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ABSTRACT
Motivation: An enormous number of protein–protein interaction
relationships are buried in millions of research articles published over
the years, and the number is growing. Rediscovering them automatic-
ally is a challenging bioinformatics task. Solutions to this problem also
reach far beyond bioinformatics.
Results: We study a new approach that involves automatically dis-
covering English expression patterns, optimizing them and using
them to extract protein–protein interactions. In a sister paper, we
described how to generate English expression patterns related to
protein–protein interactions, and this approach alone has already
achieved precision and recall rates significantly higher than those of
other automatic systems. This paper continues to present our theory,
focusing on how to improve the patterns. A minimum description length
(MDL)-based pattern-optimization algorithm is designed to reduce
and merge patterns. This has significantly increased generalization
power, and hence the recall and precision rates, as confirmed by our
experiments.
Availability: http://spies.cs.tsinghua.edu.cn
Contact: zxy-dcs@tsinghua.edu.cn

1 INTRODUCTION
We aim at systematically developing a novel and effective meth-
odology for automatically extracting protein–protein interaction
information from the literature, including over 12 million articles at
Medline. Our proposal is to automatically discover relevant English
expression patterns, optimize them and use them to find protein–
protein interaction information in research articles. The rationale is
very simple. General literature mining at the semantic level is not
technically feasible. For simpler problems in a restricted domain,
such as the protein–protein interaction, our theory works just fine.
This has already been demonstrated in our first paper (Huanget al.,
2004), where we implemented the first part of our theory. We used
dynamic programming to extract sentence patterns related to protein–
protein interaction and, using these patterns, our system has achieved
high precision and recall rates that have never been achieved by any
other fully automatic system. The current paper studies and imple-
ments the second part of our theory: improving the patterns to achieve
higher sensitivity and specificity. This is done by a novel application
of the minimum description length (MDL) principle. Our approach is
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wholly data driven, and the MDL principle ensures that the resulting
patterns have better generalization abilities. Experiments show that
the number of patterns is greatly reduced by our algorithm, and the
system’s performance is significantly improved.

Databases such as BIND (the Biomolecular Interaction Network
Database) (Baderet al., 2001) and PIR (the Database of Interact-
ing Proteins) (Salwinskiet al., 2004) are useful. However, there is
a large volume of experimental data pertaining to protein, gene and
small molecule interactions scattered in enormous volumes of the
published literature in natural languages. Automatically rediscover-
ing such information is invaluable, e.g. for protein pathway studies
(Hirschmanet al., 2002). Such an automatic system will also serve
as a prototype for similar problems in other domains, say, on the
Internet.

Many previous works exist (Ray and Craven, 2001). Natural lan-
guage processing (NLP) techniques have been widely applied. These
are parsing-based methods, with full and partial (or shallow) parsing
strategies. A general full parser with grammars applied to the biomed-
ical domain was used to extract interaction events by filling sentences
into argument structures by Yakushijiet al. (2001). No recall or preci-
sion rate was given. Another full parsing method, using bidirectional
incremental parsing with combinatory categorical grammar (CCG),
was proposed (Parket al., 2001). This method first localizes the tar-
get verbs and then scans the left and right neighborhood of the verb.
The recall and precision rates of the system were reported to be 48%
and 80%, respectively. Another full parser, utilizing a lexical ana-
lyzer and context free grammar (CFG), extracts protein, gene and
small molecule interactions with a recall rate of 63.9% and a pre-
cision rate of 70.2% (Temkin and Gilder, 2003) Similar methods
such as preposition-based parsing to generate templates were pro-
posed by Leroy and Chen (2002), processing only abstracts with a
template precision of 70%. A partial parsing example is relational
parsing for the inhibition relation (Pustejovskyet al., 2002), with a
comparatively low recall rate of 57%. All these methods are inher-
ently complicated and domain sensitive, requiring many resources
and showing poor performances; some focus only on several special
verbs.

Another approach uses pattern matching. As an example, a set of
simple word patterns and part-of-speech rules were manually coded,
for each verb, to extract a special kind of interactions from abstracts
(Onoet al., 2001). This method is essentially a rule-based method,
without any complicated parsing techniques; thus it is able to handle
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Fig. 1. System architecture.

long sentences, outperforming the traditional parsing methods. The
method obtains a recall rate of∼85% and a precision rate of∼94% for
yeast andEscherichia coli.1 In GENIES, more complicated patterns
with syntactic and semantic constraints are used (Friedmanet al.,
2001). GENIES also uses semantic information. GENIES’ recall rate
is low. In all the above methods, including our work (Yaoet al., 2004)
and several commercial systems, patterns are hand-coded without
exception. Such systems are not flexible, not easily improvable, and
hence have limited practicality (see also Ng and Wong, 1999; Thomas
et al., 2000; Wong, 2001).

This paper is arranged as follows: in Section 2, the structure of
our system is introduced; the MDL-based optimization algorithm is
described in Section 3; four experiments which test the effectiveness
of our algorithm are presented in Section 4; and Section 5 contains
the discussion.

2 SYSTEM OVERVIEW
Our protein–protein interaction extraction system is divided into
three phases (Figure 1): the data preparation phase, the pattern
generation phase and the interaction extraction phase.

The data preparation phase first converts the input sentence into
tagged sequences for pattern generation and interaction extraction.
This phase consists of preprocessing, protein name identification
and the part-of-speech (POS) tagger. For an input sentence, the
preprocessing module first uses some filtering rules to remove use-
less expressions. Then protein names in the sentence are identified
according to a protein name dictionary and the names are replaced
with a unique label in the protein name identification module. Sub-
sequently, the sentence is part-of-speech tagged by Brill’s tagger
(Brill et al., 1995). Last, the tag sequence is generated and added into
the corpus for the pattern generation phase or used by the matching
algorithm for interaction extraction.

The pattern generation phase mines the tagged sentences in the cor-
pus and extracts patterns using a dynamic programming algorithm.

1The precision and recall rates in this paper and in (Huanget al., 2004) were
calculated for individual verbs. This is different from our method, which
measures all verbs at the same time using the MDL principle.

Table 1. Main tags used in the patterns

Tag name Tag description

PTN Special tag for protein name
NN Noun, singular or mass
NNS Noun, plural
IN Preposition, subordinating conjunction
CC Coordinating conjunction
TO To
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-third-person singular present
VBZ Verb, third-person singular present
RB Adverb
JJ Adjective

Patterns are also tag sequences, where each tag is called a compon-
ent. In our patterns, the tag alphabet consists of two kinds of tags:
part-of-speech tags, like those used by Brill’s tagger (Brillet al.,
1995), and the tagPTN for protein names. The main tags are listed
in Table 1.

Except forPTN, each tag has a word set that contains the words
with which the tag can be instantiated. For example, for a pattern
{PTN VBZ IN PTN: *; binds, associates; to, with;*}, the word
set of the tagVBZ is {binds, associates}, and that of the tagIN is
{to, with}, as shown by Huanget al. (2004). The acquired patterns
are then evaluated and optimized by an MDL-based algorithm to
be presented here. The resulting patterns are stored in the Pattern
Database to be used in the interaction extraction phase, which extracts
interactions by dynamically matching the patterns with sentence tag
sequences.

3 METHOD
Smallest consistent theory has the highest power to explain and generalize
the data. Consider pattern setP = {p1,p2, . . . , pm}, which consists of
candidate English expression patternspi that are extracted from the literature
automatically, as in Huanget al. (2004), or manually, as in other systems.
There is no guarantee that they are all correct and without any redundancy. If a
pattern produces too many errors, it is a ‘bad’ pattern and should be removed
or modified. If a pattern can be replaced by other patterns without affecting
the system’s performance, it is a ‘redundant’ pattern and should be deleted.

For example, consider patternpi ∈ P andpi = {PTN VBZ IN PTN}.
(For simplicity, the word set of each component is omitted.) If we compare
the patternpi with another patternp∗

i = {PTN VBZ PTN}, we find that,
sincep∗

i is simpler thanpi , it has better generalization ability thanpi does.
SupposeS andS∗ are the sets of tagged sentences which can be matched by
patternspi andp∗

i , respectively. It is obvious thatS ⊆ S∗. If we replacepi

with p∗
i in P , P becomes simpler and can match more sentences; this means

thatP ’s generalization power improves over the operation, assuming the new
pattern does not introduce new false positives.

The optimal pattern set should satisfy the following three criteria: least
number of (false positive) errors in extracted interactions, least redundancy
in patterns and maximum number of sentences which can be matched by at
least one pattern. Obviously, these criteria cannot be achieved simultaneously.
Thus, the optimization task becomes one of finding the best balance among
those criteria.
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AssumeS = {s1, s2, . . . , sn} is a set of sentences, andI = {I1, I2, . . . , In}
the set of interactions extracted fromS through the pattern setP =
{p1,p2, . . . , pm}. The pattern matching method is defined as a functionF
with parametersS andP , I = F(S,P). If the true interaction set defined by
S is I ∗ = {I ∗

1 , I ∗
2 , . . . , I ∗

n }, then the total expected extraction errorR is

R(P ) =
∫

S

L(S,P) dG(S), (1)

whereG(S) is the probability distribution ofS, andL(S,P) = |I ∗−F(S,P)|
is the lost function. Then the best pattern setP ∗ is theP which minimizes
the expected riskR(P ):

P ∗ = arg min
P

R(P ) = arg min
P

∫
S

L(S,P) dG(S). (2)

Rissanen (1978) proposed the MDL principle as a tool to solve the trade-
off problem between generalization power and accuracy. The MDL principle
can be applied without the analytical form of the risk function, and hence is
suitable in our case.

3.1 MDL principle
The MDL principle states that, given some dataD, the best model (or theory)
Mmdl in the setM of all models is the one that minimizes the sum of the length
in bits of the description of the model and the length in bits of the description
of the data with the aid of the model:

Mmdl = arg min
M∈M

l(M) + l(D|M), (3)

wherel(M) andl(D|M) denote, respectively, the description length of the
modelM and that of dataD using modelM.

If we have a proper means to utilize regularities in the data, we can have a
shorter representation for the model and for encoding the data using the model.
The MDL principle can be viewed from the point of view of Kolmogorov
complexity:

Mmdl = arg min
M

K(M) + K(D|M) (4)

whereK( ) is Kolmogorov complexity (Li and Vitanyi, 1997). The MDL
principle looks for an optimal balance between the regularities (in the model)
and the randomness remaining in the data, that is, a trade-off between the
complexity of the model and the fitness of the model to the data.

The MDL principle serves as a general guide to solving the problems of
model selection and parameter regression.

Without loss of generality, we assume the interaction setI to be a sequence
given byI = I1I2 . . . In. The expected riskR(P ) is affected by the stochastic
characteristic of sequenceI , which means that, if we want to minimizeR(P ),
we should try to describeI in minimum length with the aid ofP . We define
K(I) = K(P ) + K(I |P) as the description length ofI throughP , where
K(P ) is the description length of pattern setP andK(I |P) is that ofI given
P . Then our optimizing task becomes one of trying to find a pattern setP ∗
which describes the interaction sequenceI as briefly as possible, that is,

P ∗ = arg min
P

K(I) = arg min
P

K(P ) + K(I |P). (5)

In order to calculateK(I |P), we first assume the expected interaction set
I ∗ as a sequence given byI ∗ = I ∗

1 I ∗
2 . . . I ∗

n , similarly toI . Then, obviously,
if I = I ∗, the pattern setP is the perfect set for the sentence setS, no
error happened and the description length of the sequenceI is equal to the
description length of pattern setP : K(I) = K(P ). If I �= I ∗, it means that
there exist errors in the interaction sequenceI . Here we define the Hamming
distance of the two interaction sequences:

d(I , I ∗) =
n∑

i=1

δ(Ii , I
∗
i ), (6)

whereδ(Ii , I ∗
i ) =

{
1, Ii �= I ∗

i

0, Ii = I ∗
i

.

It is shown that the sequenceI can be represented by modifying the ideal
sequenceI ∗ in d positions whereI and I ∗ are different. So, in order to
describe the lengthI , we have to know how many differences exist, which
are indicated byd, and the exact positions of these differences, which can be
calculated asCd

n . Thus the description length of sequenceI is

K(I) = K(P ) + K(I |P)

= K(P ) + log2 d(I , I ∗) + log2 Cd
n + c, (7)

where c is a constant. Then the optimal pattern setP ∗ is obtained as follows:

P ∗ = arg min
P

K(P ) + K(I |P)

= arg min
P

K(P ) + log2 d(I , I ∗) + log2 Cd
n . (8)

For simplicity, we usually take theexception-based MDL principle as an
approximation of Equation (8), as follows:

ME−MDL = arg min
M

K(M) + K(E|M), (9)

whereE are the exceptions from the expected result.
Vitányi and Li (2000) have proved that the exception-based MDL can be

justified and reduced to the MDL principle of Equation (4) under circum-
stances of ‘supervised learning’. It is effective for our task of pattern set
optimization, and the optimal pattern setP ∗ is obtained as follows:

P ∗ = arg min
P

K(P ) + log2 d(I , I ∗), (10)

where I and I ∗ are the extracted and optimal interaction sequences,
respectively, andd(I , I ∗) is the number of differences betweenI andI ∗.

3.2 Pattern set optimization
The pattern set is optimized by the MDL principle as shown in Equation (10),
which consists of two components,K(P ) and d(I , I ∗). For convenience,
we assume DL(P ) = K(P ) + log2 d(I , I ∗) is the description length of the
system. Then the optimization task becomes one of minimizing DL(P ) by
adjusting parameterP . In order to get DL(P ), K(P ) andd(I , I ∗) should be
calculated, whered(I , I ∗) is the level of errors caused by usingP to extract
interactions. These errors include wrong interactions (false positives) and
missing interactions (false negatives), shown as follows:

d(I , I ∗) = Nwrong + Nmiss

= (Nextracted− Ncorrect) + (Nexpected− Ncorrect)

= Nextracted+ Nexpected− 2 Ncorrect (11)

whereNwrong is the number of wrong interactions extracted,Nmissis the num-
ber of missed interactions,Nexpectedis the number of interactions expected to
be extracted,Nextractedis the total number of interactions actually extracted,
including the correct ones and erroneous ones, andNcorrect is the number of
interactions correctly extracted.

SinceK(P ) is the Kolmogorov complexity of pattern setP and is non-
computable, it is approximated by the code length of the pattern setP =
{p1,p2, . . . , pm}, andpi = m1

i m2
i . . . m

c(pi )

i , wherec(pi) is the number of
components of patternpi such that

K(P ) ≈
m∑

i=1

∑
j

|mj

i |, (12)

where|mj

i | =
{

1, m
j

i = PT N

γ/c(m
j

i ), otherwise
.

From (4), it is shown that if a component’s word set includes more
words, the pattern is more general, matching more sentences, and simpler.
|mj

i | decreases whenc(mj

i ) increases, such thatmj

i contributes less to the
complexity ofP , andK(P ) is accordingly decreased.

Once DL(P ) has been calculated, we can optimize the pattern setP by
minimizing DL(P ) taking the parameter ofP . Since the modification ofP is
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Input: pattern pair p1 and p2

Output: pm, which is merged from p1 and p2

1. Sequence A=(a1, a2,…, ak) = LCS(p1 , p2)
2. For each ak, get the word set wk by union of the cor-

responding word sets of ak in p1 and p2

3. Let pm = {a1 a2… ak : w1;w2;… ;wk}
4. If  illegal(pm) then pm = NULL, go to 6  
5. If pm is the same as one of patterns in the original

pattern set, then  pm = NULL, go to 6 
6. Output pm

Fig. 2. Pattern merge algortihm.

ranged over the pattern set spaceP, the search space of the optimization meth-
ods is very large considering the infinite variation of the pattern components
and word sets. For simplicity and efficiency, we take the ‘superfluous then
condense’ strategy to guide the optimization process, which is as follow:

(1) Generate as many candidate patterns as possible, such that the initial
pattern set covers all appropriate patterns in the system. This can
be achieved by suspending all the restrictions imposed in the pattern
generation phase.

(2) Merge the patterns obtained in (1), and add the new ones to the
pattern set.

(3) Try to delete patterns in the pattern set by minimizing DL(P ) such that
the patterns remaining are all the most competitive ‘good’ patterns.

Pattern merging plays an important part in our pattern optimizing method.
If patternsp1 andp2 cover most of their matched sentences, it is very likely
that the two patterns are similar to each other. Then the newly merged pattern
pm is the longest pattern that can match all the sentences whichp1 andp2

match. From the discussion above,pm is simpler and has more generaliza-
tion power than eitherp1 or p2. Whenp1 andp2 are replaced bypm, the
whole pattern set’s generalization ability improves. In our algorithm,pm is
approximated by the LCS (longest common sequence) of the merged pattern
pair and the detailed algorithm is shown in Figure 2.

In the merge algorithm, the function illegal(p) checks the merged pattern
p using the following rules:

• At least two PTN exist inp.

• At least one VB or NN exists inp.

These rules are basic requirements of a pattern and impose no other
limitations.

Then the pattern set, including both original and merged patterns, is
optimized through the steepest gradient descent local search strategy. In our
algorithm, the worst pattern, which incurs the largest increase of the descrip-
tion length of the system DL(P ), is deleted in each iteration, until there no
deletion of a pattern can lower DL(P ). When DL(P ) reaches the minimal
value at pattern setP ∗, the optimal pattern setP ∗ is the one that best fits our
system. The whole algorithm is shown in Figure 3.

In our approach, a pattern is evaluated according to its effects to the whole
pattern setP , rather than individually on the precision and recall rates of
that pattern. Even if a pattern has good properties, it may be deleted if it is
redundant and increases the system’s description length. The final setP ∗ may
not be the best pattern set in terms of minimizing the interaction error, but it
has better generalizability and enhances the system’s performance.

4 EXPERIMENTS
The corpus, consisting of 963 sentences, was collected by the fol-
lowing steps: we ran a web crawler program which is able to
automatically download biomedical papers of interest to the user

Input: initial pattern set P0, which contains the original
patterns and the merged ones. 
Output: optimal pattern set P*
1. P = P0

2. While P is not empty do 
(i) Calculate DL(P)

(ii) MaxDL = –MAX_INTEGER 
(iii) For each pi in P do 

(a) P1 = P – { pi }
(b) ∆DL = DL(P) – DL(P1)
(c) If ∆DL > MaxDL then MaxDL =∆DL, i * = i

(iv) If ∆DL < 0 then go to 3
(v) P = P – {pi

*}
3. Output P*= P

Fig. 3. Algorithm for pattern optimization.

from the Internet by using the keywords ‘protein–protein interac-
tion’, and the papers were sorted automatically according to their
relevance to the keywords of the query; the first 8037 papers were
selected, and full texts were segmented into 65 656 sentences; pro-
tein names in these sentences were identified based on an dictionary
which contains about 60 000 items collected from the databases of
PathwayFinder (Yaoet al., 2004); finally, those sentences with fewer
than two protein names were discarded. It has to be mentioned that
the protein name dictionary is far from complete, and its effect on the
performance of the system is omitted from our experiments.

In these 963 sentences, 1435 interactions were labeled manu-
ally. Totally 192 patterns were generated as the initial pattern set
without imposing any grammatical rules or optimization algorithm.
By implementing our proposed optimization algorithm, patterns
were merged and deleted until the optimal point was reached. The
F -score is often used to evaluate a pattern set, indicating the overall
performance in terms of both the precision and the recall rate. It is
defined as follows:

F -score= 2 ∗ Precision∗ Recall

Precision+ Recall
. (13)

As it was hard to perform a comparative study with the limited
number of 963 sentences and 1436 interactions, we implemented a
strategy of cross-validation, and calculated the average performance
over 10 runs of labeled sentences. First we divided the sentences
into 10 equal sets. Then we randomly selected seven sets for training
and three sets for testing. This procedure was repeated 10 times.
Precision and recall rates were averaged over these 10 runs.

Our experiment is in four parts: first, the original pattern set is
optimized from all 963 sentences with only the deletion method; the
description length, precision and recall rates are shown in Figure 4.
Second, the extraction result is compared with that of the rule-based
approach in testing the deletion operation’s effectiveness in reducing
the pattern numbers. Third, our algorithm with both merging and
deletion is evaluated. Finally, the generalizabilty of our algorithm
is tested by comparing it with the empirical risk minimize (ERM)
algorithm as a baseline.

4.1 Pattern set optimization
From Figure 4(a), the minimum description length is obtained at the
deletion of pattern number 162, which means there are 30 patterns left
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(a)

(b)

(c)

Fig. 4. Pattern set optimization. (a) MDL system description length vs. num-
ber of patterns deleted. (b) Precision and recall rates vs. number of patterns
deleted. (c) ROC Curve.

in the optimal pattern set. The bottom of the curve (near the optimal
point) is flatter than the beginning and ending parts of the curve
because there exist many trivial patterns in the set which have no
effect on the extraction accuracy. The beginning part of the curve
is steeper because the deletion of bad patterns reduces erroneous
interactions. The tail part is steepest when some ‘huge’ good patterns
are deleted. For example, pattern {PTN VB IN PTN: *; interact
associate; with; *} matches 88 interactions, 77 of which are correct.
Most of the errors are introduced by some bad patterns, and a very
few ‘huge’ patterns do most of the work of matching.

This also explains why the recall rate curve in Figure 4(b)
drops dramatically immediately after the optimal pattern number
is reached. In Figure 4(b), precision reaches its peak at the optimal
point of 162 and drops gently as precision is determined more by the
property of ‘huge’ patterns left in the pattern set. The ROC curve is
shown in Figure 4(c).

4.2 Effectiveness compared with the rule-based
approach

Our approach is effective in optimizing the pattern set. In accord-
ance with Section 4.1, most of the erroneous and trivial patterns

Table 2. System performance of the MDL-based approach and rule-based
approach

Algorithm No. of patterns Precision (%) Recall (%)F -score (%)

Original 192 64.6 57.2 60.68
Rule 65 71.2 51.0 59.43
MDL∗ 30 85.1 55.8 67.40

Original is the pattern set originally generated.Rule is the optimized pattern set using
the rule-based approach given by Huanget al. (2004).MDL∗ is the optimized pattern set
using the MDL approach from the original pattern set with only the deletion operation.

are deleted, with only those good and ‘huge’ patterns remaining in
the set. Although manually drafted rules can filter the patterns, it is
always hard to find the optimal rules which preserve only those good
ones. We compared our approach with the rule-based one in (Huang
et al., 2004), some rules of which are

(1) If a pattern has neither verb tag nor noun tag, reject it.

(2) If the last tag of a pattern is IN or TO, reject it.

(3) If the left neighborhood of a CC tag is not equal to the right
neighborhood of the tag in a pattern, reject the pattern.

The result is shown in Table 2.
In the training set part of Table 2, the rule-based approach reduced

the pattern number from 192 to 65, whereas the MDL-based deletion
method reduced the number of patterns to 30. Although the preci-
sion of the rule-based approach improves by 6.6% from the original,
the recall rate declines by 5.8%, which makes theF -score decrease
by 1.25%. The MDL-based approach improves the precision rate
by 22.5%, the recall rate declines by only 1.4% and theF -score
increases by 6.72%. It is clear that the MDL-based approach has
better performance than the rule-base one, even without the merging
method.

The manually drafted rules abruptly remove some good patterns
and allow many erroneous patterns. The precision of the rule-based
system remained almost the same, but the recall rate dropped signi-
ficantly. The following are examples of some good patterns that are
deleted by the rule-based approach and otherwise preserved by the
MDL-based approach with only the deletion method.

{IN PTN VBN IN PTN: that; *; conjugated interacted; with; *}
{PTN CC VB IN PTN: *; and; associates interacts; with; *}
{PTN VB CC IN PTN: *; interact interacts; and and/or; with; *}
{PTN VB IN PTN IN: *; associates interacts; with; *; in}

4.3 Merging
We applied the merge method described in Section 3 before condens-
ing the pattern set. The result is shown in Table 3, and indicated by
the nameMDL. The number of patterns is now reduced to 14, as com-
pared with 30 without merging. The precision reduces by 4.4% in the
training set, and the recall rate increases by 5.2%, which makes the
F -score increase by 2.15%. In the test set, the precision reduces by
4.2%, the recall rate increases by 5.2% and theF -score increases by
2.21%. It is shown that the system’s performance is improved after
the merge method is used. Each merged pattern covers more than
one pattern of the pattern set; although it sacrifices a little precision,
it discovers more correct interactions and has a much higher recall
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Table 3. System performance of the MDL-based approach, with/without
merging, and the ERM-based approach

Algorithm No. of patterns Precision (%) Recall (%)F -score (%)

(a) Training set
Original 192 64.6 57.2 60.68
ERM 134 82.7 55.7 66.57
MDL 14 80.7 61.1 69.55

(b) Test set
Original 192 63.5 57.3 60.24
ERM 134 77.9 53.3 63.29
MDL 14 79.8 59.5 68.17

Original is the pattern set originally generated.ERM is the optimized pattern set using
the ERM approach from the original pattern set.MDL is the optimized pattern set using
the MDL approach from the original pattern set.

Table 4. An example of a merged pattern

Pattern Pattern contents Correct Extracted

p1 {PTN VB TO PTN: *; binds; to; *} 87 92
p2 {PTN VB IN PTN: *; interact associate

interacts associates; with ;*}
303 316

p3 {PTN PTN VB PTN: *; *; form binds; *} 0 14
p4 {PTN TO VB PTN: *; to; form inhibit; *} 1 19
p5 {PTN VB PTN: *; transfer activates; *} 22 31
p6 {PTN VB PTN PTN: *; activates bound;

*; *}
4 4

Sum of — 417 476
p1 to p6

pm {PTN VB PTN: *; binds interact associate
interacts associates form inhibit transfer
activates bound;*}

514 598

rate. The merged patterns are simpler in nature, and their generaliza-
tion power is better than that of the complex ones. Table 4 gives an
example of a merged pattern.

In Table 4, pm is merged fromp1,p2 . . . p6 and extracts 97
more correct patterns thanp1, p2 . . . andp6 collectively do, while
introducing 25 erroneous ones.

With our merging method, the recall rate of MDL-based optimiza-
tion increases by 3.9% from the original, the precision rate increases
by 16.1% to 80.7% and theF -score attains its highest value of
69.55%, which indicates that our MDL-based optimization method
is very effective.

4.4 Testing generalization ability
We have also implemented the well-known empirical risk minimize
(ERM) algorithm to optimize the pattern set as a baseline for com-
parison. In the ERM algorithm the pattern set is optimized according
to the empirical risk of the system defined as follows:

P ∗ = arg min
P

d(I , I ∗). (14)

The average system performance is shown in Table 3.

From Table 3, our MDL-based approach reduces the pattern num-
ber from 192 to 14, whereas the ERM-based approach’s optimal
pattern number is 134, which is much larger. From Table 3(a),
theF -score of the ERM-based approach is 2.98% lower compared
with the MDL-based approach in the training set, and in the test
set the MDL-based approach has a 6.2% edge over the ERM-based
approach. Obviously, our approach has a better performance than the
ERM-based one, especially in the test set, which means better gener-
alization ability. In fact the ERM-based optimal pattern set contains
too many trivial patterns which are in very complicated forms and
can match to no more than one sentence. Those are problematic
patterns that cause errors in the test set. Whereas the ERM-based
algorithm cannot dispose of these patterns, the MDL-based algorithm
can. Thus, although the ERM-based approach adapts to the data in
the training set quite well, it has poorer generalization ability than our
MDL-based approach. MDL solves the over-fitting problem of ERM.

5 DISCUSSION
We have presented a new paradigm of mining protein–protein inter-
action from the literature. Our method is fully automatic and works
reasonably well. Our goal is also to demonstrate that our proposal
of automatically generating and optimizing sentence patterns and
using them to mine a targeted area of knowledge is feasible. Min-
ing protein–protein interactions from the literature is not our final
goal. We wish to demonstrate to readers, via our prototype for
this particular domain, that this approach works in other domains,
too. Specifically, answering Internet search queries beyond a simple
keyword search comes to mind.
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