in nrDSSP and EVA are used to perform a
10-fold cross validation. The average Q3 of HYPROSP II is 81.8%
and 80.7% on nrDSSP and EVA datasets, respectively, which is
2.0% and 1.1% better than that of PSIPRED. For local structures
with match rate >80%, the average Q3 improvement is 4.4% on the
nrDSSP dataset. The use of local match rate improves the accur-
acy better than global match rate. There has been a long history
of attempts to improve secondary structure prediction. We believe
that HYPROSP II has greatly utilized the power of peptide know-
ledge base and raised the prediction accuracy to a new high. The
method we developed in this paper could have a profound effect on
the general use of knowledge base techniques for various prediction
algorithms.
Availability: The Linux executable file of HYPROSP II, as well
as both nrDSSP and EVA datasets can be downloaded from
http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/
Contact: hsu@iis.sinica.edu.tw

∗To whom correspondence should be addressed.

1 INTRODUCTION
Protein secondary structure prediction is to predict protein second-
ary structure based only on its sequence, where each amino acid
is assigned a structure state, helix (H), strand (E) or coil (C). Pro-
tein secondary structure prediction plays an important role in tertiary
structure prediction as it can be used to generate templates for tertiary
structure predictions. Fischer and Eisenberg (1996) improved the ter-
tiary structure prediction accuracy from 59.0 to 71.0% by using PHD
to predict secondary structures. In Yang and Wang’s paper (2003),
the tertiary structure prediction accuracy was reduced from 79.0 to
71.9% after switching off the secondary structure prediction in the
prediction procedure. McGuffin and Jones (2003) reported that the
predicted secondary structure information definitely contributes to a
better performance for tertiary structure prediction.

For a better prediction of secondary structure, Rost and Sander
proposed a novel prediction method PHD, which uses evolution-
ary information and has gained significant improvements (Rost and
Sander, 1993, 1994; Rost, 2001). Jones (1999) improved the predic-
tion by using PSI-BLAST searches over large databases to obtain
better evolutionary information. These two prevailing methods are
based on the neural network approach and can achieve an accur-
acy of ∼80%. The advantage of the neural network approach is
that evolutionary information, amino acid and structure propensit-
ies as well as global sequence compositions can all be taken into
account. A drawback of this approach is that, it is unclear how the
additional evolutionary information affects the prediction accuracy.
The inside of neural network algorithms is hard to understand and to
translate into useful knowledge. Machine learning approaches other
than the neural network are also used for secondary structure pre-
diction (Hua and Sun, 2001; Kim and Park, 2003), and they have
different limitations.

As local structural libraries are frequently encoded in short seg-
ments of protein sequences (Almet al., 2002; Yang and Wang, 2003),
another line of prediction approach is to use local structure-based
sequence databases. This motivated us to design a knowledge-
based prediction algorithm PROSP (Wuet al., 2004), which
uses a peptide sequence-structure knowledge base and a voting
scheme for prediction. In order to combine the strength of machine
learning approaches, we proposed a hybrid prediction method
called HYPROSP (Wuet al., 2004), which combines PROSP and
PSIPRED. We used a quantitative measure called match rate to
determine whether PROSP or PSIPRED should be used to predict the
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Fig. 1. An example of HSP found by PSI-BLAST. The first peptide pairs as marked by the box are similar, and we assign the secondary structure element of
each amino acid in MYKKILY to its counterpart in MYSKILL.

structure of a target protein (i.e. a protein whose structure is unknown
and targeted for prediction). The match rate defined in HYPROSP
(referred to as the global match rate in this paper) is a global meas-
ure for the amount of structural information that a target protein can
extract from the knowledge base. Our experiments show that the
prediction accuracy of PROSP has a significant positive correlation
with the global match rate. The hybrid strategy of HYPROSP is as
follows: if the global match rate of a target protein is at least 80%,
we use PROSP to predict the protein; otherwise, we use PSIPRED.

HYPROSP made a slight improvement of Q3 [i.e. the average of
Q3(p)] over PSIPRED in several datasets. However, there are two
limitations. First, the proportion of proteins with global match rate
>80% is often not large enough, so the improvement could be diluted.
Second, as the prediction accuracy, Q3, of PSIPRED has also been
improved from 76% as reported in EVA web site to 79% using version
2.45 on the nrDSSP dataset, the marginal advantage of HYPROSP
becomes small. To reduce the effect of these two limitations, we
introduce two new concepts: (1) we consider a new quantitative
measure called local match rate as opposed to the global match rate
defined in HYPROSP; (2) we propose a new hybrid strategy called
HYPROSP II, which combines the results of PROSP and PSIPRED
based on their confidence levels. This new method achieves much
better Q3 than both HYPROSP and PSIPRED. The Q3 of HYPROSP
II on the nrDSSP and EVA datasets are 2.0% and 1.1% better than
that of PSIPRED, respectively.

2 METHODS

2.1 Constructing a peptide sequence-structure
knowledge base (SSKB)

Our knowledge base is constructed from a structure database, e.g. DSSP,
that contains peptide sequences and their structural information. The success
of knowledge-based prediction approaches depends heavily on the size of
the knowledge base. In order to amplify the knowledge base, we use PSI-
BLAST (Altschul et al., 1997) to find in a chosen sequence database (e.g.
NCBI nr) proteins remotely homologous to those in a structure database
so that peptides of these remotely homologous proteins would inherit the
structures of their counterparts in the structure database.

Taking a protein sequence as input, PSI-BLAST can generate a large num-
ber of significant local pairwise alignments called high-scoring segment pairs
(HSPs) between the input protein and homologous proteins, as well as a profile
called position-specific scoring matrix (PSSM). Most structure prediction

methods use the PSSM profile as the source of evolutionary information. Since
we assume that the counterpart sequence (denoted by ‘Sbjct’ in the PSI-
BLAST output) in an HSP has a similar structure to the input sequence
(denoted by ‘Query’ in the PSI-BLAST output) we use the HSPs instead,
which provide explicit information of sequence variations. Peptides in HSPs
will be chosen according to a similarity criterion (explained later) to be
included in the knowledge base.

To construct the peptide sequence-structure knowledge base (SSKB), we
use proteins of a structure database and select those proteins with<25%
sequence identity among each other. PSI-BLAST is used to search homolog-
ous proteins from a sequence database of each protein, where the parameter
j is 3 (three iterations),e is 10 (E-value< 10) and the sequence database is
NCBI nr. If the input protein (Query) has homologous proteins, PSI-BLAST
will return a number of HSPs. An example of an HSP is shown in Figure 1,
where the homologous protein (Sbjct) is gi|2622094 and the alignment score
is 84.7.

Given an HSP, we choose ‘similar’ peptides to be included in the know-
ledge base as follows. Use a sliding window of lengthw (wherew is chosen
to be 7 according to our previous work on HYPROSP) in HSPs to define
peptide segments (in short, peptides). Define the similarity level between two
corresponding peptides in an HSP as the number of exact matches and pos-
itive signs in the aligned amino acids. Two peptides are considered similar
if the similarity level between those two peptides is at leastk. k is chosen to
be 3 by Wuet al. (2004). For example, the two peptides in the box shown in
Figure 1 have the similarity level 5 and are considered similar. If two peptides
are similar, the peptide in Sbjct would inherit the structure of its counterpart
in Query. Note that if two similar peptides contain one or more gaps, then
they are discarded. Besides the sequence and structural information, their
confidence score will also be stored in the knowledge base. The confidence
score is defined as follows: Letpf andqf denote a pair of similar peptides,
wherepf is in Query andqf is in Sbjct. We assignqf the structure ofpf (per
amino acid) with a confidence scoreS(pf qf ) = (t×s)/7, wheret (≥2) is the
similarity level betweenpf andqf ands is the alignment score. Intuitively,
largert ands generate a larger confidence scoreS(pf qf ). Finally, for each
suchqf , we store the record [qf , structure ofpf ,S(pf qf )] in SSKB.

When adding a new peptide to the knowledge base, if an identical peptide is
found, we simply add the new confidence score to the corresponding structure
of each amino acid in the peptide record regardless of whether their structural
information is identical or not. Table 1 illustrates an example of a peptide
record, where the peptide MYSKILL is added into the knowledge base twice
(note that only MYKKILY is illustrated in Figure 1) since it is similar to
both MYKKILY and MYSSIIL and inherits their structures. To determine
the representative structure of a peptide record, we choose the structure type
with maximum score at each position. The representative structure of this
example is ‘CCHHHHC’. After all HSPs of known structure proteins are
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Table 1. Example of a peptide record

Peptide Alignment
score

Similarity
level

Confidence
score

Structure

A
MYKKILY 85 5 60.7 CCHHHHC
MYSSIIL 76 4 43.4 HHHCCCC

Peptide fragment M Y S K I L L

B
H 43.4 43.4 104.1 60.7 60.7 60.7 0.0
E 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C 60.7 60.7 0.0 43.4 43.4 43.4 104.1

(A) Two peptides with known structure that are similar to the peptide MYSKILL.
(B) A peptide record MYSKILL in the knowledge base constructed from MYKKILY
and MYSSIIL. Each record stores the confidence scores of three secondary structure
states at each position.

scanned, we can generate tens of millions diverse peptide records with their
structural information in the SSKB.

2.2 PROSP: a structure prediction method based on
the SSKB

The construction of our secondary structure prediction procedure,
PROSP (Wuet al., 2004), consists of three parts:

(1) Construct the knowledge base SSKB;

(2) Use PSI-BLAST to find all peptides similar to those of the target
protein;

(3) Use similar peptides found in the SSKB to vote for the dominant
structure of each amino acid in the target protein.

To predict the secondary structure of a target proteinp, we first use PSI-
BLAST to find all HSPs. The parameters and the sequence database used in
PSI-BLAST are the same as those used in the construction of SSKB. For each
HSP, we use a sliding window of length 7 to divide the aligned sequences into
peptides. Define the similarity level between two peptides the same way as
before. Each amino acid at positionx of p is associated with three variables:
H(x), E(x) andC(x), which are the confidence levels corresponding to the
three secondary structure elements, H, E and C, respectively. The structure at
x is predicted to be H, E or C depending onMax{H(x),E(x),C(x)}. We use
similar peptides obtained from HSPs to calculateH(x), E(x) andC(x). Let
pf andqf be a pair of similar peptides with a similarity levelt and alignment
scores in an HSP, wherepf is a peptide in the target proteinp andqf is a
peptide of a sequence in the NCBI nr database. Ifqf is not in SSKB, then it
is ignored. Otherwise, all structural information contained inqf is added to
pf , and is updated

H(pf [i]) ← H(pf [i]) + H(qf [i]) × s × t/7,

E(pf [i]) ← E(pf [i]) + E(qf [i]) × s × t/7,

C(pf [i]) ← C(pf [i]) + C(qf [i]) × s × t/7,

wherepf [i] andqf [i] for 1 ≤ i ≤ 7 denote thei-th position ofpf andqf ,
respectively. Repeat the above calculation for all similar peptides containing
positionx and assign the structure atx according toMax{H(x),E(x), C(x)}.

2.3 Two match rates
In this section, we define the global match rate for a target protein and the
local match rate for a residue in a target protein. Given a target proteinp,
we obtain all of its similar peptides using HSP. A pair of similar peptides is

denoted bypf andqf , wherepf is a peptide in the target proteinp. LetQf

be the collection of all thoseqf ’s. Note that not allqf ’s are in SSKB. The
global match rate of the target proteinp is defined as follows:

Global match rate= | Qf ∩ SSKB |
| Qf | × 100%

The global match rate represents the percentage of peptides of the target pro-
tein that can find similar peptides in the knowledge base. Intuitively, when the
global match rate is higher, the structural information obtained for prediction
is more reliable. HYPROSP uses PROSP to predict proteins whose global
match rate is at least 80% and relies on PSIPRED for those<80%. However,
it is relatively hard for target proteins to attain a global match rate>80%
when the knowledge base is not big enough.

To improve HYPROSP and to further utilize the knowledge in SSKB, we
consider a new quantitative measure called local match rate, which is defined
on each positionx of the target proteinp. Let Qf (x) be the collection of all
similar peptidesqf ’s containing the positionx. We define the local match rate
as follows:

Local match rate(x) = |Qf (x) ∩ SSKB|
|Qf (x) | × 100%

The local match rate can be regarded as the confidence level of using PROSP
to predict the structure at positionx. Note that we can have high local match
rates at many positions even though the global match rate is low.

2.4 HYPROSP II: a hybrid method based on
local prediction confidence

In HYPROSP (Wuet al., 2004), the hybrid strategy is to use either the result of
PROSP or that of PSIPRED for prediction. In contrast, HYPROSP II predicts
the structure at each position by combining the results of these two methods.
Given a target proteinp, we can obtain two prediction results by PROSP and
PSIPRED. The source code of PSIPRED was modified to report not only
the prediction result but also three confidence values:psi_h(x), psi_e(x) and
psi_c(x). For each amino acid at locationx of p, the confidence of PROSP
is defined as follows:

pro_h(x) = Local match rate(x) × H(x)

H(x) + E(x) + C(x)

pro_e(x) = Local match rate(x) × E(x)

H(x) + E(x) + C(x)

pro_c(x) = Local match rate(x) × C(x)

H(x) + E(x) + C(x)

And the final predicted structure at positionx is determined by the following
hybrid function calledhyprosp_II(x):

hyprosp_II(x) =




H if pro_h(x) + psi_h(x) is max;

E if pro_e(x) + psi_e(x) is max;

C if pro_c(x) + psi_c(x) is max.

In case the sums of these three structure states are equal, the selection priority
will be C followed by H and thenE, which is based on their occurrence
frequencies in the structure database.

3 IMPLEMENTATION
HYPROSP II is developed under Linux Redhat 9.0; it is implemented
as a C++ MPI application suit that runs on a PC cluster of 13 nodes;
each node contains a Pentium-4 Xeon 2.8 GHz CPU with 2 GB main
memory and a 30 GB hard disk.

3.1 Datasets
Two datasets are used to evaluate HYPROSP II. We download 25 288
proteins from the DSSP database (dated September 22, 2004), and
separate these proteins into 46 745 protein chains. Each protein chain
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is then checked to find out whether it has homologous protein chains
or not by PSI-BLAST and pairwise sequence alignment. If homo-
logous protein chains with sequence identity>25% are found, only
one of them is retained. Moreover, we filter out protein chains of
length<80. At the end, we have a non-redundant DSSP dataset,
called nrDSSP, that contains 3925 unique protein chains (with<25%
mutual sequence identity).

Another dataset, EVA, containing 2217 protein chains is down-
loaded from the EVA server http://cubic.bioc.columbia.edu/eva/
doc/ftp.html, which has long been regarded as a benchmark to evalu-
ate protein secondary structure algorithms. The original EVA dataset
contains 3107 protein chains (latest list: 2004/05/09); however, only
2217 of them can be identified among 46 745 protein chains in the
DSSP database. The ‘EVA dataset’ mentioned in the rest of the paper
refers to these 2217 protein chains.

The DSSP dataset has eight structure states, H, I, G, E, B, S, T
and ‘–’ (blank). We follow EVA’s convention to reduce them into
three states: H, G, I to H; E, B to E; and other states to C. The
proportions of the three structural states, H, E and C are 36.36, 22.21
and 41.43%, respectively, in the nrDSSP dataset, and 36.28, 22.19,
41.53%, respectively, in the EVA dataset.

3.2 Experiment design
We use nrDSSP and EVA datasets to test the performance of
HYPROSP II. All experiments are performed in a 10-fold cross
validation. In a 10-fold cross validation, we divide the dataset into
10 subsets in which one of the 10 subsets is used as the testing set,
the other 9 subsets are pooled together to form the training set, and
the procedure is repeated 10 times for each subset to be chosen as the
testing set in turn. For each chosen testing set, the knowledge base
SSKB is reconstructed from proteins in the corresponding training
set. The knowledge bases generated by using nrDSSP and EVA data-
sets contain in average 48 298 002 and 31 342 754 peptide records,
respectively. We use Q3 and SOV (Segment OVerlap measure) to
evaluate the performance of different prediction methods.

Finally, we download the latest three months of proteins
(September 2004–November 2004) from EVA server (Kohet al.,
2003) as testing dataset and use the nrDSSP dataset as training data-
set to evaluate the performance of HYPROSP II and compare with
other methods.

3.3 Experimental results on the nrDSSP dataset
The prediction accuracy Q3 using nrDSSP dataset with respect to
the global match rate for HYPROSP II, PROSP and PSIPRED is
shown in Figure 2. Note that, the accuracy Q3 shown at global match
rate≥k% represents the Q3 of proteins with global match rates at
leastk%. For example, we can find from Figure 2 that the Q3 of all
proteins (i.e. global match rate at least 0%) in the nrDSSP dataset are
81.8, 70.6 and 79.9% using HYPROSP II, PROSP and PSIPRED,
respectively, and 85.2, 81.5 and 81.2% for prediction of proteins with
global match rates at least 80%. In addition, Figure 2 shows that the
Q3 using HYPROSP II increases for proteins with increasing global
match rate. Note that there is a monotone positive correlation between
prediction accuracy of PROSP and the global match rate (Wuet al.,
2004). The average Q3 and SOV scores of HYPROSP, HYPROSP II
and PSIPRED are listed in Table 2.

To further compare HYPROSP II and PSIPRED, we examine the
prediction accuracies of 3925 protein chains in the nrDSSP data-
set. Among them, HYPROSP II surpasses PSIPRED in 2634 chains

Fig. 2. Q3 of HYPROSP II, PROSP and PSIPRED with respect to global
match rate on the nrDSSP dataset. Note that the prediction accuracy of
HYPROSP can be easily derived from the figure: Its Q3 is the same as
PSIPRED if target proteins have global match rate<80%; on the other hand,
its Q3 is the same as PROSP if target proteins have global match rate of at
least 80%.

(67%) with an average improvement of 3.6%. HYPROSP II is inferior
to PSIPRED in 928 protein chains (24%) with an average reduction
of 1.7%. And the remaining 363 proteins chains (9%) have the same
accuracies for both methods.

3.4 Experimental results on the EVA dataset
Figure 3 shows the experimental results using the EVA dataset. Note
that the Q3 marked at global match rate≥k% represents the Q3
for proteins with global match rate at leastk%. Because the size
of SSKB constructed from the training set of the EVA dataset is
much less than that constructed from the nrDSSP dataset (31 342 754
versus 48 298 002), the average Q3 improvement of HYPROSP II
over PSIPRED for all proteins is only 1.1%. Nonetheless, the aver-
age improvement Q3 over PSIPRED is 4.0% for proteins with the
global match rate of at least 80%. And at global match rate 80%,
PROSP turns better than PSIPRED. It means that even though the
size of SSKB constructed from the EVA dataset is not big enough,
the prediction accuracy for those proteins with global match rates of
at least 80% is still satisfactory. The average Q3 and SOV scores of
HYPROSP, HYPROSP II and PSIPRED are listed in Table 2.

3.5 Experimental results on the new EVA dataset
There are 27 testing proteins obtained from the latest three months
on the EVA server. We use the nrDSSP dataset to construct SSKB
for predicting the structure of these proteins whose sequence iden-
tities are all<25% against the nrDSSP dataset. The average global
match rate of these proteins is only 24.7%, where the largest one
is <75%. The average Q3 and SOV scores are 77.5 and 74.3%.
The average Q3 improvement of HYPROSP II over PSIPRED is
>2.1%. Table 3 shows the comparisons of Q3 and SOV scores of
HYPROSP II, PSIPRED, PROFsec, PHDpsi (Przybylski and Rost,
2002), SABLE2 (Porolloet al., 2003) and PROF_king (Ouali and
King, 2000), which are reported on the EVA server except for
HYPROSP II and PSIPRED.

4 DISCUSSION
There are two factors affecting the performance of HYPROSP II,
which are discussed in this section.
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Table 2. The average Q3 and SOV scores of HYPROSP, HYPROSP II and PSIPRED on nrDSSP and EVA datasets

Q3 Q3H_O Q3H_P Q3E_O Q3E_P Q3C_O Q3C_P SOV SOVH SOVE SOVC

A. nrDSSP dataset
HYPROSP II 81.8 81.2 80.9 71.9 78.9 80.0 79.4 78.1 80.8 76.7 73.4
Errsig 0.1 0.3 0.3 0.4 0.3 0.2 0.2 0.2 0.3 0.4 0.2
HYPROSP 80.0 79.6 79.3 72.2 73.6 76.7 78.3 76.4 79.4 76.2 70.8
Errsig 0.1 0.4 0.3 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.2
PSIPRED 79.9 78.4 80.6 70.4 73.4 77.2 78.0 76.9 78.5 74.8 71.9
Errsig 0.1 0.4 0.3 0.4 0.3 0.2 0.1 0.2 0.4 0.4 0.2

B. EVA dataset
HYPROSP II 80.8 79.8 80.0 69.1 76.6 79.5 78.5 77.0 79.5 74.2 72.7
Errsig 0.2 0.5 0.4 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.3
HYPROSP 79.8 78.3 80.1 70.6 72.7 77.0 78.2 76.6 78.6 74.7 71.6
Errsig 0.2 0.5 0.4 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.3
PSIPRED 79.8 77.8 80.6 70.2 72.8 77.2 78.1 76.9 78.1 74.5 72.2
Errsig 0.2 0.5 0.4 0.5 0.5 0.2 0.2 0.2 0.5 0.5 0.3

Errsig is the significant difference margin for each score and is defined as the standard deviation (σ ) over the square root of the number of proteins (
√

N ). Q3H/E/C and SOVH/E/C
values are the specific Q3 and SOV scores of the predicted helix, strand and coil regions, respectively. Q3H_O (Q3E_O and Q3C_O, respectively) represents correctly predicted helix
(strand and coil, respectively) residues (percentage of helix observed), and Q3H_P (Q3E_P and Q3C_P, respectively) represents correctly predicted helix (strand and coil, respectively)
residues (percentage of helix predicted).

Fig. 3. The Q3 of HYPROSP II, PROSP and PSIPRED with respect to global
match rate using EVA dataset. Note that the prediction accuracy of HYPROSP
can also be easily derived from the figure: Its Q3 is the same as PSIPRED if
target proteins have global match rate<80%; on the other hand, its Q3 is the
same as PROSP if target proteins have global match rate of at least 80%.

4.1 The effect of dataset size on the performance
To analyze the effect of dataset size on the performance, we calculate
the numbers of proteins with different global match rates. In Table 4
we show the proportions of proteins in nrDSSP and EVA datasets
with respect to different global match rates. For example, the pro-
portion of proteins with global match rates at least 50% in nrDSSP
is 51.8%; namely, over half of proteins in the nrDSSP dataset have
global match rates at least 50%. At the same threshold of global
match rate, however, the proportion of proteins in the EVA dataset is
only 24.5%. The size of SSKB affects the proportion of proteins at
different global match rates. Intuitively, the more peptides contained
in the knowledge base, the more proteins obtain higher global match
rates, and we get better prediction accuracy. If the number of proteins

with known structures increases in the future, the knowledge base
will be increased, and so will the prediction accuracies of PROSP
and HYPROSP II.

4.2 Evaluation of the hybrid function
The performance of a hybrid prediction approach depends on the
underlying prediction methods and the hybrid function. In this sec-
tion, we analyze our hybrid strategy and introduce a measure called
hybrid precision to analyze its performance; we use experimental
results on the nrDSSP dataset for discussion.

For each positionx in a target proteinp, let prosp(x), psipred(x)
and hyprosp_II(x) denote the prediction results ofx by PROSP,
PSIPRED and HYPROSP II, respectively. (Recall thathyprosp_II(x)

is defined in Section 2.4.) We first consider the case whereprosp(x) =
psipred(x). Note thatprosp(x) = psipred(x) implieshyprosp_II(x) =
prosp(x). Then all three predictions are correct or none is correct.
Experimental results show that 71.1% of the entire dataset belongs
to this case, and 86.7% of this case can generate correct predictions.
However, 13.3% of this case cannot generate correct predictions
which is 9.46% (=13.3%× 0.711) of the entire dataset; and any
hybrid function based on PROSP and PSIPRED can hardly improve
the prediction on this part.

Now we consider the remaining case whereprosp(x) �= psipred(x).
HYPROSP II makes a hybrid prediction according tohyprosp_II(x).
The measure hybrid precision to evaluate the performance of the
hybrid functionhyprosp_II(x) of HYPROSP II is defined as follows:

hybrid precision=
number of residues correctly assigned byhyprosp_II(x)

number of cases, whereprosp(x) �= psipred(x)

× 100%

Hybrid precision indicates the proportion of the data in this case that
can generate correct prediction in spite of the underlying prediction
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Table 3. The average Q3 and SOV scores of the latest 27 testing proteins from the EVA server by different methods

Q3 Q3H_O Q3H_P Q3E_O Q3E_P Q3C_O Q3C_P SOV SOVH SOVE SOVC

HYPROSP II 77.5 73.8 75.3 58.7 64.7 81.6 77.7 74.3 79.3 65.1 74.5
Errsig 2.2 5.7 6.0 7.5 6.3 2.7 2.6 3.2 5.5 6.4 3.0
PSIPRED 75.4 71.9 71.2 61.3 57.3 76.7 78.4 72.4 73.2 66.2 72.0
Errsig 2.3 6.5 6.3 7.4 7.0 3.0 2.4 3.2 6.3 6.7 2.9
PROFsec 74.4 63.5 67.1 48.4 46.4 76.8 74.0 72.0 79.7 69.1 69.9
Errsig 2.1 6.0 6.4 7.0 7.0 2.5 2.2 3.6 4.7 5.8 3.7
PHDpsi 73.9 69.7 66.0 43.1 43.2 74.7 75.0 70.6 83.0 62.0 68.8
Errsig 2.4 6.2 6.1 6.7 7.1 3.1 2.3 3.6 4.6 6.1 3.7
SABLE2 73.4 64.5 70.6 44.7 45.1 76.1 74.2 69.5 78.0 63.4 69.2
Errsig 2.3 6.2 6.3 6.9 7.2 2.8 2.7 3.4 4.3 6.4 3.3
PROF_king 72.0 57.0 68.7 42.2 38.1 78.0 70.8 67.1 70.5 61.3 65.8
Errsig 2.1 6.0 6.6 7.5 7.2 2.4 3.1 3.3 5.7 7.1 3.5

Table 4. The proportions of proteins in nrDSSP and EVA datasets with
respect to different global match rates

(%) nrDSSP (%) EVA (%)

≥0 100.0 100.0
≥10 97.7 68.6
≥20 78.5 38.7
≥30 64.5 33.7
≥40 57.7 28.8
≥50 51.8 24.5
≥60 45.5 20.2
≥70 38.1 15.1
≥80 27.3 9.7
≥90 12.3 4.9

Table 5. Prediction results of the case whereprosp(x) �= psipred(x) on
nrDSSP

Proportion in the
entire dataset (%)

Hybrid precision
(%)

Eitherprosp(x) or psipred(x)
is correct

26.4 73.3

Neitherprosp(x) nor
psipred(x) is correct

2.5 5.9

methods generating inconsistent predictions. Table 5 shows the
prediction results on the nrDSSP dataset.

The hybrid precision reflects the performance of the hybrid func-
tion. When one of the underlying prediction methods can generate
correct prediction, the accuracy of our hybrid functionhyprosp_II(x)

is 73.3%. It shows the advantage of our hybrid function. In Figure 4
we illustrate the cubic regression analysis of the relationship between
Q3 of HYPROSP II and hybrid precision. It is clear that higher hybrid
precision gets better Q3.

Fig. 4. The cubic regression line shows the relationship between Q3 of
HYPROSP II and hybrid precision.

5 CONCLUSIONS
For a target protein, our previous approach, HYPROSP, selects either
PROSP or PSIPRED to predict its secondary structure; the selection
is based on a global match rate with a cutoff threshold at 80%. How-
ever, such a hybrid approach cannot benefit those target proteins
with <80% global match rate. In this paper, we define a new local
quantitative measure, local match rate, to further utilize the useful
information provided by both PROSP and PSIPRED. According to
local match rate, we can define a prediction confidence level for
each amino acid by each method, which can be used by HYPROSP
II to combine the prediction results of PROSP and PSIPRED effect-
ively. When compared with PSIPRED, the Q3 of HYPROSP II is
2.0% better than that of PSIPRED, which is statistically significant
at p = 1.2E(−203). In contrast to HYPROSP, HYPROSP II per-
forms better than PSIPRED even when the global match rate is zero.
This is a great advantage over HYPROSP since the proportion of tar-
get proteins with global match rates of at least 80% could be limited.
Even if there is no testing protein with global match rate>80% in
the new EVA dataset, the average Q3 improvement of HYPROSP II
still achieves 2.1% against PSIPRED.

HYPROSP and HYPROSP II are hybrid prediction methods
based on PROSP and PSIPRED. The performances of these hybrid
prediction approaches rely largely on the underlying prediction
methods and the hybrid function. We introduce a measure hybrid

3232

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/15/3227/195772 by guest on 20 M
arch 2024



HYPROSP II

precision to evaluate the performance of the hybrid function when
the underlying prediction methods generate inconsistent predictions.
When PROSP and PSIPRED generate inconsistent predictions and
one of the predictions is correct, HYPROSP II has a precision of
73.3% using the hybrid functionhyprosp_II(x). A better hybrid func-
tion is desirable to enhance the hybrid precision. However, when
neither PROSP nor PSIPRED generates a correct prediction, the
hybrid approach can hardly improve the performance, in which case
a different strategy is necessary.
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