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ABSTRACT

We present a concept and formalism, the string graph, which repres-
ents all that is inferable about a DNA sequence from a collection of
shotgun sequencing reads collected from it. We give time and space
efficient algorithms for constructing a string graph given the collec-
tion of overlaps between the reads and, in particular, present a novel
linear expected time algorithm for transitive reduction in this context.
The result demonstrates that the decomposition of reads into kmers
employed in the de Bruijn graph approach described earlier is not
essential, and exposes its close connection to the unitig approach we
developed at Celera. This paper is a preliminary piece giving the basic
algorithm and results that demonstrate the efficiency and scalability
of the method. These ideas are being used to build a next-generation
whole genome assembler called BOA (Berkeley Open Assembler) that
will easily scale to mammalian genomes.

Contact: gene@eecs.berkeley.edu

1 INTRODUCTION

Paired-end whole genome shotgun sequencing has become the pre-
vailing paradigm for the first phase of sequencing an organism's
genome (Weber and Myers, 1997; Adams et al., 2000; Venter et al.,
2001) and routinely delivers 95-99% of the euchromatic sequence
in large scaffolds of ordered and oriented contigs. The experiments
required to finish the remaining few percent are an order of mag-
nitude more expensive than the shotgun sequencing. For thisreason,
only the most important reference genomes will likely ever to be
finished. Thus, improved a gorithms and software for whole genome
shotgun sequencing can have alarge impact on genomic science. For
example, an assembler that takes a 97% reconstruction and improves
it to 99% is reducing the amount of unresolved sequence by afactor
of three (from 3% to 1%) and, typically, improving contig sizesby a
factor of 10 or more (by resolving 90% of the gaps) according to the
Poisson statistical theory of sampling (Lander and Waterman, 1988).
There are currently a number of assemblers capable of whole-
genome assembly that all perform comparably by employing vari-
ations on the basic paradigm of first finding and assembling unique
stretches of DNA with high reliability (Myers et al,, 2000; Aparicio
etal, 2002; Mullikinand Ning, 2003; Jaffeet al,, 2003; Huang et al.,
2003). Recurrent strategiesinclude finding mutually reinforcing read
pairs and examining the relationship of aread to all othersin order to
assess its repetitiveness and to correct errors. The central objective
for better assembly is to effectively resolve repetitive sequences.
Consider perfect dataand agenomethat has several perfect repeats
whoselengthsarelonger than any read asshownin Figure 1. Imagine
that the genome is a piece of thread and meld or collapse al thelike
repetitive elements as illustrated in Figure 1. We call the resulting
graph astring graph and it effectively represents everything that can
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Fig. 1. A genome and its string graph. The thick arrows of the same shade
represent identical repetitive sequences. The numbersin the string graph give
the number of copies of each repeat inferable by counting entry and exitsinto
the collapsed segment.

beinferred from theread data. If one can identify arcs corresponding
to unique sequence, then a simple flow analysis reveals how many
copies of each repeat are collapsed together and if one replicates
each of those edges according to their copy count, then the expanded
graph has an Eulerian tour and one of those tours corresponds to the
original sequence. We show how to build such agraph in this paper.
In 1992 this author and Waterman— dury presented two new ideas
for fragment assembly in back to back talks at a DIMACs workshop
on bioinformaticswhich werelater published inthe samevolumeof a
journal (Myers, 1995; |dury and Waterman, 1995). Myers' approach
was based on finding maximal interval subgraphs in the graph of
al read overlaps, and was subsequently developed into the ‘unitig’
concept of the Celera assembler. Waterman and Idury presented an
approach based on building the de Bruijn graph of al kmers from
the reads and then finding pathsin this graph supported by the reads.
This approach was subsequently extended by Pevzner et al. (2001)
of hisresearch group giving rise to the Euler assembler.
Whiletheideaof astring graph isexplicit in the Euler algorithms,
we show in this paper that a string graph directly follows from the
unitig algorithm as well. What this amounts to is a demonstration
that the idea of kmers is unnecessary, that one can work directly
from the reads, obviating the need for the complex read-based path
splitting of Euler and giving rise to a much more space efficient
agorithm—one that can scale to a mammalian genome on current
hardware. Our approach requires a transitive reduction step and we
give anovel linear expected time algorithm for thisin our context.
We aso show how to treat contained reads in an efficient way and
how to efficiently solve large parts of the rigorously formulated,
minimum cost network flow problem that is our last step with a
series of simplifying reductions. Finally, the problem of orientation,
i.e. that reads can be from either the forward or reverse strand, is
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addressed and accounted for in our string graph formulation. This
work is a first report on a new line of algorithm development, so
we conclude with some preliminary empirical results and a brief
discussion of future work.

2 BUILDING A STRING GRAPH

Consider agenome sequence S of length G and a shotgun data set of
nreads, fi1, f2,. .., f, randomly sampled from either the forward or
reversestrand of thegenome. Let f.lenbethelength of read f and let
SIUfI21f[3]. .. fLf-len] beits DNA sequence over the alphabet
¥ = {A,C,G, T}. The average over-sampling of the genome is
¢ = N/G,where N = X, f.lenis the total amount of sequence
in the dataset. We assume that the reads have been preprocessed so
that each is truly a sample of the genome (i.e. contains no vector
sequence or other contaminant) and that the mean error rate of the
read’s sequence is less than ¢ (e.g. 2.5%) under an exponentially
distributed arrival rate model.

The first step in constructing a string graph is to compute all 2¢
overlaps of length t or more between the reads. For a given €,
should be chosen so that the probability of a 2e match between two
random strings of length 7 is exceedingly low, e.g. when e = 2.5%
we choose T = 50. The overlap computation is the most time con-
suming step and amounts to a large sequence comparison between
the concatenation of al the reads against itself. Numerous heur-
istic and filtration algorithms have been developed that offer good
performance—roughly O(N?/M) expected time, where M is the
available memory of the machine. In particular, we use a recently
introduced filter based on ¢ grams (Rasmussen et al., 2005) so that all
desired overlaps are guaranteed to be found. On the order of O (cN)
overlaps generally results comprise both true overlap relationships
and those induced by repetitive sequences in the genome.

For an overlap o between reads f and g the matching substrings
are specified by giving the two intervals, [o.f.bego.f.end and
[0.g.beg o0.g.end, delimiting them. We index the positions between
charactersstartingat O sothat f[a,b] = fla+ 1] fla+2]... f[b].
Moreover, if a > bthen f[a,b] = com{ f[b,a]), wherecomg f) is
the Watson—Crick complement of f. Aninterval endpoint istermed
extreme if it is either O or the length of the relevant read. Observe
that every overlap has at least two extreme endpoints, and that
lo.f.end— o.f.bed ~ |o.g.end— o.g.bed. An overlap is a con-
tainment if both ends of aread are extreme and the read in question
is said to be contained. Otherwise an overlap is proper and for these
o.f.beg(o.f.end or o.g.beg(o.g.end it is extreme, but not both.

Given the set of all overlaps we can now give a preliminary con-
struction of astring graph. Thegoal isastring-labeled graphinwhich
the original genome sequence correspondsto some tour of the graph,
and where the graph has as few extraneous edges and alternate tours
as possible. For example, a graph consisting of a single vertex and
four self-loops with each DNA letter label is always a string graph
of agenome, but not a particularly informative one.

The basic observation is that every read and the concatentation
of every overlapping pair of reads must be spelled in the graph. It
followsimmediately that every contained read can be removed from
the problem because there will be atour spelling the sequence of the
readscontainingit. Typically 40% of thereadsin an assembly dataset
are contained, and so 64% of the overlaps involve a contained read.
Removing these reads and their overlaps gives asignificant practical
reduction in the size and memory requirements for the problem.
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Fig. 2. String graph construction. At upper left isan overlap withitsdefining
intervals and the left and right overhanging strings annotated. At the upper
right are the two edges that should be placed in the string graph for the two
overhangs of the overlap. At the lower left are some reads that overlap and
then branch in two directions. At the lower right is the resulting portion of
the string graph for just the right overhangs of this arrangement of reads. The
edges that are transitively reduced are dashed.

Henceforward consider the set of non-contained reads and their
overlaps. For each such read f there will be two vertices, f.B and
f.E, one for each end of the read, in the string graph. Figure 2
illustrates the construction of edges and their labels. The intuition
is that one adds a directed edge labeled with the non-matched or
overhanging sequence at each end of the proper overlap between
two reads. More formally, assume without loss of generality that
in the encoding of overlap o, o.f.beg < o.f.end Then exactly the
following two edges are added for each overlap:

if 0. f.beg> Othen
if 0.g.beg< o.g.end then

flo.f.beg0] glo.g.endg.len]
Add g.B fBand f.E =070 o E
else
flo.f.beg0] glo.g.end0]
AddgE—— > fBand fE———»g.B
else
if 0.g.beg< o.g.end then
glo.g.beg0] flo.f.endf.len]
Add f.B gBandg.E —————~ f.E
else
glg.leno.g.bed flo.f.endf.len|
Add f.B gEandg.B———— f.E

For a vertex v in the string graph, let v.read be the read cor-
responding to the vertex and let v.typebe B or E, depending on
which end of the read corresponds to the vertex. Consider any path
p = vy = v2 — v3---v, and the reads v;.read of each vertex
oriented as given if v.type= E or complemented if v.type= B. By
induction, the layout of these n reads induced by the n — 1 edges of
p form avalid contig that up to the sequencing error rate modelsthe
sequence of vy (or its complement depending on v.typé followed
by sequence spelled along p. Since every overlap between reads is
modeled in the graph, it follows that the original source sequence S
and its complement are spelled by some path in the graph. We say
that the graph is read coherent to mean that any path in the graph
models avaid assembly of the reads. Note that thisis not true of a
de Bruijn graph built from k-mers of the reads and most of the effort
for such approachesisin restoring this coherence.
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The graph still has more edges than necessary, in particular, if f
overlaps g overlaps i in such away that f overlaps i as well, then
thestring graph edge f — h isunnecessary as one can use the edges
f — g — htospell thesamesequence. Thatis, one may removeall
transitive edges from the graph above without impacting what can
be spelled. Moreover, this reduction typically decreases the number
of edgesin the graph by afactor of c.

Transitive reduction also leaves many vertices with in- and out-
degree exactly one. That is, there are many chainswith no branching
possihilities. We call a vertex a junction vertex if it has in- or out-
degree not egual to 1, and an internal vertex otherwise. Collapse
all paths whose interior vertices are internal and that begin and end
with ajunction vertex, replacing them with a single composite edge
whose label is the concatenation of the labels along the path. The
resulting graph of junction vertices and composite edgesis obviously
still aread coherent string graph.

At this juncture observe that because no read contains any other,
every composite edge e=v; — v, — v3--- — v, has a
complementary edge compe) = comguv,) — ---comfvs) —
compvz) — compvy), where comgv) is the other end of the read
for f. Thatis,if v = f.B thencompv) = f.E andif v = f.E then
compv) = f.B. This property implies that we can model endpoint
pairs as a single, read vertex with bidirected edges between them
corresponding to an edge and its complement. Bidirected edges have
an arrowhead at each end that can independently be directed in or
out of the vertex at each end of the edge. The arrowhead is directed
into a vertex if the edge to its .E vertex is the head of the relevant
one of the two complementary edges, and directed out of the ver-
tex otherwise. This framework was first introduced by this author
and Kececioglu (Kececioglu and Myers, 1995). The concepts of in-
degree and out-degree of a vertex still make sense and a path is a
subgraph, where every interior vertex has in-degree and out-degree
exactly one. Figure 3 gives an example of our construction for the
genome Canpylobacter jejunialthough due to scale we suggest the
reader ook at Figure5in order to see an exampl e of bidirected edges.

The bidirected string graph typically has between two to three
orders of magnitude fewer vertices and edges than the number of
reads and overlaps giving a significant reduction in the complexity
of the problem. Moreover the transitive-reduction/chain-collapsing
steps are in essence a recapitulation of the maximal interval sub-
graph algorithm introduced by this author in 1992. Previously the
string graph was implicit, with edges being modeled by vertices
(unitigs) and vertices by edges (overlaps). Now it is explicit and its
generalization of the de Bruijn graph should be apparent.

3 A LINEAR TRANSITIVE REDUCTION
ALGORITHM

General transitive reduction of agraph takes O (X, ycpdeg(w)) =
O (ED) time, where deg(w) is the out-degree of w, E isthe number
of edges, and D is the maximum out degree of a vertex. But in
our context, the graph models overlaps in which the length of the
interval represented by each read isknown asisthe amount of overlap
betweentwo suchintervals. Wewill leveragethisto giveanalgorithm
that takes O(Z, tr.deg(v)deg(v)) worst case time, where tr.deg(v)
is the out degree of v in the transitively reduced graph. Assuming
all input sequences are equally likely, tr.deg(v) = O(1) on average
and the algorithm thus takes O (E) expected time. Of course, real
genomes have non-random repetitive structures, but even in these

Fig. 3. Thebidirected string graph of C.jejuni(prior to traversal analysisand
compression).

cases the preponderance of the genome is unique sequence so that
in practice we see very rapid, near linear behavior.

Consider theedgesout of avertexv : v — wy,v = wy, ..., v —>
w,. Let len(v — w) be the length of the string labeling the edge,
whichweal so consider to bethelength of theedge. Inapreprocessing
sorting step we order the adjacency lists of all vertices so that the
edges out of each are in increasing order of their length. Suppose
that tr.deg(v) is one, i.e. that there is only one non-transitive or
irreducible edge out of v. Then it must be the shortest edge v — w3
and every edge w; — wp,...,w1 — w, Must bein the graph. In
general, supposetr.deg(v) = k. Then thereis at least one edge from
one of the w at the head of one of the k irreducible edges out of v
to each w that is not at the head of airreducible edge. Therefore the
following simple marking strategy, the pseudo-code for which isin
Figure 4, correctly identifies the heads of the irreducible edges.

Initially mark every vertex in the graph as vacant and record that
every edge need not be reduced (lines 1-4). Then for each vertex
apply thefollowing marking strategy (line5). First, mark every vertex
reachable from v asinplay (lines 6-7). Then for each vertex w; on
v's adjacency list in order of edge length do the following (line 9).
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constant FUZZ < 10

1. forveVvdo
2. { mark[v] < vacant
3. forv—> w e E do
4. reducelv — w] « fase

}
5 for v e Vdo
6. { forv— we Edo
7. mark[w] <« inplay
8 longest < maxylen(v — w) + FUZZ
9. for v — w € E inorder of length do
10. if mark[w] = inplay then
11. for w — x € E inorder of length and
12. len(w — x) + len(v — w) < longestdo
13. if mark[x] = inplay then
14. mark[x] <« eliminated
15. for v — w € E inorder of length do
16. for w — x € E inorder of length and
17. (len(w — x) < FUZZor

w — x isthe smallest edge out of w) do

18. if mark[x] = inplay then
19. mark[x] < eliminated
20. for v > w € E do
21. { if mark[w] = eliminated then
22. reduceflv — w] <« true
23. mark[w] <« vacant

}
}

Fig. 4. Transitive reduction agorithm.

If w; has been marked eliminated during the processing of an earlier
w; then nothing need be done (line 10). Otherwise, v — w; is
an irreducible edge and we traverse edges out of w; marking as
eliminated any vertex we encounter at the head of such an edge that
ismarked inplay, indicating that it is adjacent to v (lines 11, 13-14).
We further take advantage of the fact that w;’s edges are ordered to
stop processing edges once an edge is too long to eliminate edges
out of v (lines 8, line 12). One concludes the processing of v by
examining every vertex on its adjacency list, marking as needing
reduction any edge whose head has been marked eliminated and then
restoring the vertex marks to vacant (lines 20-23). Confirming the
time complexity of the algorithm stated above is |eft as an exercise.

Thus far we have been implicitly assuming that read overlap rela-
tionships are completely consistent with each other as one might see
if the data were perfect. But read overlaps are approximate matches
which can havetwo consequences. First, endpoint positions can shift
abit and one needsto allow for thisin any logic that uses distances,
i.e. theuse of FUZZ inline 8. Second and more importantly, approx-
imate equality is not an equivalence relation because transitivity can
fail to hold depending on the distribution of errorsin the reads. For
example, itisnot infrequent that w; — w,, isnot found because even
though w,, has alarger overlap with w1 than with v, both overlaps
arethin and coincidentally w; hasjust a couple of more errorsin the

relevant interval than v does and so is pushed above the € error rate
for overlaps. Notice in this case that the read most likely to be found
overlapping with w,, is w,_1, its nearest predecessor. So we make
the algorithm very stable with respect to approximate matching by
addinglines15-19, that for each w; checksif itsimmediate successor
and additional successors within FUZZ (10) base pairs of it elimin-
ate vertices on v’s adjacency list. In expectation, the neighborhood
is O(1) in size so the addition adds only atotal of O(FE) expected
time to the algorithm.

4 ESTIMATING GENOME SIZE AND
IDENTIFYING UNIQUE SEGMENTS

Given aread coherent string graph, we now wish to label every edge
withaninteger specifying thenumber of timesoneshouldtraversethe
edgein reconstructing the underlying genome. Our first step towards
this end is to determine those edges that with very high probability
should be traversed exactly once, i.e. those which correspond to
unique stretches of DNA. Consider a composite edge between two
junction vertices v and w, and supposeit isof length A and thereare
k internal verticesthat comprisethechain of thecompositeedge. This
path models an overlapping sequence of k + 2 reads that assemble
together consistently. Suppose for the moment we know the size G
of the genome so that we know the average spacing G /n expected
between reads. As we did for the Celera assembler we can then
determine the log-odds ratio, or A-statistic, of the path representing
a unique sequence versus an overcollapsed repeat.

A quick derivation of the A-statistic is as follows. The probability
that the path is single copy is

n\ (AN (G —Aa\"TF
() (%)
which is approximately [((An)/G)*/k!1e"2"/C in the limit as
G — oo. By the same approximation, the probability that the
path should be traversed twice is [((2An)/G)* /k!1e22%/G The
natural log of the ratio of these two probabilities, or A-statistic is
A(A k) = A(n/G) —kIn2.

Unfortunately, we do not know the size of the genome G. An
inspection of the typical string graph reveals that most of the total
lengths of all the edges is concentrated in a few rather large ones
whichareamost al likely to besingle copy. So an effective bootstrap
procedure isto compute the average arrival rate over all edgesover a
certain length, say 10 kb, and then compute the A-statistic for every
edge using this estimate. One then considers every edge with an A-
statistic over a threshold, say 17 (1-in-24 million chance of being
wrong), to be single copy. One can then re-estimate the average
arrival rate over this subset of edges and then reapply the statistic
until convergence or a fixed number of times. We find that just one
iteration suffices to yield an estimate of G that is typically accurate
to within 1% of the sampled genome’s true size.

Using the A-statistic, we identify every edge of the string graph
that is with extremely high probability a single copy edge, and label
it an (=1)-edge. Of the remaining edges, observe that those that
are composite and have an interior vertex must be traversed at |east
once if the read(s) corresponding to the interior vertex(ices) are to
take part in the reconstruction of the genome. Since every read was
presumably sampled from the genome, we conclude that every such
edge must be used at least once and we label it a (>1-edge. All other
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edges, those that do not have interior vertices, do not haveto bein a
solution path and are labelled (>0)-edges.

In summary, we have estimated the size of the genome and now
have a string graph graph in which every edge has alower and pos-
sibly an upper bound on the number of times it must be traversed
in a reconstruction. Specifically, there are three cases: (1) the edge
must be traversed = 1 time, (2) the edge must be traversed >1 time
or (3) the edge must be traversed >0 times.

5 MAPPING CONTAINED READS

Thereisactually arather seriousflaw inthe procedure of the previous
section. Recall that contai ned reads were removed from the problem,
and the graph is only built from the remaining reads, al of which
properly overlap. This means that the density of read start pointsis
underestimated as, typically, 40% of the reads are contained. If the
underestimation were uniform accross all edges then there would
be no problem, but unfortunately the probability of a read being
contained by reads from a unique segment is significantly less than
the probability of a read being contained by reads from a repeat
segment, the probability increasing the higher the copy number. This
has the effect of making repeat segments look |ess repetitive than
they are with respect to an A-statistic computed over just the non-
contained fragments.

Torectify thisbiasand also get abetter true estimate of thegenome
size, we map every contained read endpoint to the composite edge
or edges in which it would lie if it had been part of the original
graph. Note carefully that all we need to do is accumulate the count
with each edge in order to compute a more accurate A-statistic, the
location of the end point in the composite edge’s chain isirrelevant.
Also note that we state that a contained read endpoint can map to
several edges. Thereason for this becomes apparent aswe sketch the
mapping procedure below.

Consider the end of a contained read f. The treatment for the
position of the start of aread is symmetric and will not be given for
brevity. We first find the containing overlap o = Og(f) for which
the length of the overhang, Dg(f) = He(f,o0), off that end of f
to the relevant end of the containing read, Ve (f) is the smallest.
Formally,

if o.g.beg< 0.g.end
otherwise

o.glen —o.g.end
o.g.end

HE(f.0)={

Ogp(f) =ost. Hg(f,o0) issmallest over al o for which o.g
contains f and o.g isnot itself contained

0r(f).g.E if Op(f).gbeg< Op(f).g.end

Ve(f) = {OE(f).g.B otherwise

De(f) = He(f, Oe(f))-

The computation of O, V, Dg for each contained read can clearly be
accomplished intime linear in the number of overlaps. The endpoint
of contained read f belongs D ( f) base pairsupstream of the vertex
Ve (f) in the string graph. By upstream we mean in the direction
opposite to those for which the edges through Vg ( f) are directed.
Algorithmically, we engage in a reaching computation that moves
Dg (f) base pairs along the reverse edges of the graph from Ve (f).
While in most cases the graph does not branch during the search,
in some cases, it may in which case we find all edges at which the

endpoint of f could lie. Formally, wecompute Map(Ve (f), De(f))
asfollows:

if len(w — v) < d then

Map(w,d — len(w — v))
Map(v,d) = | J

w—v

dse {w — v}

If acontained read’'s endpoint maps to a unique edge then the end-
point is counted toward that edge’'s A-statistic. When an endpoint
maps to multiple locations we give each location a fractional count
of 1/IMap(Ve(f), De(f))|. As an estimator of the mean popula-
tion thisis sensible, as the reads in such an ambiguous situation are
equally likely to be in one of the possible locations. Note that the
A-statistic asformulated above easily accommodates fractional edge
counts. Finally, if the number of possible locations exceeds some
threshold, say 100, the reaching computation is terminated and the
endpoint, which would contribute <1/100-th of a count to any edge,
isignored. Thisguaranteesthat the mapping phase takes amaximum
of O(n) time.

In summary, containment endpoints are first mapped as above
and then with these revised edge endpoint counts, the estimation of
genome size and edge traversal bounds described in the prior section
takes place.

6 MINIMUM COST NETWORK FLOW AND
SIMPLIFICATIONS

The last task is to decide on the traversal count, ¢(e) for each edge
in the string graph, given upper and lower bounds [/ (¢), u(e)] on the
edges from the previous phases of the construction. We begin by
formulating the problem as a minimum cost network flow problem
wherein we find the minimum traversal counts that satisfy the edge
bounds and preserve equality of in- and out-counts (flows). That is,
if wethink of thetraversal countsasintegral flows, thenif net inflow
to anode equals net outflow, thereis ageneralized Eulerian tour that
traverses each edge (e) times. By minimizing theflow, subject tothe
bound constraints, weare appealing to parsimony. Theuseof network
flow is suggested in (Pevzner et al., 2001), but without elaboration.
A reconstruction takes the form of a number of contiguous
sequences, the breaks between seguences being due to a failure to
sample some regions by chance. Each of these isadistinct tour and
typically these begin at a vertex with zero in-degree and end at a
vertex with zero out-degree. However, a contig could begin or end
a a vertex with non-zero in/out-degree. So to correctly model the
flow problem, we must add e-labeled meta-edgess — vandv — s
into and out of every junction vertex from a special source vertex s.
There are no bounds on these edges and we now seek a cyclic tour
wherein we understand there is to be a contig break whenever s is
traversed. We appeal to parsimony and seek aminimum integral flow
satisfying the edge bounds. Formally, a minimum cost network flow
problem (Ahujaet al., 1993) is usually formulated as follows:

Input: For each edge ¢, an upper bound c(e) > 0 on flow, and a
cost per unit flow v(e). For each vertex v, a supply (positive) or
demand (demand) b (v) for flow.
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Output: A flow x(e) on each edge such that X.v(e)x(e) is min-
imal subject to x(e) € [0,c(e)] and =, ,x(u — v) + b(v) =
Ypswx(v = w).

Inthesetermsour problemisasfollows(wherewehave used aknown
transformation to convert thelower boundsinto 0'sby capturing them
in the supply/demand values):

cle) =u(e) —l(e)

b(v) =Xl — v) — Xy pl(v— u)
vie) =1

t(e) =1(e) + x(e)

The particularly simple structure of our edge bounds, =1, >1,
or >0, leads to a particularly simple flow problem. Specificaly, all
(=1)-edges have c(e) = 0 and all other edges have c(e) = oco. In
compensation the supply/demand values b (v) take onintegral values
as per the formulaimmediately above.

Before invoking an existing algorithm (Ahujaet al., 1993) for the
flow problem, whose worst case complexity is O (EV), there are a
number of simplifications that can take place:

(1) For any (=1)-edge, implying c(e) = O, set x(e) = 0 and
remove the edge.

(2) If avertex hasb(v) = Oand either noin-edgesor no-out edges
then set x(e) = 0O for any edge ¢ adjacent to the vertex and
then remove the vertex, and its adjacent edges.

(3) If avertex v has asingle out-edge v — w and b(v) > 0,
then add 4(v) to x(v — w), add or subtract b(v) to b(w)
depending on the direction of the arrowhead at w (i.e. in(+),
out(—)), and set b(v) to 0.

(4) If avertex v hasasinglein-edge u — v and b(v) < O, then
add b(v) tox (u — v), add or subtract b(v) to b(u) depending
on the direction of thearrowhead at u (i.e. in(—), out(+)), and
set b(v) t0 0.

We call the edgess that remain, after the simplifications above, non-
trivial edges and the vertices that have non-zero supply/demand
unsatisfied vertices. Whilethesetransformationsareall quitesimple,
on assembly string graphs they are very effective in reducing the
size of the problem, in particular, the edge removals turn the graph
into a collection of small connected components with few unsat-
isfied vertices, each of which is more efficiently solvable with the
full, standard algorithms. Basically, one needs to push flow between
unsatisfied verticesin aminimal cost way. Flow-pushing a gorithms
generally perform much better than their worst case complexity in
such scenarios. Indeed, in some cases, we find componentsthat have
no unsatisfied vertices, in which case the solution is trivial. For an
example of the final string graph see Figure 5.

7 PRELIMINARY RESULTS

This paper is a preliminary algorithms piece. We are till in the
process of producing a total solution that takes into account all the
subtleties of real data, which does not satisfy key assumptions made
at the outset of the paper. Specifically, vector sequence generally
contaminates some percentage of thereads, the samplegenome DNA
is not completely isogenic, and the error rate across a purported
high-quality interval determined using Phred scores is not always

Fig.5. Thefinal C.jejunistring graphwithtraversal counts. Thedashed edges
are those that need to be traversed more than once and their traversal counts
label them.

particularly accurate. We areworking on avariety of levelsincluding
preprocessing methods and extensions of the basic approach presen-
ted here to address these redlities. Our more modest goa here isto
show that this approach is highly time and memory efficient, and
under the stated assumptions produces the desired string graph. The
method will scale on current architectures to problems of the scale
of the human genome, something not possible with the de Bruijn
graph approach.

We consider simulated shotgun datasets of three target genomes:
a 500 kb synthetic genome with 10 copies of a 300 bp repesat at 2%
variation (‘synthetic alus’), the 1.64 Mb sequence of the bacteria
C.jejuni, and the first 13.9 Mb of the euchromatic sequence of arm
3R of Drosophila melanogasteFor each genome we synthetically
sampled a10x dataset of reads of length chosen uniformly between
550 and 850 bp. Each read has errorsintroduced with probably 0.008
atits5 endlinearly ramping to .025 at its 3’ end. We used the celsim
simulator (Myers, 1999).

In Table 1 we present a number of empirically measured paramet-
ers for these three genomes of increasing size. The first row gives
the genome size. The next grouping gives the number of readsin the
input data set and the number of overlaps computed between those
reads. Thethird grouping givesthe number of readsthat are contained
by at least one other read and the number of (relevant) overlaps that
are between non-contained reads. We note that when read lengths
are normally distributed, as opposed to the uniform distribution of
our simulation, the percentage of contained reads is even higher.
That is, the savings from eliminating contained readsrealized hereis
conservative compared to what we observe for real data. The fourth
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Table 1. Computational results on three simulated shotgun datasets

Syntheticalus  C.jejuni D.melanogaste3R

Genomesize (Mbp)  0.500 1641 13.919

Reads 7000 23900 202200
Overlaps 127K 462 K 3997 K
Contained reads (%) 41.4 42.6 431

Relevant overlaps 44K (41%) 150K (43%) 1268 K (43%)

Irreducible edges 8310 27500 231096
Junction vertices 33 75 756
Composite edges 89 113 1294
Size estimate (Mbp)  0.499 1.626 13.765
(=1)-edges 1 20 179
Non-trivial edges 2 51 538

No. of components 1 4 33
Unsatisfied vertices 0 6 109
Time (s) 3.7 13.1 113.6
Space (Mb) 0.53 181 15.28

Table 2. Containment mapping for D.melanogasteBR dataset

Containment endpoints

=
8

173399
642
173

70
18
6
5
22
3

O©CoO~NOOOOP~WNPR

grouping gives the number of irreducible edges not removed from
theinitia string graph, the number of junction nodes, and the num-
ber of composite edges that result when chains are collapsed. Note
that the graph is generally small compared to the number of reads
and overlaps input. For example, for 3R we go from 202 000 reads
to 756 junction vertices, and from 4 million overlaps to 1200 com-
posite edges. The fifth grouping gives the genome size estimated
after inserting contained read endpoints and the number of edges
that are with very high confidence deemed to be single copy DNA,
i.e. (=1)-edges. The sixth grouping characterizes the results of the
simplifications we apply before invoking general min-cost network
flow algorithms. By non-trivial edges we mean those that do not get
eliminated by the simplifications, and we give the number of con-
nected components containing those edges. For example, in the case
of 3R, the min-cost network flow algorithms are applied to 33 com-
ponents containing atotal of 538 non-trivial edges, for an average of
16-17 edges per component. Also note that the number of unsatis-
fied verticesfor which b(v) # 0issmall. Finaly, wereport the total
computation time and space used. One sees a clearly linear increase
in resources and very efficient times. In particular, the amount of
memory is slightly more than the size of the target genome in Mb.
In Table 2 we illustrate the amount of ambiguity that occurs in
mapping containment endpoints by giving a histogram of the size

of |Map| for the contained reads in the D.melanogasteBR dataset.
The main thing to observe is that most endpoints map to a unique
location with an exponentially vanishing but somewhat irregular tail
of multiple location endpoints. In effect, the mapping is linear in
expected time and very rapid.

The shape and size of the string graph for C.jejuniis shown in
Figure 3, after transitive reduction and collapsing, and thefinal solu-
tion after flow analysisin Figure 5. There are 72 possible tours of the
final string graph. Seven PCR reactions would resolve the true tour,
or inaproject with paired end reads, the correct tour would probably
be readily apparent.

8 FUTURE WORK

We are developing an open-source pipeline called BOA (Berkeley
Open Assembler) with a very compact code base and clean,
data-defined interfaces. Our primary efforts are on (1) developing
a‘scrubber’ that removes vector, chimers and low quality segments
of reads, (2) sequenceerror correction, (3) using mate-pairsto further
resolve the solution path through the string graph and (4) address-
ing the issue of polymorphism with a more sophisticated network
flow approach. Additional modules are contemplated and could be
incorporated by third parties.
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