
BIOINFORMATICS APPLICATIONS NOTE Vol. 21 no. 18 2005, pages 3686–3687
doi:10.1093/bioinformatics/bti584

Genetics and population analysis

simuPOP: a forward-time population genetics simulation
environment
Bo Peng∗ and Marek Kimmel
Department of Statistics, Rice University, 6100 Main Street, MS138, Houston, TX 77005, USA

Received on May 13, 2005; revised on July 8, 2005; accepted on July 13, 2005

Advance Access publication July 14, 2005

ABSTRACT
Summary: simuPOP is a forward-time population genetics simulation
environment. The core of simuPOP is a scripting language (Python)
that provides a large number of objects and functions to manipulate
populations, and a mechanism to evolve populations forward in time.
Using this R/Splus-like environment, users can create, manipulate
and evolve populations interactively, or write a script and run it as
a batch file. Owing to its flexible and extensible design, simuPOP
can simulate large and complex evolutionary processes with ease.
At a more user-friendly level, simuPOP provides an increasing number
of built-in scripts that perform simulations ranging from implementa-
tion of basic population genetics models to generating datasets under
complex evolutionary scenarios.
Availability: simuPOP is freely available at http://simupop.sourceforge.
net, distributed under GPL license.
Contact: bpeng@rice.edu

INTRODUCTION
Coalescent-based (Kingman, 1982) methods have dominated the area
of genetic dataset generation because of their efficiency and flexib-
ility. In contrast, forward-time simulations, although simpler as an
idea, are computationally inefficient and have been used primarily for
teaching purposes. Only recently, owing to the exponential growth
of the power of personal computers, did the use of serious simu-
lation programs such as easyPOP (Balloux, 2001) and FPG (Hey,
2004, http://lifesci.rutgers.edu/heylab/HeylabSoftware.htm.) begin
in genetic studies (Balloux and Goudet, 2002).

Unlike coalescent-based approaches, forward-time simulations
keep track of complete ancestral information. This gives forward sim-
ulations a wider application area if evolutionary processes themselves
rather than their outcome are of interest (Calafell et al., 2001)
or if population-level properties are studied (Balloux and Goudet,
2002). Forward-time simulations are also more flexible in the
sense that any genetic or environmental factors can be applied to
a forward-evolving population, while coalescent simulations (e.g.
SIMCOAL, http://cmpg.unibe.ch/software/simcoal/) are still com-
plicated for simple genetic forces such as selection (Fearnhead,
2003). Therefore, selection as well as complex mating schemes and
recombination are the main strengths of simuPOP.

It is relatively easy to implement a special purpose forward-time
simulation program. On the other hand, a one-for-all simulation
program is difficult to design due to its wide application area. For
example, neither easyPOP nor FPG can handle demographic changes

∗To whom correspondence should be addressed.

and customized genetic forces, and are difficult to use. To solve this
problem, a new approach has been introduced.

FEATURES AND BASIC USAGE
simuPOP is a forward-time population genetics simulation environ-
ment based on Python, an ‘interpreted, interactive, object-oriented
and extensible’ language. simuPOP consists of a large number of
Python objects and functions, including population, mating schemes,
operators (objects that manipulate populations) and simulators to
coordinate the evolutionary processes. It is the users’ responsibility
to write a Python script to glue these pieces together and form a
simulation. simuPOP distinguishes itself from other programs in the
following respects:

Scripting. simuPOP is provided as a set of Python libraries, and
is therefore backed by a full-blown object-oriented programming
language. All key elements of simuPOP are objects with their own
data elements and member functions. Users can run a simulation
interactively using a Python shell or write an arbitrarily complex
Python script and run it as a batch file.

Flexibility. simuPOP does not impose any limit on the size of
genome, population, ploidy number, demographic model, mating
type, etc. Using a large number of standard and hybrid (Python-
assisted) operators, plus the ability to extend simuPOP in Python,
users can simulate almost arbitrarily complex evolutionary processes.

Integration. Owing to the ‘glue language’ nature of Python, it
is easy to integrate simuPOP with other languages and programs.
For example, users can call any R function from Python/simuPOP
for the purposes of visualization and statistical analysis, using R
and a Python module RPy. This feature is shown in the following
simuPOP session:

>>> from simuPOP import *

>>> from simuRPy import *

>>> simu=simulator(

... population(size=1000,loci=[2]),

... randomMating(),rep=3 )

>>> simu.evolve(

... preOps=[initByValue([1,2,2,1])],

... ops=[

... recombinator(rate=0.1),

3686 © The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/18/3686/202296 by guest on 19 April 2024

http://simupop.sourceforge
http://lifesci.rutgers.edu/heylab/HeylabSoftware.htm
http://cmpg.unibe.ch/software/simcoal/


simuPOP: a forward-time population genetics simulation environment

... stat(LD=[0,1]),

... varPlotter("LD[0][1]",numRep=3,

... ylim=[0,.25],xlab="generation",

... ylab="D",title="LD Decay")],

... end=100 )

The first two lines import simuPOP and simuRPy modules.
simuPOP.py is the standard simuPOP module. simuRPy.py
provides R-related operators like varPlotter. The third com-
mand creates a simulator with three replicates of a diploid population
with 1000 individuals, each having one chromosome with two loci.
Random mating will be used to generate offspring. The last com-
mand uses the evolve function to evolve the populations for 100
generations, subject to four operators.

The first operator initByValue is applied to all populations
before evolution. It initializes all individuals with the same genotype
12/21. The other three operators will be applied at every generation.
recombinator will recombine parental chromosomes with the
given recombination rate during the generation of offspring; stat
will calculate standard linkage disequilibrium between the first and
second loci. The result of this operator will be stored in a local
variable space of each population and be retrieved and plotted by
varPlotter, which uses R for plotting. When evolve is called,
a graphics window will be fired and will display the dynamics of LD
values for all three replicates.

DISCUSSION
simuPOP is large, consisting of >70 operators and a lot more
functions that cover all important aspects of genetic studies. These
include mutation (k-allele, stepwise, generalized stepwise and
hybrid), migration (arbitrary, can create new subpopulation), recom-
bination (uniform or nonuniform), quantitative trait (single, multi-
locus or hybrid), selection (implemented as relative probability of
mating, single-locus, additive, multiplicative or hybrid multi-locus
models), penetrance (single, multi-locus or hybrid), ascertainment
(case–control, affected sibpairs or random), statistics calculation
(including but not limited to allele, genotype, haplotype, hetero-
zygote number and frequency; expected heterozygosity; bi-allelic
and multi-allelic D, D′ and r2 linkage disequilibrium measures; Fst ,
Fit and Fis), pedigree tracing, visualization (using R or other Python
modules) and load/save in text, XML, Fstat or Linkage format. Each
of these operators accepts a number of parameters that allow it to
be applied at any given stage of a life-cycle, at any generation(s)
and so on. The mating schemes are also flexible in that arbitrary
demographic models (patterns of population size changes) can be
specified and the number of offspring per mating event can be con-
stant or follow a random distribution. Although simuPOP currently
focuses on random mating in non-overlapping generations, age-
structured populations and cooresponding mating schemes are under
development and will allow simulations of overlapping generations
and continuous-time reproduction. The detailed descriptions can be
found in the simuPOP user’s guide and reference manual, along with
several real examples.

Simulation of real evolutionary processes is not always easy. Para-
meters like mutation or migration rate are hard to determine and

rare disease

0 5 10 15

1
3

5 Overall allele freq: 1.2%

Most common%: 5.2%
5 most common%: 18.2%

common disease

0 5 10 15

10
20

30Overall allele freq: 7.5%

Most common%: 30.2%
5 most common%: 66.8%

Fig. 1. Simulations testing the common disease common variant hypothesis
(Reich and Lander, 2001; Peng and Kimmel, 2005). Allellic spectra of a rare
and a common disease 500 generations after rapid linear population expansion
from 104 to 106 x-axis: 15 most common disease alleles. y-axis: percentage
among disease alleles.

initialization is surprisingly difficult. This is because many models
evolve from a certain (e.g. linkage or mutation-drift) equilibrium
state that cannot be initialized easily. A common approach is to use
a burn-in period to allow a population to reach equilibrium from a
random or uniform initial state.

The mere idea of having to write a program may drive most
time-limited researchers away. In recognition of this, simuPOP is
bundled with an increasing number of scripts that can be executed
without knowing the underlying language. These scripts (under
scripts directory) are equipped with graphical user interfaces and
perform simulations ranging from implementation of simple popu-
lation genetics models in standard textbooks to generating datasets of
a complex disease under complicated evolutionary scenarios. More
scripts will be added, hopefully with user contributions, to make
simuPOP suitable for a wider audience.

ACKNOWLEDGEMENTS
The authors thank Dr. François Balloux, author of easyPOP
(Balloux, 2001), for his many suggestions and Dr. William Amos
for his insights about the userfriendliness of simuPOP. Many thanks
should go to the SWIG and the Python user community. Their prompt
responses to the author’s numerous emails were essential to the
making of simuPOP. This work was supported in part by a train-
ing fellowship from the W.M. Keck Foundation to the Gulf Coast
Consortia through the Keck Center for Computational and Structural
Biology.

Conflict of Interest: none declared.

REFERENCES
Balloux,F. (2001) EASYPOP (Version 1.7): A computer program for population genetics

simulation. J. Hered., 92, 301–302.
Balloux,F. and Goudet,J. (2002) Statistical properties of population differentiation

estimators under stepwise mutation in a finite island model. Mol. Ecol., 11,
771–783.

Calafell,F. et al. (2001) Haplotype evolution and linkage disequilibrium: a simulation
study. Hum. Hered., 51, 85–96.

Fearnhead,P. (2003) Ancestral processes for non-neutral models of complex diseases.
Theoret. Popul. Biol., 63, 115–130.

Hey,J. (2004) A computer program for forward population genetic simulation.
Kingman,J. (1982) The coalescent. Stochastic Proc. Appl., 13, 235–248.
Reich,D.E. and Lander,E.S. (2001) On the allelic spectrum of human disease. Trends

Genet., 17, 502–510.
Peng,B. and Kimmel,M. (2005) On the allelic spectrum of human diseases, a simulation

study. In preparation.

3687

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/18/3686/202296 by guest on 19 April 2024


