
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 7 2005, pages 1104–1111
doi:10.1093/bioinformatics/bti114

Gene expression

Classification using partial least squares with penalized
logistic regression
Gersende Fort and Sophie Lambert-Lacroix∗
CNRS/LMC-IMAG, BP 53, 38041 Grenoble cedex 9, France

Received on July 27, 2004; revised on October 5, 2004; accepted on October 22, 2004

Advance Access publication November 5, 2004

ABSTRACT
Motivation: One important aspect of data-mining of microarray data
is to discover the molecular variation among cancers. In microarray
studies, the number n of samples is relatively small compared to the
number p of genes per sample (usually in thousands). It is known that
standard statistical methods in classification are efficient (i.e. in the
present case, yield successful classifiers) particularly when n is (far)
larger than p. This naturally calls for the use of a dimension reduction
procedure together with the classification one.
Results: In this paper, the question of classification in such a high-
dimensional setting is addressed. We view the classification problem
as a regression one with few observations and many predictor vari-
ables. We propose a new method combining partial least squares
(PLS) and Ridge penalized logistic regression. We review the existing
methods based on PLS and/or penalized likelihood techniques, outline
their interest in some cases and theoretically explain their sometimes
poor behavior. Our procedure is compared with these other classifi-
ers. The predictive performance of the resulting classification rule is
illustrated on three data sets: Leukemia, Colon and Prostate.
Availability: Software that implements the procedures and data
source on which this paper focuses are freely available at http://www-
lmc.imag.fr/SMS/membres/Gersende_Fort,Sophie_Lambert.html
Contact: sophie.lambert@imag.fr

INTRODUCTION
Microarray technology generates a vast amount of data by measur-
ing, through the hybridization process, the levels of virtually all the
genes expressed in a biological sample. One can expect that know-
ledge gleaned from microarray data will contribute significantly to
advances in fundamental questions in biology as well as in clinical
medicine. One important goal of analyzing microarray data is to
classify the samples. To cite a few, Golub et al. (1999) have con-
sidered classification of acute leukemia and Alon et al. (1999) have
addressed the cluster analysis of tumor and normal colon tissues.
The approaches developed in these papers consist in discrimination
methods and machine learning methods [see Dudoit et al. (2002) for
a comparative study].

In microarray studies, the number of samples, n, is relatively
small compared to the number of genes, p, usually in thousands.
Unless a preliminary variable selection step is performed, stand-
ard statistical methods in classification perform poorly because
there are far more variables than observations. One problem is
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multicollinearity: estimating equations become singular and have
no unique and stable solution. For instance, the pooled within-class
sample covariance matrix in Fisher’s linear discriminant function is
singular if n < p+2. Even if all genes can be used as in support vector
machines, it seems to be not sensible to use all the genes. Indeed, this
use allows the presence of the noise associated with genes of little
or no discrimination power. That inhibits and degrades the perform-
ances of the classification rules in their application to unclassified
tumor. In this situation, dimension reduction is needed to reduce
the high p-dimensional gene space. In most previously mentioned
works, the authors have used univariate methods for reducing the
number of genes. Alternative approaches to handle the dimension
reduction problem can also be used (see for instance Ghosh, 2002;
Nguyen and Rocke, 2002; West et al., 2001; Antoniadis et al., 2003).

Similar data structures have been encountered in the field of chem-
ometrics. The method of partial least squares (PLS) (Wold, 1975;
Naes and Martens, 1985; Helland, 1988) has been found to be a use-
ful dimension reduction technique as well as principal component
regression (PCR) [Massy, 1965; see Frank and Friedman (1993) for
a statistical view of PLS and PCR]. In the context of microarrays,
the purpose of PCR is to produce orthogonal tumor descriptors that
reduce the dimension to only a few gene components (super-genes)
(West et al., 2001). But the dimension reduction is achieved without
regard to the response variable and may be inefficient. This is the
reason why PLS looks more adapted than PCR for dimension reduc-
tion based prediction. Indeed, PLS components are chosen so that the
sample covariance between the response and a linear combination of
the p predictors (genes) is maximum.

Nguyen and Rocke (2002) proposed using PLS for dimension
reduction as a preliminary step to classification, based either on linear
logistic discrimination, or linear or quadratic discriminant analysis.
However, this seems to be intuitively unappealing because PLS is
really designed to handle continuous responses and models that do
not suffer from heteroscedasticity as it is the case for Bernoulli or
multinomial data. Furthermore, in practice we have observed prob-
lems in the convergence of the iteratively reweighted least squares
(IRLS) algorithm, which is the usual procedure for solving the max-
imum likelihood (ML) equation in the field of the generalized linear
models (GLM). Indeed, for logistic regression, it is well known that
convergence poses a long standing problem. Infinite parameter estim-
ates can occur depending on the configuration of the sample points
in the observation space (Albert and Anderson, 1984).

Marx (1996) proposed an extension of PLS to a categor-
ical response variable and illustrated the developments from a
spectroscopy example. His approach embedded the usual PLS
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steps within the IRLS. Unfortunately, we have observed that this
algorithm does not converge in many cases of interest (such as
in the applications considered in this paper). More recently, Ding
and Gentleman (2004, http://www. bepress.com/bioconductor/) pro-
posed an approach based on this procedure. They phrased the
problem in a GLM setting and applied Firth’s procedure to avoid
(quasi)separation.

To deal with the high-dimension problem, another approach con-
sists in penalizing the likelihood. Eilers et al. (2001) propose useing
the Ridge penalized logistic regression in order to both stabilize the
statistical problem and remove numerical degeneracy due to mul-
ticollinearity. They have shown that this method appears to work
well with microarray data. Note that this method is not a dimension-
reduction technique. Indeed all explanatory variables are allowed
into the regression model. From the log-likelihood a so-called Ridge
penalty is subtracted. All the genes contribute, which can inhibit and
degrade the performances of the classification rules. Note that we can
find alternative approaches (see, for example, Huang and Pan, 2003;
Ghosh, 2003) for which the classification problem is not viewed as
a problem in a logistic regression.

In this paper, we extend the PLS method to a binary response vari-
able. To do that, we want to substitute the categorical response
variable in the input of PLS by a continuous-valued pseudo-response
variable whose expected value has a linear relationship with the cov-
ariates. The limiting pseudo-response variable in the IRLS algorithm
seems to be a good candidate. Unfortunately, in the present situation,
‘small n, large p’, IRLS no longer works since the limiting pseudo-
response variable is, in norm, infinite. The idea developed here is
to penalize with a Ridge penalty the likelihood criterion in order
to constrain the pseudo-response variable to be finite. That is, our
procedure combines a Ridge penalty step and a PLS step and the
dimension-reduction step is incorporated in the classification step.
Here we present the classification rule for the binary response vari-
able indicating a normal or colon tumor, for instance. Nevertheless,
our approach remains valid for multi-categorical response variables.
But the binary case is the simplest case which allows us to point out
whether such a procedure works well or not and why.

This paper is organized as follows. The Methods section is the
methodological part of this paper. It contains a description of the
logistic regression and linear discrimination. We then recall the Ridge
regression method and derive a weighted PLS algorithm in order to
address the dimension reduction in heteroscedastic models. We then
introduce an extension of PLS to GLM based on the Ridge penalty,
and analyze the Nguyen and Rocke, Marx, Ding and Gentleman and
Eilers et al. algorithms. Applications to disease classification through
microarray are presented in the Results section.

METHODS

Some basic ingredients
After introducing some notations, we recall the principle of linear logistic
discrimination, some results on the existence of the maximum likelihood
estimator and the classical algorithm used to compute it. Next, we present
a regularization method, a penalized maximum likelihood method, and a
dimension-reduction technique, PLS.

Notations
Expression levels of the p genes for the n microarray samples are collected
in an n × p data matrix X = (xi/j), 1 ≤ i ≤ n, 1 ≤ j ≤ p. The entry xi/j is

the expression level of the variable ‘gene’ j in the microarray sample i, and
the i-th row Xi,· is the vector of a gene expression profile for sample i. More
generally, for a matrix A, Ai,j denotes the entry (i, j), A·,j (resp. Ai,·) denotes
the column vector collecting the column #j (resp. the row #i). Ai1:i2,j1:j2 is
the (i2 − i1 + 1) × (j2 − j1 + 1) matrix formed by picking out the rows
i1 to i2 and columns j1 to j2 of A; A·,j1:j2 is formed by picking out the
columns j1 to j2 of A. The labels of the n microarray samples are collected
in a {0, . . . , (g − 1)}n-valued vector y. In supervised machine learning, each
sample is thought to originate from a specific class k ∈ {0, . . . , g − 1} where
the number of possible classes g is known and fixed. A classifier can be
regarded as a function G : R

p → {0, . . . , g − 1} that predicts the unknown
class label of a new tissue sample x ∈ R

p by G(x). We assume that the
data (y, X) collect observations of n statistically independent and identically
distributed random pairs (Y , X). We choose a logit model for the data (see,
e.g. Fahrmeir and Tutz, 2001), and the logistic discrimination (LD) method
for the classification procedure (see, e.g. Timm, 2002). In the terminology of
the regression analysis, (X·,j )1≤j≤p are the predictor variables and (y

i
)1≤i≤n

the response variables. We include an intercept into the regression model,
and denote by Z = [1In X] the design matrix of size n × (p + 1), where
1In = (1, . . . , 1)′ stands for the column vector of length n (′ denotes the
transposition operator).

Linear LD
In logit models, the conditional class probability—or equivalently, the condi-
tional expectation of Y given X—P(Y = 1|X = x; γ ) is related to x and some
parameter γ ∈ R

p+1 through the relation P(Y = 1|X = x; γ ) = h([1 x′]γ )

where h(η) = 1/[1+ exp(−η)]. The quantity [1 x′]γ is called the linear pre-
dictor. γ is an unknown parameter that has to be estimated from the data. In
LD, it is usually estimated by γ̂ ML, the ML estimator. The log-likelihood of
the observations for the value γ of the parameter, simply denoted by l(γ ), is
given by

l(γ ) =
n∑

i=1

{
y

i
ηi (γ ) − ln

[
1 + exp(ηi (γ ))

]}
, (1)

where for all 1 ≤ i ≤ n, ηi(γ ) = (Zγ )i .
For a vector z = [1 x′], the predicted class ŷ of each sample is 1 if

π̂ > 1−π̂ and 0 otherwise, where π̂ = h(z′γ̂ ML). Nevertheless, as discussed
below, in some cases, including in practice the case n � p, the existence and
unicity of γ̂ ML for logit models is not guaranteed.

Maximum likelihood estimate and IRLS
We say that the ML estimate exists if there exists γ ∈ R

p+1 of finite norm
which is a maximizer of the concave log-likelihood l. Hence, such an estimate
is a solution to the normal equation Z′(y − π(γ )) = 0, where π(γ ) is the
R

n-valued mean vector with coordinates πi(γ ) = h(ηi(γ )).
If Z is full column-rank, the solution, when exists, is unique. The exist-

ence of a solution, when Z is full column-rank, depends on the configuration
of the n sample points in the observation space R

p (Albert and Anderson,
1984; Santner and Duffy, 1986). There are three exclusive situations: sep-
arate, quasi-separate and overlap. In the first two cases, there exists γ̂ such
that (Zγ̂ )i ≥ 0 for all i such that y

i
= 1 and (Zγ̂ )i ≤ 0 for all i such

that y
i
= 0; roughly speaking, this means that there exists a hyperplane that

exactly separates the two classes, except maybe some points that can belong
to the hyperplane. In such a case, l reaches its maximum as ‖γ ‖ tends to
+∞ and the ML estimate does not exist. In the third case, the estimate exists
and is computed as the limit of a converging Newton–Raphson sequence; this
algorithm is known as the IRLS algorithm (Green, 1984). Let W(γ ) be the
diagonal n × n matrix with diagonal entries Wi,i (γ ) = πi(γ )[1 − πi(γ )].
Each iteration divides into two steps,

z(t) = Zγ (t) + [
W(t)

]−1(y − π(t)
)
, (2)

γ (t+1) = (
Z′W(t)Z

)−1
Z′W(t)z(t), (3)

where W(t) and π(t) are shorthand notations for W(γ (t)) and π(γ (t)). IRLS
can thus be considered as an iterative weighted least square regression of
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an R
n-valued pseudo-variable z(t) onto the columns of Z. We denote this

algorithm by IRLS (y, x)
When Z is not full column-rank, the parameter is not identifiable and

the ML estimate is not unique when exists; applying the above iterations
[Equations (2) and (3)] by replacing the inverse matrix (3) with the Moore–
Penrose pseudo-inverse, yields the parameter estimate which is of minimal
norm among all the solutions. In practice, in the present statistical framework
n � p, n = rank(Z) and the minimal norm solution verifies for all 1 ≤ i ≤ n,
(Zγ )i = ln(y

i
) − ln(1 − y

i
); it is thus of infinite norm and the ML estimate

cannot exist. This calls for regularization methods.

Ridge penalty and RIRLS
The Ridge estimator (Le Cessie and Van Houwelingen, 1992) γ̂ R is defined
as the (unique) maximizer of the penalized likelihood l∗(γ ) = l(γ ) −
0.5λγ ′�2γ , where λ > 0 is the shrinkage parameter, and �2 is a diagonal
matrix with entries �2

1,1 = 0 and

�2
j ,j =

n∑
i=1

(Zi,j − 1I′nZ·,j /n)2, j ∈ {2, . . . , p + 1}. (4)

The weighted penalty term takes into account the non-scaling of the covari-
ate matrix X, and does not apply to the location parameter γ1. γ̂ R always
exists, is unique and is computed as the limit of a Newton–Raphson sequence.
We denote by RIRLS(y, X, λ) (shorthand notation for Ridge-IRLS) this
algorithm. It consists in replacing in IRLS, the weighted regression (3) by a
weighted Ridge regression γ (t+1) = (Z′W(t)Z + λ�2)−1Z′W(t)z(t), where
z(t) is built as in Equation (2).

λ controls the amount of shrinkage in the data and can be chosen
as the minimum, over a given range, of the BIC criterion −2l(γ̂ R) +
log(n)trace[Z (

Z′W(γ̂ R)Z + λ�2
)−1 × Z′W(γ̂ R)] (Kass and Raftery,

1995).

Weighted PLS
PLS is both a tool for linear regression and a tool for dimension reduc-
tion (Wold, 1975; Naes and Martens, 1985; Helland, 1988). Let y ∈ R

n

be a response vector, X be an n × p data matrix and W be a symmetric pos-
itive definite n × n matrix. PLS (i) defines κ W -orthogonal scores (tk)1≤k≤κ ,
linear combinations of the columns of Z such that for all k, 1I′nWtk = 0 and
(ii) performs a W -weighted least squares regression of y on (1In, t1, . . . , tκ ).
This yields the decomposition

y = q01In + q1t1 + · · · + qκ tκ + fκ+1 = Zγ̂ PLS,κ + fκ+1

where the residual term fκ+1 is W -orthogonal to the vectors (1In, t1, . . . , tκ ).
Contrary to classical dimension-reduction methods (such as PCR), the scores
depend on the response vector y; roughly speaking, given (tk)1≤k≤l , tl+1 is the
linear combination of the columns of Z, i.e. is of the form tl+1 = Zc, which is
the most informative on the residual response variable fl+1, when information
is defined in terms of the weighted covariance |Cov(

√
WZc,

√
Wfl+1)| (

√
W

denotes the square root matrix of W ) (Helland, 1988). While the maximal
number of PLS scores κmax can be lower than rank(X), in practice, it is
often equal to rank(X). Helland (1988) shows that the weighted PLS (WPLS)
regression applied with κ = κmax is nothing more than the weighted least
squares regression. In the literature, PLS is usually derived with W = I, the
identity matrix; we thus detail the algorithm in the weighted case. Let �̃ be
the p×p positive-definite diagonal matrix with diagonal entries �j ,j , j ≥ 2,
given by Equation (4).

1. Xs = X�̃−1, t0 = 1In, E0 = Xs ; f0 = y.

2. For k = 0, . . . , κ ,

qk = t ′kWfk/(t
′
kWtk), fk+1 = fk − qktk ,

Ek+1 = Ek − tk t
′
kWEk/(t

′
kWtk),

tk+1 = Ek+1E
′
k+1Wfk+1.

Hereafter, this procedure is denoted by WPLS (y, X, W , κ). If Z is full

column-rank, this algorithm determines a unique estimate γ̂ PLS,κ satisfying

y−fk+1 = Zγ̂ PLS,κ ; if Z is not full column-rank, the procedure above yields
the minimal norm vector among all the vectors verifying y − fk+1 = Zγ .

Ridge PLS
A direct application of PLS to GLM seems to be intuitively unappealing
because PLS handles continuous responses. This is the reason why, in order
to extend PLS to GLM, we want to replace the binary vector y with a
pseudo-response variable whose expected value has a linear relationship
with the covariates. The pseudo-response variable z∞ at the convergence
of RIRLS(y, X, λ) verifies this condition and is thus our candidate: it is of the

form z∞ = Zγ̂ R + ε, where, conditional to γ̂ R being the true value of the
parameter, ε is a centered vector of covariance matrix (W∞)−1. The main
advantage of choosing z∞ instead of, for example, the pseudo-variable at the
convergence of IRLS—which has a linear structure too—is that this allows
the combination of a regularization step and of a dimension-reduction step.
In addition, this extension is always well defined: recall indeed that in some
cases (including the case n � p), the ML estimate does not exist so that the
pseudo-variable ‘at convergence’ of IRLS is of infinite norm.

As a consequence, we propose a new procedure which combines Ridge
penalty (the regularization step) and PLS (the dimension-reduction step) the
so-called Ridge PLS (RPLS). Let λ be some positive real constant and κ be
some positive integer. RPLS divides in two steps:

1. (z∞, W∞) ←− RIRLS(y, X, λ);

2. γ̂ PLS,κ ←− WPLS(z∞, X, W∞, κ).

A detailed implementation is given in the Appendix. The first step builds a
continuous response variable z∞ for the input of PLS, the ‘dispersion matrix’
of which is [W∞]−1. This explains the call, in the second step, to a weighted
PLS procedure with weight W∞. The use of Xs in WPLS and of � in the
penalized ridge criterion makes our procedure invariant to the scaling of the
data matrix.

RPLS depends on two parameters, λ and κ . λ is determined at the end of
Step 1, as minimizing the BIC criterion (see the Ridge penalty section), and
thus independently of κ . In the linear regression setting, the optimal choice of
κ when dimension reduction is achieved by PLS, is to our best knowledge, an
open problem: the non-linear dependence of γ̂ PLS,κ upon the response vector
makes an explicit control of the error term fκ+1 impossible. Finally, observe
that RPLS provides an estimate γ̂ RPLS (which is unique, given y, X, λ and κ).

We are now able to provide an answer to the classification problem in a
high-dimensional setting: our classification procedure consists in applying
LD with the estimate γ̂ RPLS.

Comparison with other approaches
We briefly review some regression procedures that use PLS as the dimension-
reduction tool to manage the high-dimensional setting. We outline their
interest and in some cases, explain their poor behavior.

Nguyen and Rocke’s approach Nguyen and Rocke (2002) substitute the
data matrix X by an n × κ matrix X̃, the columns of which are the first κ

PLS-scores given by WPLS (y, X, I, f ). Then they estimate the parameter

in the ML sense by running IRLS (y, X̃). This yields γ̂ NR. As mentioned
above, applying PLS with a binary input y is unappealing; in addition, the
PLS-regression step does not take into account the heteroscedasticity of the
response vector y; finally, in many applications, ‖γ̂ NR‖ = ∞ since the ML
estimate does not exist.

In practice, IRLS is stopped after a maximal number of iterations nmax

thus hiding the non-convergence of IRLS. Unfortunately, the estimate γ̂ NR

depends on nmax and this yields an unstable procedure for classification. We
observed this phenomenon on the Leukemia data set. γ̂ NR is estimated by
using the data in the Golub’s training set (Golub et al., 1999); classification is
performed on the samples from the test set. When p = 150 and κ = 3, there
are 1 (resp. 2) samples incorrectly classified if nmax = 7 (resp. nmax = 10).

Marx’s approach In Marx (1996), the parameter γ is estimated
in the ML sense and is obtained at the convergence of IRLS(y, X̃),
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where X̃ is defined by IRPLS, an algorithm that extends PLS to GLM.
More precisely, IRPLS can be understood as an IRLS algorithm in which
the weighted least squares regression (3) is replaced with the WPLS regres-
sion, WPLS(z(t), X, W(t), rank(E1)). X̃ collects the first κ components ‘at
convergence’ of IRPLS.

As recalled above, WPLS applied with the maximal number of PLS com-
ponents is nothing else than weighted least squares (note that Marx chooses
κ = rank(E1) while in theory, κmax should be strictly lower than rank(E1)).
Hence IRPLS and IRLS coincide, and, when X is full row-rank (which is most
often the case when n � p), IRPLS never converges. In practice, IRPLS is
stopped after a fixed number of iterations, thus hiding the non-convergence
phenomenon. In addition, initializing IRPLS by choosing a linear predictor of
the form η(0) = c0y−c0(1In −y) [where for example c0 = ln(3)], as done by

Marx, yields γ̂ M = γ̂ NR. A trivial induction shows that for all t ≥ 0, z(t) =
2ct y−ct 1In with ct = 1+ct−1 +exp(−ct−1), and W(t) is proportional to the
identity matrix In. Since WPLS(y, X, W , κ) = WPLS(αy +β1In, X, W , κ)—

in terms of the exhibited scores—for all α, β ∈ R, WPLS (z(t), X, W(t), κ)

returns the same scores as WPLS (y, X, In, κ), thus proving γ̂ M = γ̂ NR.

Ding and Gentleman’s approach The originality of their work (Ding
and Gentleman, 2004) is that it simultaneously answers to the regularization
question and to the dimension-reduction one. They run an approximation
of a Newton–Raphson (NR) algorithm for solving a Firth’s penalized ML
criterion. As in IRLS, any iteration of the NR algorithm is a weighted
least squares regression and Ding and Gentleman replace this least square
regression by a WPLS one. We call this algorithm FPLS.

We run their method on the data sets described in the next section. On the
colon data set and on the prostate data set, the algorithm does not always
converge; we observe a cyclic behavior—after a burn-in period the path is
periodic. The estimate γ̂ DG, and consequently the classification rule, may
depend on the maximal number of iterations.
This approach is greatly promising since it addresses both the regularization
and the dimension-reduction problems. Comparisons of our results with their
approach are of interest and will be explored in future research.

Eilers et al.’s approach Their method (Eilers et al., 2001) does not use
PLS. We nevertheless mention their work since their estimate, γ̂ E is the Ridge-
penalized ML estimate (with an un-weighted penalty term i.e. �2 = I). The
method of Eilers et al. does not reduce the dimension but only deals with
the regularization question. In particular, all the explanatory variables are
allowed and included into the regression model, which can deteriorate the
performances of the classifier. In the next section, we will outline the high
interest of combining a reduction step with the Ridge regularization.

RESULTS
We illustrate the interest of RPLS by considering applications for
the classification of microarrays data. We compare the classification
results from our procedure with those of other classifiers including
RIRLS, FPLS, the effective dimension reduction (MAVE, Antoniadis
et al., 2003), diagonal linear discriminant analysis (DLDA), diagonal
quadratic discriminant analysis (DQDA) and k-nearest neighbors
(KNN) based on the Euclidean distance [see Devroye et al. (1996)
for an overview of the last three methods].

DLDA, DQDA and KNN are thus introduced in the present paper
as ‘classical statistical methods’. As commented in the abstract, our
goal is to show that these methods poorly behave when applied to
high-dimensional data sets. This is exactly what happens, thus stress-
ing the need for interest in methods based on regularization and
dimension reduction.

In order to illustrate the interest of PLS over PCR in the regression
framework, we compare our algorithm RPLS to ‘RPCR’ (for Ridge-
PCR). By nature, PCR handles continuous responses; this calls for
an extension of PCR to GLM, in order to use it as a dimension

reduction in GLM. The extension we derived for PLS remains valid
for PCR: we exhibit the continuous-valued pseudo-response variable
at the convergence of the RIRLS algorithm and use this variable as
the input variable for PCR. This yields RPCR.

Data, pre-processing and gene selection
We will consider in turn the Leukemia, Colon and Prostate data sets.1

The Leukemia data set contains 72 tissue samples with pinit = 7129
genes: 47 cases of acute lymphoblastic leukemia (ALL), coded 0
and 25 cases of acute myeloid leukemia (AML), coded 1 (Golub
et al., 1999). The Colon data set contains 62 tissue samples with
pinit = 2000 genes: 40 tumors tissues, coded 1 and 22 normal tissues,
coded 0 (Alon et al., 1999). The Prostate data set contains 102 tissue
samples with pinit = 12600 genes: 52 tumors tissues, coded 1 and
50 normal tissues, coded 0 (Singh et al., 2002).

For Leukemia and Colon data (resp. Prostate), the pre-processing
steps of Dudoit et al. (2002) [resp. (Singh et al., 2002)] are applied:
thresholding [floor of 100 (resp. 10) and ceiling of 16 000] filter-
ing [exclusion of genes with max/min ≤ 5 and (max − min) ≤ 500
(resp. 50)] log10-transformation/standardization. Notice that the fil-
tering step is applied using only the Learning set. This yields a
resulting number of covariates pmax depending on the subdivision
Learning and Testing set, lower than pinit but still far larger than the
number of observations.

Although the procedures can handle a large number (thousands)
of genes, the number of genes may still be too large for practical use.
Furthermore, a considerable percentage of the genes do not show
differential expression across groups and only a subset of genes are
of interest. We perform the preliminary selection of gene based on
the BSS/WSS criterion used in Dudoit et al. (2002). When training
the rule for the selection of gene, we select p genes by the previous
criterion with p ∈ Pl = {50, 300, 500, 1000} for Leukemia data,
p ∈ Pc = {100, 500, 1000, pmax} for Colon data and p ∈ Pp =
{100, 500, 1000, 1500} for Prostate data.

Assessing prediction methods
It is common to assess the performance of the classification rules for a
selected subset of genes by their errors on the test set and also by their
leave-one-out cross-validated errors. Due to the instability of leave-
one-out error rates, we also perform a re-randomization study, i.e. an
out-of-sample analysis of 100 random subdivisions of the data set into
a learning set and a test set. When a test set is available, we randomly
split the original data set into a training set and a test set of the same
size as the original ones. Otherwise, we choose a test set size equal
to one-third of the data [2:1 scheme of Dudoit et al. (2002)]. Each
subdivision yields a test set error rate for each predictor; boxplots
are used to summarize these error rates over the runs.

The optimal number of PLS or PCR components (for RPLS, FPLS
or RPCR) is selected by choosing the value of κ minimizing leave-
one-out error rates for the training set. This is also employed for other
procedures that involve hyperparameters, such as MAVE or KNN.
In practice, on the leave-one-out analyses performed on the Colon
data sets and on the Prostate data sets, we observed many cases of
indecisions for even values of k. This is the reason why, as suggested
in Devroye et al. (1996), we run KNN for odd values of k. We really
believe that the frequent occurrence of the indecision case shows

1They can be downloaded from http://www.sdmc.lit.org.sg/GEDatasets/
Datasets.html
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Table 1. Comparison of misclassification for Leukemia data (leave-one-out and out-of-sample analyses performed on the Learning/Test set of Golub’s
subdivision)

p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN
LO OS LO OS LO OS LO OS LO OS LO OS LO OS LO OS

50 0 1 0 (3) 1 1 (1) 1 0 (2) 1 4 (3) 1 1 1 1 1 1 (1) 2
300 2 3 0 (1) 3 0 (2) 1 0 (2) 0 2 (1) 0 1 2 1 1 1 (1) 1
500 2 3 0 (1) 3 0 (3) 2 0 (2) 0 0 (1) 0 0 2 0 1 0 (1) 1

1000 2 3 0 (2) 2 0 (4) 2 0 (2) 0 1 (1) 0 0 2 0 2 0 (1) 1

Table 2. Comparison of misclassification for Colon data

p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN

100 9 9 (1) 7(6) 8 (1)* 12 (1) 17 17 7 (5)
500 10 8 (3) 8 (5) 8 (1)* 7(6) 18 22 9 (5)

1000 15 7 (3) 7 (6) 8 (1)* 15 (1) 20 23 8 (7)
pmax 17 7 (3) 7 (6) 8 (1)* 6 (4) 22 25 8 (7)

Leave-one-out analysis performed on 62 subdivisions of the data set into a learning set
(resp. test set) of cardinal 61 (resp. cardinal 1). * means that during the leave-one-out
procedure, for a given κ in the range Kc, some FPLS algorithms did not converge. The
optimal value of κ is chosen among the values for which all the FPLS steps converged.

Table 3. Comparison of misclassification for Prostate data

p RIRLS RPLS RPCR FPLS MAVE DLDA DQDA KNN

100 9 7 (3) 6 (8) 8 (2)* 51 (1) 11 11 7 (3)
500 10 8 (2) 9 (6) 8 (2)* 7 (2) 21 18 8 (13)

1000 10 5 (3) 5 (13) 8 (2)* 8 (4) 28 24 10 (3)
1500 10 7 (4) 5 (12) 10 (2)* 14 (4) 31 28 12 (3)

Leave-one-out analysis performed on 102 subdivisions of the data set into a learning set
(resp. test set) of cardinal 101 (resp. cardinal 1). * has the same meaning as in Table 2.

that KNN is not a pertinent method (for this kind of data sets). The
weakness of this classical statistical method is clearly illustrated by
the numerical results.

The κ range is given by Kl = {1, . . . , 8} for Leukemia data, Kc =
{1, . . . , 9} for Colon data and Kp = {1, . . . , 14} for Prostate data.
Moreover, the shrinkage parameter (for RIRLS, RPLS or RPCR) is
determined as mentioned above on 51 log10-linearly spaced points
in the range [10−2; 103]. Note that, to fairly evaluate and compare
the test or leave-one-out cross-validated errors, pre-processing, gene
selection and (hyper)-parameter estimations are performed on the
training set (at each step of the cross-validation process).

DISCUSSION
Different numerical results are reported in Tables 1–3 and boxplots
are plotted in Figures 1–3. In the tables, the number in brackets
for RPLS, RPCR, FPLS and MAVE are the optimal numbers of
components chosen as previously indicated and those for KNN are
the optimal numbers of nearest neighbors. The numerical results and
graphics show the necessity of the dimension-reduction step. This is

particularly evident from the Colon and Prostate data results. Indeed
note that most of the classifiers proposed in the literature behave
well on the Leukemia data set though the other data sets are known
to be more ‘problematic’. In particular, the boxplots suggest that
errors rates for RPLS, RPCR and FPLS are typically lower and less
variable. There is no obvious difference between the distributions of
error rates for these three methods. However, we can mention that
for Colon and Prostate data FPLS has converged only for small κ

values; and that RPCR needs κ values greater than the one of RPLS.
Otherwise these methods are robust to the growth of p, thanks to
the dimension-reduction step (the larger p is, the larger κ has to
be chosen to reach the best classification result except for FPLS
which does not converge for large κ), and to an increasing value of
the shrinkage parameter. The good performance of these methods
when p = pmax (Table 2) is particularly interesting when applied
to microarrays, since it can allow the practitioner to avoid a pre-
selection step and thus makes the classification result independent of
the criterion applied in this preliminary selection. On the other hand,
the methods such as RIRLS, DLDA, DQDA or KNN have very poor
performances when p gets large. Note that MAVE stands between
the two although it is a dimension-reduction method.

Concerning the comparison between RPLS and RIRLS, as men-
tioned above, we do not trust RIRLS due to the non-scaling of the
design matrix that makes the utility of the method problem-specific.
It may be read in the tables and figures that RPLS and RIRLS have
an equivalent behavior for ‘small’ p values. Nevertheless the latter
is not robust to large p. This legitimately suggests adding to this
method a dimension-reduction step; we observed on the three data
sets, in the resampling analysis, that this would improve the RIRLS
method.

RPLS confirms different analyses in the literature. For example, it
is known that in the Leukemia data set, samples #28, 66 and 67 have
a high misclassification rate (henceforth denoted MR[i] for sample
#i) (Dudoit et al., 2002). In the resampling study, for κ ∈ Kl and
p ∈ Pl, RPLS systematically misclassifies sample #66, whereas
MR[28] and MR[67] decrease when κ and p both increase: for
p = 1000 and κ = 3 (resp. p = 50 and κ = 1), MR[28] = 7.02%
and MR[67] = 7.55% (resp. 38.60 and 39.62%). Another example
is given by the Colon data set, for which samples N8, 34 and
T 30, 33, 36 are misclassified by both the contributions (Alon et al.,
1999; Furey et al., 2000); in the resampling analysis, performed
for κ ∈ Kc, p ∈ Pc, N8, 34 and T 36 are systematically mis-
classified, MR[T30] ≥ 88.89% and MR[T33] ≥ 96.87%. In addition,
RPLS always misclassifies N36 [(an example pointed out in Furey
et al., 2000)], and behaves poorly for samples T 2, 33 [samples poin-
ted out in Alon et al. (1999)]. For the Prostate data set, in the
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Fig. 1. Resampling analysis for Leukemia data: boxplots of test error rates for classifiers with 50 (white), 300 (light grey), 500 (dark grey) and 1000 (black)
genes.
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Fig. 2. Resampling analysis for Colon data: boxplots of test error rates for classifiers with 100 (white), 500 (light grey), 1000 (dark grey) and pmax (black)
genes (2:1 scheme).

leave-one-out study, the minimal number of misclassified samples is
five (and is reached by RPLS), namely samples 32, 64, 68, 84 and 92.
Samples 32, 84 and 92 are misclassified for all of the LO analysis
(p ∈ Pp, κ ∈ Kp); samples 64 and 68 are misclassified in more than
96 and 91% of the LO analysis. In the resampling study, MR[32] = 1,
MR[64] ≥ 0.41, MR[68] ≥ 0.72, MR[84] = 1 and MR[92] ≥ 0.90.

CONCLUSIONS
We have proposed a statistical dimension-reduction approach for
the classification of tumors based on microarray gene expression
data. Our method is designed to address the curse of dimensionality

and overcome the problem of a high-dimensional gene expression
space so common in such type of problems. We have provided a
new extension of partial least squares to binary response data, that
seems to have better properties than some of the currently used
methods. We restricted our attention to the binary case, but the meth-
odology can be extended to cover multi-class problems and we are
interested in doing so. Indeed the structure of the algorithm for the
binary case and multi-class case is the same, but the choice of the
parameter λ necessitates more attention in the multi-class case than
in the binary case. Future research will also concern the variable
and model selection themes in order to determine optimal values
for (λ, κ).
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Fig. 3. Resampling analysis for Prostate data: boxplots of test error rates for classifiers with 100 (white), 500 (light grey), 1000 (dark grey) and 1500 (black)
genes (2:1 scheme).
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APPENDIX: RPLS
For given (y, X), λ > 0 and κ ≥ 1.

(1) Compute Z ←− [1In X] and � as in Equation (4).
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(2) RIRLS step:
a. Initialize γ (0) ∈ R

p+1.
t ←− 0.

b. Until convergence, do

η(t) ←− Zγ (t).

π(t) ←− [(1 + exp(−η
(t)
k ))−1, 1 ≤ k ≤ n]′.

W(t) ←− diag(π(t)(1 − π(t))).

z(t) ←− η(t) + (W(t))−1(y − π(t)).

γ (t+1) ←− (Z′W(t)Z + λ�2)−1Z′W(t)z(t).

t ←− t + 1.

c. Set

z∞ ←− z(t−1).

W∞ ←− W(t−1).

(3) WPLS step:
a. �̃ ←− �2:p+1,2:p+1, Xs ←− X�̃−1.

b. t0 ←− 1In, E0 ←− Xs ,f0 ←− z∞,ω0 ←− 0Rp , ψ ←− Ip .

c. For k = 0, . . . , κ ,

qk ←− t ′kW
∞fk/(t

′
kW

∞tk).

pk ←− E′
kW

∞tk/(t
′
kW

∞tk).

fk+1 ←− fk − qktk .

Ek+1 ←− Ek − tkp
′
k .

ψ ←− ψ(Ip − ωkp
′
k).

ωk+1 ←− E′
k+1W

∞fk+1.

ψ̃k+1 ←− ψωk+1.

tk+1 ←− Ek+1ωk+1.

d. Set �̃ ←− [ψ̃1 . . . ψ̃κ ] and q ←− [q1 . . . qκ ]′.
e. Conclude:

γ̂1 ←− q0 − p′
0�̃q.

γ̂2:(p+1) ←− �̃−1�̃q.

The procedure, presently derived in R
p+1, can be equival-

ently derived in R
r+1 where r + 1 = rank(Z) ≤ n. To that

goal, compute UDV ′, the singular values decomposition (svd) of
(X − 1In1I′nX/n)�̃−1, the scaled covariate matrix; collect the first r

columns of UD in  = (UD)·,1:r so that Zγ = [1In ] θ for some
θ ∈ R

r+1. We denote by J (r) a diagonal matrix with J
(r)
1,1 = 0 and

J
(r)
k,k = 1, k = 2, . . . , r + 1. It is readily seen that RPLS, run by

replacing (X, �2) by (, J (r)), yields an estimate θ̂PLS,κ uniquely
related to γ̂ PLS,κ by the formulas

γ̂2:p+1 = �̃−1V·,1:r θ̂2:r+1, γ̂1 = θ̂1 − 1I′nXγ̂2:p+1/n.

Hence, up to a single svd, the procedure is independent of p which
is of computational importance.
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