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ABSTRACT
Summary: We propose a beta-mixture model approach to solve a vari-
ety of problems related to correlations of gene-expression levels. For
example, in meta-analyses of microarray gene-expression datasets, a
threshold value of correlation coefficients for gene-expression levels is
used to decide whether gene-expression levels are strongly correlated
across studies. Ad hoc threshold values such as 0.5 are often used.
In this paper, we use a beta-mixture model approach to divide the
correlation coefficients into several populations so that the large cor-
relation coefficients can be identified. Another important application of
the proposed method is in finding co-expressed genes. Two examples
are provided to illustrate both applications. Through our analysis, we
also discover that the popular model selection criteria BIC and AIC are
not suitable for the beta-mixture model. To determine the number of
components in the mixture model, we suggest an alternative criterion,
ICL–BIC, which is shown to perform better in selecting the correct
mixture model.
Contact: yuanji@mdanderson.org
Supplementary information: http://odin.mdacc.tmc.edu/∼yuanj/
highcorgeneanno.html

1 INTRODUCTION
We propose a beta-mixture model approach to solve a variety of
problems in bioinformatics related to a large number of correlation
coefficients. The correlation coefficients could be computed for the
expression levels of the same gene measured under microarrays from
different studies, which is often seen in meta-analyses of multiple
gene-expression experiments (Ghosh et al., 2003; Kuo et al., 2002;
Parmigiani et al., 2004; Pusztai et al., 2003). Alternatively, the cor-
relation coefficients could come from a pathway analysis related to
a critical gene, (Sabatti et al., 2002) in which the expression levels
of the gene are examined to see whether they correlate with those
of other genes in the same array data. Investigators are often asked
to draw conclusions based on the magnitudes of these correlations.
Specifically, a threshold value is used to decide whether the gene-
expression levels are strongly correlated or not. For example, if a
correlation coefficient is >0.5, then the gene-expression levels are
positively correlated. However, the choice of 0.5 for the threshhold
value is hard to justify.

Regardless of the origin, a large number of correlation coeffi-
cients are obtained, which usually reflect certain biological behaviors
of the genes under investigation, e.g. if the genes are consistently
expressed across the studies or if the genes are co-expressed.
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Naturally, not all genes behave the same way, and as a result, the
values of their correlation coefficients differ. Finite mixture models
(McLachlan and Peel, 2000) are typically used to analyze data
of this type. Specifically, the correlation coefficients can be con-
sidered as coming from several underlying probability distributions.
Each distribution is a component of the mixture model representing
a gene population with similar behavior, and all the components
are combined into a comprehensive model by a mixture form.
To model the correlation coefficients, we use the beta distribu-
tion, which has been known for its flexible shapes and is therefore
widely used to describe data from various experiments. In our
analyses, we find that a two-component beta-mixture model is
usually adequate to fit the correlation coefficients, with one com-
ponent representing the population of uncorrelated gene expression
levels and the other component representing the population of corre-
lated ones.

One key issue in the finite mixture model approach is to decide
the number of components in the model. This has been extensively
studied for the normal-mixture model. The commonly used Akaike
information criterion (AIC) Akaike (1973) and Bayesian information
criterion (BIC) (Schwarz, 1978) have been shown to be adequate for
deciding the number of components in the normal-mixture model
(Leroux, 1992; Roeder and Wasserman, 1997). However, little is
known about the performance of these criteria in the case of the
beta-mixture model. Our finding through both simulations and real
examples is that neither criterion is suitable for the beta-mixture
model. Both AIC and BIC seem to overestimate the number of
components, leading to mixture models with excessive numbers of
components. On the other hand, we find that the integrated classifica-
tion likelihood–BIC (ICL–BIC) (Biernacki et al., 1998) is adequate,
always selects the right model in our simulation studies and yields
reasonable results when applied to real data.

2 THE STATISTICAL MODEL
The beta-mixture model deals with a vector of correlation coef-
ficients of gene-expression levels. Usually, the dimension of the
vector is large, in the order of thousands. The correlation coefficients
are assumed to come from multiple underlying probability distribu-
tions, in our case, beta distributions. To fit the beta distribution,
for each correlation coefficient xi , we apply a linear transformation
yi = (xi +1)/2, so that the range of the transformed values is between
0 and 1. The index i represents the gene with respect to which the
correlation coefficient y is calculated.

Let {yi}, i = 1, . . . , n, denote the transformed correlation coeffi-
cients, where n is the total number of observations. Under a mixture
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of beta distributions,

yi ∼
L∑

l=1

πlfl(yi |αl , βl), l = 1, . . . , L,

where

fl(y|α, β) = yα−1(1 − y)β−1

B(α, β)

denotes the density of a beta distribution and B(α, β) = ∫ 1
0 tα−1(1−

t)β−1dt is the beta function. The quantity L is the number of
components in the mixture.

We augment the data by introducing the latent indicator variable
zil for each gene i, where

zil =
{

1, if yi comes from population l,

0, otherwise.

The set of values {zil} and {yi} is considered as the ‘complete’ data.
We assume that each vector zi = (zi1, . . . , ziL)′ is independent and
identically distributed according to an L-category multinomial dis-
tribution with probabilities π = (π1, . . . , πL)′. This is the prior
distribution for zi . Let θ = (α1, β1, . . . , αL, βL) be the vector con-
taining all the other unknown parameters α and β. The likelihood
function for the complete data is given by

Like(θ , π , z) =
n∏

i=1

L∏
l=1

[πlfl(yi |αl , βl)]
zil .

Consequently, the log-likelihood is given by

l(θ , π , z) =
n∑

i=1

L∑
l=1

zil

[
log πl + log fl(yi |αl , βl)

]
. (1)

3 THE EXPECTATION–MAXIMIZATION
ALGORITHM

We use the expectation–maximization (EM) algorithm (Dempster
et al., 1977) to iteratively maximize the log-likelihood and update
the conditional probability that yi comes from the l-th component,
which is defined as

z∗
il = E[zil |yi , α̂1, β̂1, . . . , α̂L, β̂L; π̂1, . . . , π̂L]. (2)

The set of parameter estimates {α̂1, β̂1, . . . , α̂L, β̂L; π̂1, . . . , π̂L} is a
maximizer of the log-likelihood (1), for given z∗s. We assign yi to the
component {l0|z∗

il0
= maxl z

∗
il}. The EM algorithm iterates between

an E-step where values z∗
il are computed from the data with the current

parameter estimates, and an M-step in which the log-likelihood (1),
with each zil replaced by its current conditional expectation z∗

il , is
maximized with respect to the parameters θ and π .

The detailed algorithm is given as follows:

(1) Initialize z∗
il : This can be done by, for example, assigning

the smallest 100/L percentage of yi to the first component,
and the next smallest 100/L percentage of yi to the second
component, etc.

(2) M-step: Given z∗
il , maximize (1) with respect to the parameters

θ and π . Specifically,

π̂l =
∑n

i=1 z∗
il

n
.

We obtain a maximizer {α̂1, β̂1, . . . , α̂L, β̂L} of the log-
likelihood in (1) numerically.

(3) E-step: Given the parameter estimates from the M-step,
compute

z∗
il = E[zil |yi , π̂1, . . . , π̂L, α̂1, β̂1, . . . , α̂L, β̂L]

= P(zil = 1|yi , π̂1, . . . , π̂L, α̂1, β̂1, . . . , α̂L, β̂L)

= π̂lfl(yi |α̂l , β̂l)∑L
j=1 π̂j fj (yi |α̂j , β̂j )

.

(4) Repeat M-step and E-step until the change in the value of the
log-likelihood in Equation (1) is negligible.

Maximization with respect to αl and βl can only be carried out
numerically. We use the ‘nlm’ function in R, which is freely availa-
ble at http://www.r-project.org/. The EM algorithm yields the final
estimated posterior probability z∗

il , the value of which represents the
posterior probability that correlation coefficient yi comes from com-
ponent l. We assign yi to component l0 as previously defined, which
follows a beta distribution with parameter estimates α̂l0 and β̂l0 , also
yielded by the EM algorithm. The characteristics of the beta distri-
bution contain information that can be used for inference about the
behavior of the genes belonging to the corresponding component. For
example, if the beta distribution is closely centered around a positive
value, say 0.7, then the correlation coefficients in this component
represent a population of strongly correlated genes.

The determination of the number of components L is challenging
and is often decided by some model selection criterion, e.g. AIC,
BIC or ICL–BIC. While AIC and BIC are well known, the definition
of ICL–BIC is given by

ICL–BIC = BIC + 2EN(z∗),

where BIC = −2 log -likelihood +K log n, in which K = 3 ∗L− 1
is the number of unknown parameters in the model. Quantity
EN(z∗) = − ∑n

i=1

∑L
l=1 z∗

il log z∗
il is the estimated entropy of the

fuzzy classification matrix C = ((zil)). Typically, mixture models
are fitted through the EM algorithm with different values of L, and
the model with the smallest AIC, BIC or ICL–BIC is chosen. We
evaluate the performance of these three criteria through a simulation
study in the next section.

4 SIMULATION
To be more realistic, instead of directly simulating correlation coef-
ficients, we simulated sets of gene-expression levels with different
correlation coefficients across datasets from different experiments.
Specifically, we considered two experiments in which the same set
of 10 000 genes were measured. We simulated 10 expression levels
for each gene in each experiment. Let Rik and Sik denote the k-th
expression level of gene i in experiments 1 and 2, respectively,
i = 1, . . . , 10 000 and k = 1, . . . , 10. Assume that (Rik , Sik)

′ are
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Table 1. Values of AIC, BIC and ICL–BIC using the proposed model with different values of L

Number of First simulation, L = 2 Second simulation, L = 3
components L AIC BIC ICL–BIC AIC BIC ICL–BIC

1 30689.55 30703.97 30703.07 38382.61 38397.03 38397.03
2 22224.89 22260.94 25752.13 27887.47 27923.52 32053.63
3 21599.46 21657.14 34154.75 24568.14 24625.82 31679.98
4 19857.84 19937.25 37157.57 21299.82 21379.13 33049.97
5 15076.03 15176.97 32043.12 23798.21 23899.15 33073.03

The bold number is the smallest value in its column. Criteria AIC and BIC choose L = 5 and L = 4 as the best models for the first and second simulations, respectively; and ICL–BIC
chooses L = 2 and L = 3 as the best models, both which are correct.

independent for different values of i and k and

(
Rik

Sik

)
∼ N

((
µi

µi

)
,

(
1.5µ2

i ρi × 1.5µ2
i

ρi × 1.5µ2
i 1.5µ2

i

))
, (3)

where µi is the mean expression level of gene i and ρi is the
correlation of the expression levels across two experiments. We let
the variance expression level be proportional to the square mean
expression level, which is often observed in practice. In the first
simulation, we let ρi = 0.7 for the first 3000 genes and ρi = 0.0
for the last 7000 genes. We sampled each µi independently from
a normal distribution with mean 0 and variance 4. In the second
simulation, the µi were sampled in the same way. However, we let
ρ = 0.7 for the first 3000 genes, ρ = 0.0 for the next 4000 genes
and ρ = −0.7 for the last 3000 genes. We sampled (Rik , Sik)

′ from
the distribution in Equation (3) and computed the sample correlation
of the vectors (Ri1, . . . , Ri10) and (Si1, . . . , Si10) for each gene i.
We thus obtained 10 000 sample correlation coefficients, which came
from two underlying distributions for the first simulation and three
for the second simulation. We computed the values of AIC, BIC
and ICL–BIC for each simulation after implementing the proposed
beta-mixture model with different values of L. The results are
presented in Table 1. Both AIC and BIC prefer models with an
excessive number of components. The criterion ICL–BIC, however,
correctly chooses the right model for both simulations.

5 TWO EXAMPLES
The proposed method is illustrated with two real bioinformatics
studies. The first study requires combining gene expression from
different types of microarrays. The second deals with the identifica-
tion of co-expressed genes.

5.1 Study I: combining gene expression levels
This study was a meta-analysis involving a total of 33 patients with
diagnosed stages I–III breast cancer. Two microarray technologies
were used in this study: Affymetrix Human Genome U133 chip
sets (HG-U133A and HG-U133B), and radioactively labeled cDNA
nylon membrane microarrays printed by Millennium Pharmaceutic-
als Inc. (Cambridge, MA). There were 9285 pairs of genes that were
common to both array platforms. One of the study objectives was to
determine which pairs were strongly correlated in their expression
levels. For each gene on each platform, we had 33 measurements
corresponding to the 33 patients. Using these 33 measurements on
each platform, we computed correlation coefficients for each gene,

Table 2. Values of AIC, BIC and ICL–BIC using the proposed model with
different values of L

Number of Model selection criteria
components L AIC BIC ICL–BIC

1 23333.90 23348.17 23348.17
2 16757.83 16793.51 22684.72
3 13651.47 13708.56 24613.63
4 10645.44 10723.94 23882.83
5 8758.72 8558.63 23422.24

The bold number is the smallest value in its column. Criteria AIC and BIC choose L = 5
as the best model; and ICL–BIC chooses L = 2 as the best model.

which resulted in 9285 correlation coefficients. We applied the beta-
mixture model to these correlation coefficients, with the number of
components ranging from 1 to 5. ICL–BIC chose L = 2, while
AIC and BIC both preferred the largest model with L = 5 (Table 2).
Figure 1 displays the fitted densities of the beta-mixture distributions
with L ranging from 2 to 5. It seems that when L = 2, the fitting is
already adequate; the improvement in the fit for the case when L > 2
is negligible.

We proceeded by fitting a two-component beta-mixture model to
the correlation coefficients. The means of the fitted beta distributions
respectively equaled 0.54 and 0.76, which corresponded to the values
0.09 and 0.53 on the correlation scale. The standard deviations of
both beta distributions equaled 0.1. Therefore, one component (with
mean correlation 0.09) corresponded to the genes with weak or no
correlations and the other (with mean correlation 0.53) to the genes
with strong correlations. The cut-off value based on the posterior
probability was 0.31, i.e. if a correlation coefficient was >0.31, it
would be considered as coming from the component with strong
correlations.

After the two populations of genes were discovered, efforts were
taken to explain why some pairs were poorly correlated.

Those corresponding genes with strong correlations were used for
further analysis.

5.2 Study II: gene co-expression
The second example used the dataset from the study conducted by
Beer et al. (2002). In this study, the authors identified a list of
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Fig. 1. From top to bottom are fitted densities of the beta-mixture model with
two, three, four and five components.

important genes that are related to the survival of patients with adeno-
carcinoma. We arbitrarily selected one gene, tyrosine hydroxylase
(TH), from the original list and computed the correlation coeffi-
cients of its expression levels to the remaining genes in the data.
We obtained 7128 correlation coefficients. We repeated the same
analysis as in the last section, and found that again ICL–BIC seemed
to select the right mixture model with two components while AIC
and BIC seemed to overestimate the number of components. We
fitted a two-component beta-mixture model suggested by ICL–BIC,
the density of which is given in Figure 2. The means of the two
beta distributions equaled 0.46 and 0.71, corresponding to the values
−0.07 and 0.43, respectively, on the correlation scale. The standard
deviations of both distributions equaled 0.1. Therefore, we have
two gene populations, one with weak correlations and the other
strong. The ones in the strongly correlated population are potentially
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Fig. 2. The histogram contains the original correlation coefficients for all
the gene-expression levels. The solid line is the density curve of the fitted
beta-mixture distribution.

co-expressed genes, a possibility that needs to be validated by further
analysis.

Among the top 20 genes highly correlated with the target gene TH,
which is related to tyrosine metabolism, we found at least 9 genes that
are functionally related to TH. Many of the highly correlated genes
are related to muscle development and contraction, including genes
KCNQ1, MMP16, TNNI1, SMPD1, GPR68, HTR2C, CUL5, EMD
and OXT. Tyrosine hydroxylase is essential in tyrosine metabolism,
and tyrosine kinase, which requires tyrosine for its activity, is related
to the function of muscle tissue. Du et al. (1994) reported that the
expression level of TH is related to the function of muscle. Patients
with adenocarcinoma might have a higher level of TH activity than
healthy people because the smooth muscle of their lungs needs to do
more work to compensate for the lung tissue that is compromised by
disease. An annotation table of the top 20 highly correlated genes is
provided in the Supplemental information section.

6 DISCUSSION
We make two contributions in this paper. First, we provide a statistical
tool, the beta-mixture model, for analyzing a large number of correla-
tion coefficients, which is often required in bioinformatics. To our
knowledge, there is no objective method for performing the analysis
so far. Second, we show that the model selection criteria AIC and
BIC do not work for the beta-mixture model, although they have
been proved to be adequate for normal-mixture models. Specifically,
both criteria seem to overestimate the number of components in the
beta-mixture model, a sign of lack of penalties for the model size. We
further find that the criterion ICL–BIC seems to work well and selects
the right model in our simulations. ICL–BIC adds more penalties for
a larger model and, therefore, performs better.

As theoretical justification is needed for further work, we hope
that the findings provided in this paper will generate more research
in this area.
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