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ABSTRACT
Motivation: Many aging genes have been found from
unbiased screens in model organisms. Genetic interventions
promoting longevity are usually quantitative, while in many
other biological fields (e.g. development) null mutations alone
have been very informative. Therefore, in the case of aging the
task is larger and the need for a more efficient genetic search
strategy is especially strong.
Results: The topology of genetic and metabolic networks is
organized according to a scale-free distribution, in which hubs
with large numbers of links are present. We have developed a
computational model of aging genes as the hubs of biological
networks. The computational model shows that, after general-
ized damage, the function of a network with scale-free topology
can be significantly restored by a limited intervention on the
hubs. Analyses of data on aging genes and biological networks
support the applicability of the model to biological aging. The
model also might explain several of the properties of aging
genes, including the high degree of conservation across dif-
ferent species. The model suggests that aging genes tend to
have a higher number of connections and therefore supports
a strategy, based on connectivity, for prioritizing what might
otherwise be a random search for aging genes.
Contact: giovanni@burnham.org

INTRODUCTION
According to currently accepted evolutionary explanations
of aging (Partridge and Gems, 2002; Rose, 1991), the age-
related deterioration of functions is due to a generalized
lack of adaptation in biological systems rather than to a
specific genetic program. This is a consequence of the
decreasing power of natural selection with age (Charlesworth,
2000). Other evolutionary mechanisms, for example intergen-
erational transfers (and related kin selection) (Lee, 2003;
Maynard Smith, 1975) or sexual selection (Promislow, 2003),
might play a role, but are not generally considered of major
importance (Charlesworth, 2000; Partridge and Gems, 2002;
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Rose, 1991). This non-adaptive nature makes the study of the
genetics of aging more challenging, but it might also allow us
to formulate a model with general applicability because we are
less limited by the historical components of biological adapt-
ation. In other words, genetic network architecture influences
any biological process, but usually it also matters if the genes
under examination are involved in a specific function (e.g.
cell growth if we are studying cancer). In the case of aging
we might be able to infer the involvement of a gene purely
from topological considerations, because natural selection for
a specific function plays a lesser role.

The decline in physiological function observed during aging
differs from that associated with disease: Taffet (2002) lists
147 major physiological parameters that decline with age in
22 body systems. Furthermore, the decline is progressive and
gradual, initially affecting only physiological reserves (Taffet,
2002). There is no disease that has such a widespread effect
on the biological function of an organism (Braunwald et al.,
2001). In diseases, some organs and functions are usually
affected to a major extent and others only secondarily and
in a minor way (Braunwald et al., 2001). Aging-related dys-
function has therefore special properties: it is global (because
of the large number of physiological functions declining),
generalized (no specific function predominates) and gradual
(distributed over a considerable portion of life span). No dis-
ease possesses these properties to the same extent. We suggest
that aging is the biological dysfunction where network level
properties of the genes have the greatest importance. In con-
trast, disease-related dysfunctions are likely to preferentially
involve specific portions of a biological network.

Recently, many aging (or longevity) genes have been iden-
tified (Guarente and Kenyon, 2000; Hekimi and Guarente,
2003; Lin et al., 1998) by showing that they can retard aging
when mutated or affected by interventions. Our aim has been
to develop a model to better understand how these interven-
tions or mutations can partially restore the functional decay
associated with biological aging. The model does not focus
on the causes of aging but on the mechanisms of the observed
beneficial interventions. The necessity of using a network
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approach to the study of aging has been pointed out before
(Promislow and Pletcher, 2002).

It is now increasingly accepted that the topology of genetic
and metabolic networks is organized according to common
properties. The most extensively studied is the degree distri-
bution, which is often close to scale-free (Albert and Barabasi,
2002; Bergmann et al., 2003; Bray, 2003; Stuart et al., 2003),
or in any case ‘fat-tailed’ (Dorogovtsev and Mendes, 2002).
In these networks some nodes are hubs, with a great number
of links, while the majority have few connections. The nodes
in these models represent genes or metabolites and the links
represent the relations among them. Much less developed
are network models of biological function that also take into
account the recent advances in the understanding of network
architecture. Although for some networks, such as the Internet
or the electric power grid, links are used for communication
or transport, and can substitute for each other, genetic net-
works perform specific functions as a whole and the role of
individual links and nodes is less easily predictable. We have
therefore developed a functional network model, similar to
artificial neural networks (Bhalla, 2003), that incorporates
what we believe are the fundamental functional character-
istics of biological networks, in order to help us understand
the aging of biological systems and the effect of interventions
on this process. We have used an approach similar to that used
in digital evolution experiments (Lenski et al., 2003; Maynard
Smith, 1992; O’Neill, 2003) to adapt our networks to perform
a function. Digital evolution has been successfully used, for
example, to investigate the evolutionary origin of complex fea-
tures (Lenski et al., 2003) and the effect of mutations on the
evolution of digital organisms of different complexity (Lenski
et al., 1999). Our computational model differs from previous
ones in many respects, for example in offering the possibil-
ity of studying artificial neural networks of different topology
(scale-free versus random) as digital individuals.

We have tried to address the following questions: Should a
view of aging as a generalized process of degradation lead us to
be skeptical (Olshansky et al., 2002) of recent reports claiming
substantial benefits after interventions aimed at single genes?
Conversely, do these reports imply that aging is caused by spe-
cific genetic programs? How can we reconcile the observed
conservation of aging genes among evolutionary very distant
species with the prevailing non-adaptive view of aging? Can
we propose a model that explains these facts and also makes
testable predictions? Can we find initial evidence support-
ing these predictions? And, finally, can we use this model
to devise a more efficient strategy for the search of aging
genes?

SYSTEMS AND METHODS
Hardware
The software was run on three computer clusters: Falcon and
Jet, located at the Burnham Institute and Blue Horizon, located

at the San Diego Supercomputer Center. Jet is a 16 nodes
(2 CPUs per node) cluster and Falcon a 41 nodes (2 CPUs per
node) cluster. Both use parallel virtual machine (PVM) as a
message-passing library. Blue Horizon is a 114 nodes (8 CPUs
per node) cluster using message-passing interface (MPI) as a
message-passing library.

Software
Parallel implementation The software uses parallel libraries
in order to split the simulation over the nodes of the clusters.
The parallelization is made by starting a number of processes
equal to the number of individual networks plus one. We
obtain one slave process for each individual and a master pro-
cess, which coordinates the whole execution. The population
is kept by the master process, which also randomly creates
new sequences of symbols, sends symbols and individuals to
each slave (one individual per slave) and gets results back.
Each slave submits symbols to the individual network per-
forming the classification job, and provides results back to
the master.

Network implementation A network is a set of nodes (from
now on the word node refers to the nodes of the network,
not to the physical nodes of the cluster as above) connected
by directional links that represent the flow of information.
Our functional networks are composed of input nodes, output
nodes, and internal nodes, each working on its input with a
sigmoid function.

The value of a node, at a particular step of our evolution t , is
determined as follows: given a node i, we define N as the set
of nodes whose edges point to i, and W as the set of weights
associated with each edge; thus, the node N [k] is connected
with the node i through a link whose weight is W [k]. Finally,
let a[t] be the coefficient for the sigmoid. The output for the
node i is given by:

Output_i(x, t) = 1/[1 + e(−a[t]∗x)], (1)

where x is
x = �N [k]t−1W [k]t−1,

where N [k]t−1 indicates the output of the node N [k] at the
time t − 1.

Thus, each node is characterized by two values that change
with time: its status (output) and its exponent modifier (a).
When the population is created, the exponent modifiers are
set to 1. The exponent modifier changes with time, in order
to preserve a memory of previous states, by averaging with
the status at each step. Input and output nodes are chosen ran-
domly, amount to 2% of the total number of nodes and cannot
coincide. The input nodes receive the sequence of numbers to
be classified and the output nodes provide the classification.

When a new symbol is given to a network (to its
input nodes), each input node evaluates its activation value
[Equation (1)], by using the symbol as x. The activation values
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are then propagated through weighted connections and at the
end the activation values of all the output nodes are averaged.

A positive result indicates the input symbol is, for example,
+0.2, a negative one leads to the opposite conclusion, −0.2.
The network can also discriminate between positive numbers
of different magnitude and between ranges of number.

Each individual in a population is characterized by the same
architecture, which is stored in a global binary matrix. The
implementation of an individual is made using a matrix of
real values that represent weights associated with links. These
matrices have as many rows (and columns) as the number of
nodes N . In addition, an array of N elements stores the current
status and exponent modifiers of each node.

Network topology The main topology we used is the scale-
free model: a structure in which many nodes have a low
degree of outgoing/incoming links, while a few nodes have
a high degree (hubs); the link distribution follows a power
law curve. The number of outgoing and incoming links for
a node is decided using a power law probability distribution
(Albert and Barabasi, 2002). We obtain a better power law dis-
tribution with lower values of average degree (average number
of links per node). In any case, we always obtain a fat-tailed
distribution with many highly connected nodes (Dorogovtsev
and Mendes, 2002). Another topology we used is the random
network, built by randomly selecting couples of nodes to be
connected until we have the desired number of links (Erdos
and Renyi, 1959). The link distribution of a random network
decreases rapidly and follows a Poisson distribution with peak
corresponding to the average degree of the network.

Evolution During evolution, a population of networks is
selected using genetic algorithms (Holland, 1992) to perform
a task: the correct classification of a sequence of different
numbers in two groups (e.g. two groups of numbers of differ-
ent absolute value or sign). The evolution process ends when
the average success rate of the population is higher than a
pre-fixed threshold (90%); if this condition is not reached,
the evolution process ends after a pre-fixed number of gen-
eration steps (20), and a new population is created. During
the evolution process, a genetic algorithm is used to simulate
the evolution of the population. At the beginning, all of the
individuals have random real values for their links (between
−1 and 1), while their exponent modifiers are set to 1, and
their status are set to 0. The evolution phase is divided into
the following steps:

(1) A randomly created sequence of K symbols is submit-
ted to each network of a population of 50 individual
networks and the success rate is evaluated.

S = (s1, . . . , sK), si = ±0.2.

(2) Given the sequence of symbols S, and defining
succ_rate_j the success rate of the j -th network, we

select the best individual in the population so that:

Best_network = argmax(j=1...N) succ_rate_ j;

a second individual is also selected, by using a tourna-
ment selection algorithm, which first creates a subgroup
between the individuals (three-fourth of the entire popu-
lation) and then selects the best individual within the
group. This is done to avoid local maxima.

(3) These two individuals are used as parents for the
offspring: we create as many offspring as the current
number of individuals in the population (50) by
involving two processes: crossover and mutation.

(4) In the crossover phase we set link weights, status and
exponent modifiers values in each offspring. We use
information coded into the parents, using the following
rule: with a probability of 50%, the new value is a linear
combination of the two parent values, while for the
other 50%, the new value is set to the value of one of
the parents (the chosen parent is decided with a 50–50%
probability).

When the linear combination is chosen, we first select
a random number r ∈ [0..1] and then evaluate the new
value for the offspring as:

new_value = r ∗ parent1_value + (1 − r)

∗ parent2_value.

Thus, the linear combination is an average only when
r = 0.5.

(5) The mutation process affects link weights, with the fol-
lowing rule: each individual has a probability of 0.3 to
be mutated with a low mutation rate and a probability
of 0.1 to be mutated with a high mutation rate. For each
individual selected for mutation, the algorithm goes
through the individual’s links and randomly changes
each of them according to the selected mutation rate:
0.1% for the high rate mutation and a 0.01% of probab-
ility for the low rate mutation. Two different mutation
rates were used to generate individuals with a wider
range of variation, and therefore facilitating evolution.

(6) We evaluate the performances of the new offspring by
making them classify the same sequence of symbols as
the original population has worked on. The final step is
to create a new population by choosing the best indi-
viduals between the parent population and the offspring
population. The population size does not change during
the evolution phase.

Biological information is encoded in DNA and originates from
natural selection (Adami, 1998; Maynard Smith, 1999). Our
networks accumulate information by the analogous process of
digital evolution, and this information is used to classify the
inputs. Our aim is to model the degradation and restoration
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of this information within individuals, to simulate aging and
interventions on aging.

Node degradation After the evolution phase, node degrada-
tion is performed by changing all of the exponent modifiers
that characterize the nodes: before a new sequence of symbols
is submitted, each exponent modifier is set to 98% of its
current value. This phase stops when only 60% of numbers or
less are classified correctly by the networks.

Restoration During this phase, we reset node values (status
and exponent modifiers) to the values they had before the
degradation process started. In separate experiments, we
restore the values of the 10% of nodes with more outgoing
links (the hubs) and of the 10% with fewer outgoing links. The
functional recovery in the classification ability of the networks
is then measured.

Analysis of biological networks
For our systematic analysis (Section 4 of biological res-
ults), we downloaded datasets of interactions from the
General Repository for Interaction Datasets (Breitkreutz
et al., 2003). This online database contains interaction
sets for Saccharomyces cerevisae, Caenorhabditis elegans,
and Drosophila melanogaster (YeastGRID, WormGRID and
FlyGRID, respectively). These datasets are dominated by
physical interactions obtained by high-throughput techniques
(e.g. yeast two-hybrid, affinity precipitation, etc.), but also
include genetic interactions taken from the literature. Python
software was written to import the lists of interactions, map
genes to gene numbers and format the data into a network of
nodes and links. The software has the capability to convert
directed graphs into undirected graphs, eliminate duplicate
links and calculate node connectivity. The Python develop-
ment environment also provides interactive access to network
data. The network connectivity of a sample of genes was
inspected manually to verify the computer analysis.

Aging genes that had been shown to either extend or shorten
life span were obtained from the SAGE database (Strauss
and LaMarco, 2002). The number of links kaging was found
for each aging gene in the network, and the average local
connectivity of aging genes 〈kaging〉 was computed for each
species. Since the distribution of links per node in most
biological networks follow a power law rather than a nor-
mal distribution, standard statistical methods for comparing
〈kaging〉 with the global mean 〈k〉 could not be used. Similar
to Promislow (2004), we used a randomization procedure for
evaluating the significance of 〈kaging〉 for a set of genes of size
m. Random samples of sizemwere extracted from the network
and the mean connectivity 〈krand〉 of each sample was calcu-
lated and compared with 〈kaging〉. A Python script was written
to perform this test a large number of times (N = 100 000;
see below) and obtain the percentage of trials in which 〈krand〉
exceeded 〈kaging〉. We then reported a P -value as a measure
of statistical significance.

A simple analysis was performed to support our choice
of N , the number of random samples. The mean value of
〈krand〉 over N random samples was computed for a range
of N . This average was seen to quickly converge to the
global network average for values of N much smaller (only
a few hundred iterations) than our choice of 100 000. The
P -values obtained after 10 000 and 100 000 iterations were
also virtually identical.

Statistical analysis
All results are expressed as mean ± standard error of the mean.
For comparisons of two groups we used paired or unpaired
t-tests. The data presented in Figure 2 were analyzed with
two-way analysis of variance. For analyses of some biological
data we used χ2 tests. The statistical software used was Prism
(GraphPad).

RESULTS
The computational model
The main features of our computational model are as
follows:

(1) The networks perform a function, and we reasoned
that the simplest function shared by biological net-
works is classification, given that they usually have
to produce the correct output in response to different
signals coming from their internal or external envir-
onments. Among the fundamental properties of living
systems are homeostasis (which implies a response to
changes in the internal environment) and a capacity for
response to stimuli (Mayr, 1997). They are similar to
artificial neural networks, which, however, normally
have a regular topology (Haykin, 1999).

(2) The topological structure of the networks can take dif-
ferent forms, including a scale-free degree distribution.

(3) The links and nodes are weighted and the links are
directional.

(4) The function is not designed by us but evolves using the
principles of natural selection [as in genetic algorithms
(Holland, 1992)], that is, we have populations of
networks undergoing mutations, crossing-over and
selection.

(5) The degradation of function, simulating aging, is gen-
eralized and quantitative and does not necessitate the
removal of nodes.

(6) Interventions on specific nodes can partially restore
function, similarly to interventions on aging or
longevity genes.

The model is computationally very intensive and was imple-
mented using parallel programming on a cluster computer.

We have been able to show a clear difference between
strategies aimed at restoring the function of a network acting
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Fig. 1. The effect of restoring the values of the hubs after degrada-
tion. The hubs (defined as the top 10% of the link distribution) (filled
bars), and the nodes with fewer outgoing links (defined as the bottom
10% of link distribution) (open bars) were restored to their values
before degradation. The scale-free and random networks shown have
150 nodes, with an average 9 links per node. In scale-free networks,
we demonstrate a large functional effect of interventions optimizing
the hubs. For each experiment, n = 200.

on highly connected nodes (hubs) versus less connected ones.
This difference is much more pronounced in networks with
a scale-free rather than a random distribution (Fig. 1). For
example, if we restore the hubs (defined as the top 10% of
the link distribution) to the value they had before degrada-
tion, in a scale-free network of 150 nodes (Fig. 1), we can
recover 35 ± 3.3% of lost function. If, however, we restore
the values of the least connected nodes (defined as the bottom
10% of link distribution) we do not improve the function of
the network (−0.86 ± 1.3% recovery) (P < 0.0001 versus
most connected nodes, n = 200). We also performed the
same experiment in a random network of comparable size
and number of links (Fig. 1). In this case, restoring the most
connected nodes only improves function by 5.6 ±1.9% while
restoring the least connected nodes does not improve function
(0.45 ± 1.6% recovery) (P = 0.049 versus most connected
nodes, n = 200). The difference between scale-free and
random network in functional recovery, after restoration of
the hubs, was significant (P < 0.0001).

We explored the consequences of changing the number of
nodes and the number of links per node in the networks. In a
large number of experiments on scale-free networks, in which
we studied networks ranging in size from 50 to 200 nodes
and with average degree ranging from 5 to 30, the average
functional recovery after restoring the hubs was 30.2% and
after restoring the least connected nodes was −0.5%(n =
1800). In every experiment the difference between these two
interventions was significant (P < 0.0001). In a comparable
large set of experiments on random networks, the functional
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Fig. 2. The number of steps required for degradation of function
(to an accuracy ≤60%), after damage equally affecting every node.
Experiments are shown for networks with a scale-free topology (filled
rhombuses) and with a random topology (open squares). Each data
point is the average of 200 independent experiments. The average
degree of the network is the average number of links per node. Using
two-way analysis of variance, scale-free networks are shown to be
functionally more resistant to generalized degradation, compared to
random networks. The effect is significant (P < 0.0001). Addi-
tionally, networks with more links per node degrade more rapidly
(P < 0.0001). Interestingly, this curve seems also to approxim-
ate a power law (inset) although we only studied it over a very
limited range.

improvements were on average 7.1 and 2.7%, respectively
for interventions on most and least connected nodes (n =
1800). In the majority of experiments, the difference between
these interventions was small and did not reach statistical
significance.

We then measured the effect of generalized damage (node
degradation affecting every node) on scale-free and random
networks (Fig. 2) and found that scale-free networks were
functionally more resistant. This is consistent with the results
obtained by other authors (Albert and Barabasi, 2002; Albert
et al., 2000; Jeong et al., 2001; Maslov and Sneppen, 2002),
who, however, studied connectivity rather than function. In
our model we do not remove nodes or links and the structure
is left intact. The structure of a network has a powerful effect
on its function but does not explain it completely. Several
authors (Newman, 2003; Strogatz, 2001) have emphasized
the importance of progressing from structural to functional
studies.

Another factor affecting the functional degradation of the
networks in our model was the average number of links
per node (Fig. 2). This figure suggests that our computa-
tional model might be used to investigate the relation between
network complexity and functional degradation.

The computational model shows that limited interventions
on the hubs can cause substantial restoration of function
in generally degraded networks that have the following
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properties: a scale-free structure and evolution of function
by a process similar to natural selection.

Testing the predictions of the model by analyses of
aging genes and biological networks
An increasing number of studies have analyzed the archi-
tecture of biological networks (Albert and Barabasi, 2002;
Bray, 2003). Comparative assessments have concluded that
available data are still incomplete and distorted by high rates
of false positives and false negatives (Alm and Arkin, 2003;
von Mering et al., 2002). A database of aging genes, the Sage
database (Strauss and LaMarco, 2002), also exists but it is
likely to be incomplete, given that the rate of identification
of aging genes does not seem to be slowing down. Even with
these limitations, initial evidence for our model can be found
using four different types of analysis:

(1) Evidence supporting our results is found in the
recent network analysis of expression profiles of
Bergmann et al. (2003). We have also confirmed this
finding analyzing the original data from Arbeitman
et al. (2002). Bergmann et al. report that the
most connected gene in Drosophila (barkai-serv.
weizmann.ac.il/ComparativeAnalysis/) is RPD3, a his-
tone deacetylase regulating transcription. RPD3 is also
one of only 20 genes that can retard aging in flies
(Sage database) (Strauss and LaMarco, 2002). There
are around 14 000 fly genes and the probability that this
could happen by chance is only 1 in 700 (P < 0.01).
Furthermore, RPD3 is one of only three fly genes for
which evidence of involvement in aging is especially
strong, because data exist in more than one species
(Kim et al., 1999; Rogina et al., 2002).

(2) Further evidence supporting our results derives from
the increased abundance of metabolic energy genes in
both aging genes and hubs lists. Among the genetic
interventions listed as promoting longevity in the Sage
database (Strauss and LaMarco, 2002), 108 are genes
of known function. Among these, the two largest
groups by far are mitochondrial genes (31 were listed)
and genes acting on insulin/carbohydrate metabolism
(30 genes were listed). A statistical analysis can be
performed by looking at individual species. Both in
Drosophila and in C.elegans there is a significant
increase in the number of genes involved in energy
metabolism in the Sage database, compared to the
entire genome data from Flybase (www.flybase.org)
and Wormbase (www.wormbase.org). We used (both
here and in all subsequent analyses) the Gene Onto-
logy (Harris et al., 2004) classifications for genes
involved in carbohydrate metabolism, insulin signal-
ing and mitochondrial respiration. In Drosophila there
were 4 energy metabolism genes out of 20 aging genes
(20%), while in the whole genome data there were

125 energy metabolism genes out of 7938 annotated
genes (1.6%) (P < 0.0001). In C.elegans there were 18
energy metabolism genes out of 50 aging genes (36%)
while in the whole genome there were 114 energy meta-
bolism genes out of 7022 annotated genes (1.6%) (P <

0.0001). Similar results are reported within a large-scale
longevity RNAi screen in C.elegans where Lee et al.
(2003) found a much larger proportion of mitochon-
drial genes compared to genomic data. Furthermore,
the most widely tested intervention that can prolong life
span is caloric restriction, obviously affecting energy
metabolism (Masoro and Austad, 2001). Using DNA
microarray data from humans, flies, worms and yeast,
Stuart et al. (2003) have found 22 163 coexpression
relationships that are conserved across evolution. The
number of links among these conserved genes (which
the author called metagenes) was distributed according
to a power law (Stuart et al., 2003). We examined all
of the genes that had more than 20 links (the largest
hubs) from this dataset. There were 263 such genes. In
this list there were 18 energy metabolism genes (7%),
significantly more than in both the Drosophila and the
C.elegans genome (1.6%) (P < 0.0001). Also in the
Drosophila hub list (expression data) of Bergmann et al.
(2003) there were 5 energy metabolism genes out of
43 (11.6%), significantly more than in the fly genome
(1.6%) (P < 0.0001).

(3) Another well-characterized biological network is the
metabolic network (Fell and Wagner, 2000; Jeong et al.,
2000; Wagner and Fell, 2001; Wuchty and Stadler,
2003). All these studies [one comparing 43 organisms
from all three domains of life (Jeong et al., 2000)] have
found that the largest hubs in this network are ATP, ADP,
inorganic phosphate and NAD. These are, of course, the
central molecules involved in metabolic energy trans-
fer, and are clearly affected by the products of aging
genes involved in energy metabolism.

(4) A more systematic analysis of the connectivity of aging
genes was also performed for the three main model
organisms used in aging research yeast (S.cerevisiae),
C.elegans and D.melanogaster. All the genes that
were both in the SAGE database of aging genes
(Strauss and LaMarco, 2002) and in the GRID database
(Breitkreutz et al., 2003) (the general repository for
interactions datasets) were examined. GRID contains
physical and genetic interactions, but not expression
network data.

Yeast. For yeast we substantially confirmed the results
reported in a recent article by Promislow (2004), which
appeared while our paper was under revision. We used sim-
ilar methods to analyze a larger set of aging genes as well as
a larger interaction dataset. As shown in Table 1, aging genes
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Table 1. Connectivity of S.cerevisae aging genes

Gene Gene no. GRID links

S.cerevisiae

ADA1 YPL254W 9
ATP2 YJR121W 3
BCY1 YIL033C 20
CCR4 YAL021C 28
CDC25 YLR310C 8
CDC6 YJL194W 7
CDC7 YDL017W 77
CTF4 YPR135W 116
CTT1 YGR088W 1
CYR1 YJL005W 13
DNA2 YHR164C 3
FOB1 YDR110W 13
GPA2 YER020W 8
GPD1 YDL022W 1
GPR1 YDL035C 1
HAP4 YKL109W 5
HAP5 YOR358W 12
HDF1 YMR284W 10
HDF2 YMR106C 65
HOG1 YLR113W 33
HXK2 YGL253W 6
LAG1 YHL003C 3
MPT5 YGL178W 12
MPT5 YGL178W 12
NMT1 YLR195C 1
NNT1 YLR285W 3
NPT1 YOR209C 2
PDE2 YOR360C 5
PHB1 YGR132C 1
PNC1 YGL037C 6
POL1 YNL102W 12
RAD27 YKL113C 59
RAD51 YER095W 39
RAD52 YML032C 40
RAD9 YDR217C 25
RAS1 YOR101W 6
RAS2 YNL098C 15
RIF1 YBR275C 2
RPD3 YNL330C 26
RSR1 YGR152C 9
RTG3 YBL103C 4
SGS1 YMR190C 43
SIM1 YIL123W 1
SIP2 YGL208W 11
SIR2 YDL042C 11
SIR3 YLR442C 16
SIR4 YDR227W 15
SNF1 YDR477W 26
SNF4 YGL115W 36
SOD1 YJR104C 18
SOD2 YHR008C 5
SSD1 YDR293C 8
SUN4 YNL066W 3
SWI4 YER111C 23
TPK2 YPL203W 8
UTH1 YKR042W 2
ZDS1 YMR273C 10
ZDS2 YML109W 24

Table 1. Continued. . .

Gene GRID links

Aging links 981
Aging genes 58
Aging mean 16.9
P -value (N = 100 000) 0.00035
Network links 38078
Network genes 4909
Network mean 7.8

This table lists the set of yeast aging genes from SAGE which were also in GRID
(the General Repository of Interaction Datasets). The average number of links of aging
genes (Aging mean) was larger than the average number of links for the entire network
(Network mean). Aging links and Network links are the total number of links in each
dataset (number of interactions per node multiplied by the number of nodes). TheP -value
was obtained by comparing the aging genes mean with that of 100 000 random samples
of the same size.

have a higher average number of interactions compared to the
entire network (P = 0.00035). We found interaction data for
58 out of 67 aging genes from SAGE (87%). The interaction
dataset covers 4909 genes out of the 5773 genes in the refined
yeast genome (Cliften et al., 2003) (85%).

C.elegans. For C.elegans the interaction dataset is very
limited, and it covers only 2519 out of 19 542 genes in the
genome (13%). Additionally, the average number of interac-
tions in this dataset is only 3, compared to 7.3 for Drosophila
and 7.8 for yeast. Therefore, we had interaction data for only
9 out of the 97 genes (9%) in the SAGE database and we
could not detect any difference in connectivity compared to
the entire network.

Drosophila. For Drosophila, the interaction dataset includes
7230 out of 14 015 genes (52%) and we could find interaction
data for 18 out of 29 genes (62%) from SAGE. The average
connectivity of aging genes was increased, with P = 0.07.
These data are shown in Table 2.

DISCUSSION
It is useful to remember that the phenotypes caused by single
gene mutants (and chemical treatments) have been shown to
result from changes in the expression of many genes, up to
several hundreds (Featherstone and Broadie, 2002; Hughes
et al., 2000). This is why we designed our functional network
model to include the optimization of multiple hubs. These co-
regulated genes often are functionally related. In fact, one of
the main co-regulated clusters in the study by Hughes et al.
(2000) was composed of genes involved in mitochondrial
respiration. Therefore, when we analyze the enrichment of
energy metabolism genes in aging and hub lists we are not
simply describing a property of a class, but it is likely that
at least some of the same genes are affected by anti-aging
interventions and by coexpression links.
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Table 2. Connectivity of D.melanogaster aging genes

Gene Gene no. GRID links

D.melanogaster

EcR FBGN0000546 1
hsp68 FBGN0001230 8
chico FBGN0024248 7
Sug FBGN0036191 1
RPD3 FBGN0015805 12
cct1 FBGN0035230 4
indy FBGN0036816 4
DPOSH FBGN0040294 5
SOD2 FBGN0010213 1
cher FBGN0014141 44
EF-1 FBGN0000556 43
hep FBGN0010303 40
MSRA FBGN0000565 3
ovo FBGN0003028 21
VhaSFD FBGN0027779 5
SOD1 FBGN0003462 2
cat FBGN0000261 3
Dmp53 FBGN0039044 11

Aging links 215
Aging genes 18
Aging mean 11.9
P -value (N = 100 000) 0.07
Network links 52826
Network genes 7230
Network mean 7.3

This table lists the set of Drosophila aging genes from SAGE which were also in GRID
(the General Repository of Interaction Datasets). The average number of links of aging
genes (Aging mean) was larger than the average number of links for the entire network
(Network mean). Aging links and Network links are the total number of links in each
dataset (number of interactions per node multiplied by the number of nodes). TheP -value
was obtained by comparing the aging genes mean with that of 100 000 random samples
of the same size.

The two most common theories (Charlesworth, 2000;
Partridge and Gems, 2002; Rose, 1991), not mutually
exclusive, for the evolution of aging are as follows:

(1) Mutation accumulation (accumulation of mutations
with late onset because of the decreasing power of
natural selection at advanced ages).

(2) Antagonistic pleiotropy or trade-off (mutations that
are beneficial early in life but damaging later are
selected for).

Our model is compatible with these theories because they
both predict that the genetic network is not adapted to the
extra- and intracellular environment of the aged organism, as a
consequence of the decreasing power of natural selection with
age. These evolutionary mechanisms do not predict the exist-
ence of a specific genetic pathway solely responsible for aging.
In any case generalized damage, affecting every physiological
system, is what we observe in aged organism (Hazzard et al.,
1999), and when damage is widespread even gene products not
directly affected will not be optimized for the changed cellular

environment. We are not modeling the causes of aging but the
mechanism of its partial restoration, which many authors have
observed after interventions on genes or on their products.
Theses two aspects (cause and remedy) might not necessarily
coincide.

Within our model, aging or longevity genes are the genes
with more connections (the hubs), which contribute more to
organ or body function restoration when their expression or
activity is optimized. This offers a general explanation for
the extensive degree of conservation of aging genes among
very distant species (Guarente and Kenyon, 2000; Hekimi
and Guarente, 2003), which might be puzzling in the absence
of selective pressure. Other proposed explanations have lim-
itations. The mutation accumulation theory does not seem
to explain conservation (Partridge and Gems, 2002). The
antagonistic pleiotropy (trade-off) theory would explain the
conservation of aging genes if the link between early benefit
and late damage is based on some conserved physiological
mechanism (Partridge and Gems, 2002). The problem of con-
servation of aging genes is transformed into the problem of
conservation of this link. Also, this theory requires that inter-
ventions improving aging are accompanied by a cost at an
earlier age. Another proposal is that a conserved survival
mechanism, to be activated in times of scarcity, might explain
the conservation of the involvement of energy metabolism
genes in aging (Hekimi and Guarente, 2003). This is relev-
ant for only some aging genes and again it implies a cost, to
explain why the survival mechanism is not active all the time.
There are several apparent examples of cost-free longevity that
would not be consistent with these models (Arantes-Oliveira
et al., 2003; Dillin et al., 2002; Holzenberger et al., 2003;
Lithgow and Gill, 2003). According to our model what is
actively conserved is not the effect of a gene on aging but
the central role of hub genes in biological systems. Highly
connected genes are often evolutionary conserved (Bergmann
et al., 2003).

Optimal interventions on aging based on our model would
be quantitative and would act on multiple hubs. Almost all
(19 out of 20) Drosophila aging genes from the Sage data-
base (Strauss and LaMarco, 2002) have been found after
experiments involving overexpression, heterozygous mutants
or hypomorphic mutants. All these are quantitative interven-
tions. Only one null mutant is listed, chico, a substrate for
the insulin receptor, and the authors (Clancy et al., 2001) who
described it argue that the mutants have only a mild reduc-
tion in the insulin receptor pathway. This seems likely, since
severe mutations of the insulin receptor are lethal (Clancy
et al., 2001). Therefore the effect of this genetic intervention
is also quantitative. If a pathway that had aging as the only
function existed, complete genetic knockouts would also be
beneficial. The efficacy of all these quantitative interventions
support a network model of aging, in which genes that do
not have an optimal level of activity do not achieve optimal
function.
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If we view aging as a generalized accumulation of ran-
dom damage (Olshansky et al., 2002), we might conclude
that the lack of a specific genetic program for aging might
imply that treatments are necessarily very problematic or
impossible. Our computational model shows that, even in the
worst case scenario, where aging results from damage to (or
lack of optimization of) every gene, a substantial benefit can
be obtained from a targeted intervention aimed at optimiz-
ing hub function. Any action of natural selection on aging
(Lee et al., 2003; Maynard Smith, 1975; Promislow, 2003)
would act on a pre-existing [since we can also find it in proka-
ryotes (Jeong et al., 2000)] scale-free network structure, which
would represent a constraint on any evolutionary change.
Strong departures from our non-adaptive model would rep-
resent a trace of the action of natural selection and might be
used to estimate its effects on aging.

Limitations of the model
Are all aging genes always hubs? The biological data we ana-
lyzed do not support an affirmative answer. There are three
reasons that might explain this:

(1) Limitations of existing biological datasets. Compar-
isons of different protein–protein interaction datasets
in yeast show very little overlap, suggesting that the
coverage might still be incomplete (von Mering et al.,
2002). The authors of the recent paper describing the
interaction map in Drosophila stated clearly that they
estimate only 40% of the interactions in their high con-
fidence subset are likely to be biologically relevant (Giot
et al., 2003). There are also different classes of molecu-
lar networks [e.g. protein–protein physical interactions
and expression networks, see Xia et al. (2004) for
a more comprehensive list] and it is not clear which
are more relevant to our model. The fact that some
of the biological evidence for our model is stronger
in yeast, where the existing interaction data are much
more extensive (Bork et al., 2004), seems to support the
relevance of this consideration.

(2) Other network properties beside local connectivity
might be important. By local connectivity we mean the
number of links of a node, for example the number of
interactions of a protein. It is becoming clear that there
might be more than one type of hub (Han et al., 2004).
Measures of global connectivity can also be obtained
(Chin and Samanta, 2003). All the large biological data-
sets only list the presence or absence of an interaction
but it is clear that we would also need to know by how
much one protein affects another to make completely
accurate functional predictions.

(3) Natural selection might affect aging in a way that
distorts network properties. Many believe, how-
ever, that non-adaptive forces might predominate in
shaping biological aging (Partridge and Gems, 2002;

Rose, 1991). In any case, since natural selection acts on
existing structures (Futuyma, 1998), it might just rein-
force the actions of genes that affect aging because of
their topological properties, for example by reinforcing
the role of the hubs.

In biological aging, gene products (proteins and their sub-
strates) change with age and beyond a certain level the change
affects function significantly. Some genetic changes or inter-
ventions can modify the functional decline (at least in model
organisms). For interventions acting when aging is already
under way our model applies directly, while for genetic muta-
tions, and for interventions starting from earlier life stages,
we can interpret any effect as due to an increased resistance to
change of the gene products. Computationally, the scenarios
of having a gene product not change or having it change and
then restore it are equivalent as far as their final effect is con-
cerned. But it is certainly true that there is much that we do
not know about the aging process and the applicability of this
model. Having alternative models and investigating their rel-
evance to biological reality might help us to understand aging
better.

We have studied the effect of changing some parameters
of our model (e.g. the number of nodes and the number of
links). The parameters used during evolution were optimized
to make the evolution of functional networks possible during
a realistic computational time frame (Mitchell, 1998). Our
present computational model can only be used to derive a very
general qualitative conclusion: restoring some nodes of a net-
work can have a large effect on the function of the network
uniquely because of their topological properties. Future
studies might try to more closely approximate biological
reality, for example by using real biological networks, with
higher number of nodes, for functional experiments, but
computational requirements might be large. Another feature
that should be incorporated in future studies is the hierarchical
model of biological networks (Barabasi and Oltvai, 2004).

CONCLUSIONS
Many aging genes have been found from unbiased screens
in model organisms. As discussed above, genetic interven-
tions promoting longevity are usually quantitative, and might
require a large number of experiments to find the optimal
level, while in many other biological fields (e.g. develop-
ment) null mutations alone have been very informative. In the
case of aging therefore the task is larger and the need for
a more efficient genetic search strategy is especially strong.
We suggest that in those species in which large collections
of known mutants are available [e.g. Drosophila, where a
genome wide collection is at a very advanced stage of devel-
opment (Spradling et al., 1999)], it might be advantageous to
first examine the genes that have the largest number of links.
This might also be a useful strategy in human centenarian stud-
ies, where researchers are now searching within chromosomal
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regions that are likely to contain alleles affecting human aging
(Puca et al., 2001).

Our model suggests that aging genes tend to have a higher
number of connections and therefore supports a strategy for
prioritizing, with limited additional effort, what might other-
wise be a random search. Limitations of existing interaction
datasets and the possibility that other network properties
besides local connectivity might be relevant should, however,
be considered.
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