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ABSTRACT
Motivation: One popular method for analyzing functional connectivity
between genes is to cluster genes with similar expression profiles. The
most popular metrics measuring the similarity (or dissimilarity) among
genes include Pearson’s correlation, linear regression coefficient and
Euclidean distance. As these metrics only give some constant values,
they can only depict a stationary connectivity between genes. How-
ever, the functional connectivity between genes usually changes with
time. Here, we introduce a novel insight for characterizing the rela-
tionship between genes and find out a proper mathematical model,
variable parameter regression and Kalman filtering to model it.
Results: We applied our algorithm to some simulated data and two
pairs of real gene expression data. The changes of connectivity in
simulated data are closely identical with the truth and the results of two
pairs of gene expression data show that our method has successfully
demonstrated the dynamic connectivity between genes.
Contact: jiangtz@nlpr.ia.ac.cn

INTRODUCTION
With the ability to simultaneously measure the activity of thou-
sands of genes under different conditions (Iyer et al., 1999; Eisen
et al., 1998; Cho et al., 1998; Spellman et al., 1998; Bozdech et al.,
2003), DNA microarray technology has attracted tremendous interest
in both the scientific community and industry during the past sev-
eral years. This has led to a dramatic increase in microarray data
and reliable and efficient tools are needed urgently to mine useful
information from these data. One of the applications of microarray
technology is to characterize the functional connectivity between
genes. A basic assumption of this application is that genes with sim-
ilar expression profiles have similar functions in cells. The most
popular metrics used to evaluate the similarity (or dissimilarity)
between gene expression profiles may be Pearson’s correlation (Eisen
et al., 1998). Linear regression coefficient and Euclidean distance are
two metrics very similar to Pearson’s correlation.

One of the main limitations of these metrics is that their values are
constant and stationary. However, for many gene time-series expres-
sion profiles, the connectivity between genes is variable and dynamic.
Hence, constant and stationary metrics cannot always characterize
the variable and dynamic connectivity between genes. So far, there
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has been no study on this dynamic relationship. We believe that
variable parameter regression is an appropriate tool for character-
izing this time-dependent correlation relationship. It happened that
Buchel and Friston (1998) used variable parameter regression and
Kalman filtering to characterize the dynamic relationship between
two fMRI signals. We believe that they can also be used to model the
dynamic relationship between genes, although our problem is very
different from that studied by Buchel and Friston (1998). This idea
was tested on some simulated data and real gene expression data. All
the results demonstrate that this method can detect successfully the
changes of connectivity between genes (or other signals).

METHODS

Materials
In this paper, we apply our algorithm to a simulated dataset and some real
data. As shown in Figure 1, we generated two simulated signals x (a) and y

(b). Both signals have 286 points along the time line. Signal x has six half-sine
curves and the content between any two half-sine curves is Gaussian noise.
Signal y is similar to signal x. The main difference between x and y is that
the half-sine curves in signal y added uniformly distributed noise. We also
selected four similar gene expression profiles from the dataset of Cho et al.
(1998) and grouped them into two pairs randomly. One pair is YNL309w and
YML060w, as shown in Figure 2. Figure 3 shows another pair, YDL164c and
YLR383w. Cho et al. collected cells at 17 time points at 10 min intervals,
covering nearly two full cell cycles. The time course was divided into five
phases: early G1, late G1, S, G2 and M based on the size of the buds. In order
to weaken the effect of system error, we first normalized the raw dataset of
Cho et al. such that the mean is 0 and the variance is 1.

Variable parameter regression
Variable parameter regression can be described as follows:

yt = xtβt + ut , t = 1, . . . , T , (1)

ut ∼ N(0, σ 2) (2)

where yt is the expression value of gene y at time t , xt is the expression
value of gene x at time t and βt is an unknown coefficient that corresponds to
estimates of connectivity at time t ; ut obeys Gaussian distribution with zero
mean and σ standard deviation. As described in Buchel and Friston (1998),
the dynamic evolution of β over time is assumed to follow the following
equations:

βt = βt−1 + pt , t = 2, . . . , T , (3)

pt ∼ N(0, σ 2Q) (4)
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Fig. 1. The simulated signals. (a) Signal x is constructed by six segments of
half-sine waves and five segments of Gaussian noise located between every
two half-sine waves. Every segment of half-sine wave has 26 time points and
sampled from the function f (t) = 2 sin(πt), t = 0 : 0.04 : 1. Every segment
of noise has 26 time points and sampled from a Gaussian distribution with
mean 0 and standard variance 0.4. (b) Signal y is constructed by the way
similar to that of signal x. The main difference is the six segments of half-
sine waves of y are corrupted by five segments of additive uniform distributed
noise in the interval [0, 0.4]. Then, there are 286 time points all together in
signal x and signal y.

Fig. 2. The expression profiles of YNL309w and YML060w. (a) The expres-
sion profile of gene YNL309w. (b) The expression profile of gene YML060w.
These two expression profiles are all from Cho et al.’s (1998) dataset and we
normalized Cho et al.’s data ahead.

where σ 2Q is the stationary covariance matrix of the innovation pt . From
Equation (4), we can see that if Q = 0, then parameter βt does not change
along time and the variable parameter regression reduces to the stationary
coefficient linear regression problem. We can see that Equation (3) is in fact
a random walk model for βt . The innovations ut and pt are uncorrelated.

Parameter estimation using Kalman filtering
Given two gene expression profiles x1, . . . , xT and y1, . . . , yT , we are inter-
ested in the corresponding regression coefficients β1, . . . , βT . In this paper,

Fig. 3. The expression profiles of YDL164c and YLR383w. (a) The expres-
sion profile of gene YDL164c. (b) The expression profile of gene YLR383w.
These two expression profiles are all from Cho et al.’s (1998) dataset and we
normalized Cho et al.’s data ahead.

we use Kalman filtering to estimate these regression coefficients. Kalman
filtering is a recursive solution to the optimal linear filtering problem. We
define β̂−

t to be the prior estimate of regression coefficient at time t given
knowledge of the process prior to time t , and β̂t to be the posteriori estimate
of regression coefficient at time t given the expression value of y at time t .
Let P −

t be the prior estimate error variance and Pt be the posteriori estimate
error variance. We define Kt to be the gain that minimizes the posteriori error
variance. Then the first step of Kalman filtering is to obtain the prediction
that updates β̂t−1 and its error variance for the passage of time t − 1 to t :

β̂−
t = β̂t−1 (5)

P −
t = Pt−1 + Q. (6)

Equations (5) and (6) are also called time update equations. The time update
equations are responsible for projecting forward the current state and error
variance estimates to obtain a prior estimate for the next time step. The second
step of Kalman filtering is the filter step, which revises this estimate of βt by
adding the new information contained in the measurement yt :

Kt = P −
t x′

t (xtP
−
t x′

t + 1)−1 (7)

β̂t = β̂−
t + Kt(yt − xt β̂

−
t ) (8)

Pt = (1 − Ktxt )P
−
t . (9)

Equations (7)–(9) are also called measurement update equations. The
measurement update equations are responsible for incorporating a new meas-
urement into a prior estimate to obtain an improved posteriori estimate. Time
update equations and measurement update equations update each other recurs-
ively. x′

t is the transpose of xt . And because xt is a scalar, x′
t equals xt here.

We know that estimates from previous time are less reliable than those from
later ones. We then use the third step, Kalman smoothing, to circumvent this
problem. This step can add the information that arrived after time t to the
estimate of βt . Let β̂s

t be the smoothed estimate of βt , and then the third step
can be depicted as follows:

β̂s
t = β̂t + Pt

Pt + Q
(βs

t+1 − β̂t ). (10)

The initial value βs
T is set to β̂T . Then Equation (10) is also a recursive pro-

cess and β̂s
t can be solved by this process. We take β̂s

t as the final estimate
of βt . From the process of Kalman filtering, we can see that the regres-
sion coefficients are determined not only by y/x but also by its historical
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Fig. 4. The result of the simulated data. The experimental result of the sim-
ulated data x and y. The dynamic changes of regression coefficient β reflect
the dynamic connectivity strength between x and y. High-regression coeffi-
cients indicate high connectivity and low regression coefficients indicate low
connectivity between two signals.

information. Then β changes, dependent on the time-dependent correla-
tion relationship between genes. Therefore, β can characterize the dynamic
connectivity between genes with time.

RESULTS
We first applied our algorithm to the simulated data. From the sim-
ulated data shown in Figure 1, we can see that signals x and y are
strongly correlated (connectivity or strong connectivity) at corres-
ponding sine regions and weakly correlated (non-connectivity or
weak connectivity) at the random noise regions. The result on the
simulated data is shown in Figure 4. From Figure 4, we can see
that the regression coefficients change dynamically along the time
axis. This regression coefficient curve is perfectly consistent with the
curves of signal x and signal y. The peaks of this curve correspond
to the sine regions and the valleys of this curve correspond to the
Gaussian noise regions. This means that the sine regions are more
correlated than the noise regions. From this result, we can see that our
algorithm depicts dynamic connectivity between simulated signals
very well.

Subsequently, we applied our algorithm to two pairs of genes selec-
ted from the dataset of Cho et al. Figure 5 shows the result of genes
YNL309w and YML060w. From Figure 5, we can see that the regres-
sion coefficients (connectivity) between YNL309w and YML060w
have two peaks, which means that the two genes profiles are more
time-dependent near these peaks and then have strong connectivity
near these peaks. According to Cho et al.’s information, we mapped
the time points of these two peaks back to the cell cycles and then
deduced that these peaks were near G and S phases. This means that
YNL309w and YML060w are more correlated near G and S phases
and interact with each other during G and S phases with a high prob-
ability. YNL309w takes part in the process of G1/S transition in the
mitotic cell cycle. YML060w takes part in the processes of DNA
repair and base-excision repair, which are also strongly related to
G1 and S phases. The result of genes YDL164c and YLR383w is
shown in Figure 6. Two peaks located near G and S phases means
YDL164c and YLR383w have strong connectivity during G and S

Fig. 5. The result of genes YNL309w and YML060w. The experimental
result of the expression profiles of genes genes YNL309w and YML060w.
We can see that the regression coefficients between YNL309w and YML060w
have two peaks, which means that the two genes profiles have more strong
connectivity near these peaks. More detailed description can be obtained from
the Results section.

Fig. 6. The result of genes YDL164c and YLR383w. The experimental result
of the expression profiles of genes YDL164c and YLR383w. We can see that
the regression coefficients between YDL164c and YLR383w have also two
peaks, which means that the two genes profiles have more strong connectivity
near these peaks. More detailed description can be obtained from the Results
section.

phases. YDL164c takes part in the processes of DNA ligation, DNA
recombination, base-excision repair, lagging strand elongation and
nucleotide-excision repair. YLR383w takes part in the processes of
DNA repair and cell proliferation. These processes take place mainly
during G and S phases. These results mean that our algorithm suc-
cessfully shows the dynamic connectivity between these pairs of
genes.

CONCLUSIONS AND DISCUSSIONS
Main contribution of the current work is that we introduce a novel
insight for characterizing the relationship between genes and suggest
a proper mathematical tool to model it. The results have demonstrated
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that this technique successfully assesses the dynamic connectivity
between two signals on both simulated data and real data. Connectiv-
ity can be regarded as the influence that one signal (or gene) exerts
over another. Dynamic connectivity depicts the changes of connectiv-
ity strength. Moreover, some detailed information about these genes
supports our results well.

Apart from these advantages of our method, there are still some
limitations. First, an implicit assumption of gene expression data
analysis is that genes with similar expression profiles have similar
functions in cells. However, this assumption is not always right (Zhou
et al., 2002). Almost all gene expression data analysis methods have
this limitation. Second, we assumed that the connectivity between
two genes is linear, which may not be true. Third, the time points of
gene expression profiles are too small; therefore, more time points
are needed in order to get better results. Then, if we are interested
in some particular genes, we can use real-time quantitative PCR
(RTQ–PCR) to analyse these genes for more time points. The result
of RT–PCR data for more time points will demonstrate the dynamic
connectivity better.
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