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ABSTRACT

Motivation: Non-coding RNAs (ncRNAs) are functional RNA

molecules that do not code for proteins. Covariance Models (CMs) are

auseful statistical tool to findnewmembersofanncRNAgene family ina

large genome database, using both sequence and, importantly, RNA

secondary structure information. Unfortunately, CM searches are

extremely slow. Previously, we created rigorous filters, which provably

sacrifice none of a CM’s accuracy, while making searches significantly

faster for virtually all ncRNA families. However, these rigorous filters

make searches slower than heuristics could be.

Results: In this paper we introduce profile HMM-based heuristic

filters. We show that their accuracy is usually superior to heuristics

based on BLAST. Moreover, we compared our heuristics with

those used in tRNAscan-SE, whose heuristics incorporate a significant

amount of work specific to tRNAs, where our heuristics are generic to

any ncRNA. Performance was roughly comparable, so we expect

that our heuristics provide a high-quality solution that—unlike family-

specific solutions—can scale to hundreds of ncRNA families.

Availability:Thesource code is available underGNUPublic Licenseat

the supplementary web site.

Contact: zasha@cs.washington.edu

Supplementary information: http://bio.cs.washington.edu/

supplements/zasha-HeurHmm-2004/ (Technical details, results,

C11 code)

1 INTRODUCTION

Non-coding RNAs (ncRNAs) are RNAs that function without being

translated to proteins. ncRNAs include trans-acting RNAs, e.g.

tRNAs and microRNAs (Wagner and Flardh, 2002), and cis regu-
latory elements, such as riboswitches (Winkler and Breaker, 2003).

Since roughly the late 1990s, research has shown ncRNAs to be

much more numerous and significant than previously thought. For

reviews, see Kennedy, 2002; Storz, 2002; Eddy, 2002.

This paper addresses a fundamental task for RNA research: given

a family of related RNAs, scan genomes for homologs. Several

techniques exist for this task, but this paper focuses on covariance

models (CMs). A discussion of such techniques and our motivation

for improving CMs appears in our previous paper (Weinberg and

Ruzzo, 2004b). The present paper proposes a novel technique to

speed CM searches. For brevity, we assume basic familiarity with

our earlier paper.

Prior work has sped CM scans with sequence filters, running the

CM only on promising subsequences. However, these filters have

limitations; we see a need for filters that have the following

features:

(1) Generic—work for any ncRNA family

(2) Sensitive and fast

(3) Able to trade sensitivity for speed, e.g. if computer resources

are limited

(4) Easy to adapt to improvements on CMs—better CM technol-

ogy should not invalidate the filters.

This paper describes a novel heuristic filter called the ML-heuristic

(‘Maximum-Likelihood heuristic’), which meets all the above cri-

teria, although sensitivity and speed could (as always) be improved

further. In terms of sensitivity and speed, it is comparable with

(though not as good as) highly tuned heuristics in the tRNAscan-

SE program (Lowe and Eddy, 1997). This suggests that generic

heuristic filters are a reasonable approach to design filters for the

hundreds of families in Rfam (Griffiths-Jones et al., 2005), one
that—unlike the creation of specialized tools like tRNAscan-

SE—requires no human effort.

In the ML-heuristic, a profile HMM is created, in which HMM

transition and emission probabilities are set to make the HMM

maximally similar to the CM.

This paper introduces a novel methodology to analyze filters on

real biological data, comparing the various heuristic methods with

each other in terms of speed and sensitivity. Realistic heuristic

filters must make a trade-off between missing true positives versus

submitting too much to the CM (thus not accelerating searches).

Previous heuristics include tRNAscan-SE and a BLAST-based

(Altschul et al., 1997) heuristic used by Rfam (Griffiths-Jones et al.,
2005). We show that BLAST filtering has problems with sensitivity.

tRNAscan-SE (Lowe and Eddy, 1997) is applied to annotate

tRNAs in most genome projects and uses CMs. tRNAscan-SE

runs two programs previously created specifically for tRNA

searches; if either program reports a possible tRNA, the CM is

run. Since they use tRNA-specific programs, tRNAscan-SE’s heur-

istics are not generic.

Previously, we created rigorous filters (Weinberg and Ruzzo,

2004a,b), which provably guarantee that all homologs detectable

by a given CM are selected by the filter. Although rigorous filters’�To whom correspondence should be addressed.
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guarantees can be advantageous, they fail on some of our criteria.

First, they are slower than heuristics can be, because rigorous guar-

antees are required.

Moreover, rigorous filters cannot trade sensitivity for increased

speed, since they must guarantee maximal sensitivity. For example,

our rigorous scans of 1.7 Gb of bacterial sequences for glycine

riboswitch homologs (Mandal et al., 2004), took 9.7 CPU days,

while our heuristics took 1.8 days, yet missed only 1 putative homo-

log (out of 609). Our rigorous filtering techniques could not run

faster without sacrificing rigorousness (although we do explore

using the underlying filters as heuristics).

Next, rigorous filters failed to improve scanning time for two

families, while maintaining guarantees. Although two families

(out of 139 tested) is a modest problem, it would be helpful to

search these families in a practical amount of time. Moreover, as

ncRNA research progresses, we anticipate that more known families

will become bigger, and their secondary structure thus more prom-

inent. So, more highly structured families may emerge that chal-

lenge our rigorous filters, which are best at exploiting primary

sequence conservation.

Finally, the proofs used in rigorous filters may not translate to

improvements on CMs. (In contrast, although improved CMs may

make the probabilistic analysis used in the ML-heuristic difficult, it

should always be possible to create a non-improved CM, and use the

resulting ML-heuristic to filter searches with the improved CM.

This solution is not ideal, but yields a valid heuristic, and should

have reasonable sensitivity for its given ncRNA. Indeed, the exist-

ing BLAST-heuristic entirely ignores the CM.)

Our results show that the ML-heuristic discriminates better than

BLAST. Although BLAST itself runs faster than the profile HMM

scan (�2–4 times faster), profile HMMs seem a better choice when

high levels of sensitivity are demanded for challenging families,

since overall scan time will be dominated by the CM. For a common

example, to achieve maximal sensitivity for the cobalamin

riboswitch (Rfam ID RF00174), BLAST requires the CM to scan

7% of RFAMSEQ (Rfam’s 8 Gb sequence database), where our

heuristics only require 0.001%. Our approach is about 10 times

faster overall. (The HMM itself is roughly 600 times faster than

the CM.) In an extreme case, BLAST missed 90% of SECIS

element homologs found with a profile HMM filter in the same

run time.

We also compare the ML-heuristic with tRNAscan-SE’s heurist-

ics. Despite the work that went into tRNAscan-SE—particularly the

dedicated tRNA detectors used in its heuristics—the discriminative

power of the ML-heuristic is similar to that of tRNAscan-SE’s

heuristics. A weakness of the ML-heuristic is that it is a factor

of 3–12 times slower than tRNAscan-SE’s heuristics. However,

its speed seems close enough to be immediately practical and we

are optimistic that further improvements are possible.

In summary, this paper introduces the novel ML-heuristic,

designed to make profile HMMs as close as possible to the CM.

In contrast, our previous algorithms set scores to facilitate rigorous

filtering. We also consider filters in the context of heuristics, rather

than the rigorous context of our previous papers. Heuristics enable

increased speed in exchange for slightly reduced sensitivity—an

important practical advantage in many scenarios. This paper pre-

sents a method to evaluate heuristics and shows the ML-heuristic is

the best available generic method, and is even comparable with

tRNAscan-SE’s specialized heuristics.

2 METHODS

2.1 Simplified Covariance Models

This technical section assumes familiarity with Sections 3, 4.1 and

4.2 of our earlier paper (Weinberg and Ruzzo, 2004b). However, for

ease of exposition, we will use the probabilistic form of CMs (not

odds ratios or logarithmic scores).

Our earlier paper did not explain how CMs are created. CM rules

are created from a multiple sequence alignment (MSA) with annota-

tions indicating which columns are base paired (Eddy and Durbin,

1994). For base-paired columns, Si! xLSi+1xR rules are created. For
unpaired columns, xR ¼ e.

We assign probabilities for the rules based on the MSA. Each CM

rule’s probability is set based on how frequently it is used in parsing

the MSA sequences constrained by the annotated secondary struc-

ture. A maximum-likelihood estimate derives a probability estimate

by counting the number of times the rule is used and dividing by the

counts of all rules with the same CM state in their left-hand side

(Durbin et al., 1998). To avoid zero-probability rules, however,

pseudocounts are typically used; all rules have 1 count added before

considering the MSA.

2.2 The ML-heuristic profile HMM

2.2.1 Profile HMM grammar The profile HMM grammar is cre-

ated from the CM as in Weinberg and Ruzzo (2004b).

This grammar transformation is equivalent to a transformation of

MSAs. Given the MSA (with secondary structure) used to create a

CM, a profile HMM can be created by removing the secondary

structure (i.e. base pair annotations), and using the CM creation

method. With no structure, this ‘CM’ will be equivalent to a profile

HMM; the profile HMMwill capture the primary sequence informa-

tion of the original MSA, but not its secondary structure.

2.2.2 Profile HMM probabilities In our previous work, we

assigned scores in order to ensure rigorous filtering. In this

paper, we discard rigorousness in favor of a heuristic. Intuitively,

we wish to assign probabilities to the profile HMM so that it is as

similar as possible to the CM, to make the heuristic more accurate.

(Although our rigorous and heuristic HMM grammars are the same,

the method of assigning rule probabilities is completely different.

The supplement shows a simple example where the heuristic has

improved filtering.)

In Section 2.2.1 we suggested training a profile HMMon theMSA

used to create theCM.Unfortunately, issues like pseudocounts affect

the profile HMM differently from the CM, so the resulting profile

HMM is not as similar as it could be. To avoid this problem, we train

the HMM directly from the CM. (Results show empirically that

training directly from the CM is more accurate; see supplement.)

Suppose we generate a random MSA from the CM. If this MSA has

many sequences, it accurately reflects the CM’s probability distri-

bution. We can now learn a profile HMM from this MSA without

pseudocounting, i.e. using maximum likelihood. The larger the

MSA, the closer the profile HMM’s distribution is to that of the

CM, at least in the positional sequence information that the profile

HMM can model. In fact, it is possible to simulate an MSA with

infinitely many sequences, i.e. the limiting case.

The correspondence between CM and profile HMM in theMSA is

the same as the correspondence between rules. Suppose a sequence
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in the MSA uses CM rule Si ! xLSi+1xR. With the MSA structure

removed, this will correspond to profile HMM rules �SSL
i !xL�SS

L
i+1 and

�SSR
i !xR�SS

R
i�1.

The counts used to set the probability for �SSL
i !xL�SS

L
i+1 should be

proportional to the frequency with which this rule is used by the

profile HMM in parsing sequences from the CM-generated infinite

MSA. This HMM rule is used for CM rules Si!xLSi+1xR for

any xR, so,

Cð�SSL
i !xL�SS

L
i+1Þ /

X

xR2fa‚ c‚g‚u‚«g
PrðSi!xLSi+1xRÞ

The virtual counts (C) with the same left-hand side (�SSL
i ) are then

normalized into probabilities. Similar equations are used for the

right-side HMM rule. (The algorithm is more complicated with

fully general CMs; see supplement.) This method of setting profile

HMM probabilities can be viewed as learning a maximum likeli-

hood profile HMM from the distribution of MSAs induced by

the CM.

2.2.3 Filtering with the profile HMM It is as in Weinberg and

Ruzzo (2004b), but the threshold is independent of the CM’s thresh-

old. Our results indicate a rational basis for selecting the filter’s

heuristic threshold; even for difficult families, a filtering fraction of

0.01 was sufficient to find the majority of family members and

provides a roughly hundred-fold speedup. (See supplement.)

2.3 Calculating ROC-like curves

In Section 3, we compare profile HMMs and BLAST. Both filter

types have a tunable parameter, either heuristic probability thresh-

old or E-value threshold. By varying the parameter, we can find

more CM hits at the expense of less selective filtering, and therefore

more CPU time, or the opposite.

To estimate CPU time, we measure filtering fraction (Weinberg

and Ruzzo, 2004b). If the CM dominates overall scan time, the

speedup from filtering is the reciprocal of the filtering fraction.

In Section 3, we will use an ROC-like curve, inspired by Metz

(1978). ROC-like curves plot sensitivity versus filtering fraction at

every threshold.

It is possible to calculate an ROC-like curve via a single scan

of the database. Suppose a heuristic probability threshold is chosen,

and consider under what circumstances a given nucleotide position

will be scanned by the CM (i.e. will be in the numerator of the

filtering fraction): the position will be scanned if the maximum of

the probabilities within the W nucleotides to the right is above the

threshold. So, for each nucleotide position, we compute the max-

imum of the probabilities of its W right neighbors, calling this the

position’s inclusion point. To obtain a filtering fraction f, we select a
threshold that is less than a fraction f of the inclusion points. Thus,

keeping a sorted list of inclusion points allows us to quickly look up

a threshold for a given fraction, or the reverse.

Later, we will analyze the sensitivity of heuristics relative to a

known set of ncRNAs detected by a given CM: how many of these

can the heuristic filter detect at a given heuristic threshold? A given

ncRNA will be detected by the filter—and submitted to the CM—if

the inclusion points of each nucleotide within the ncRNA are above

the selected heuristic threshold. Thus, for each ncRNA, we can

calculate the heuristic threshold necessary to detect it.

We use this scheme to plot ROC-like curves. The scheme can also

be used for the BLAST heuristic if we define analogous inclusion

E-values for BLAST.

3 RESULTS

We compare profile HMMs with BLAST as a heuristic for CMs.

Three types of profile HMMs are tested: ML-heuristic, ignore-SS

(HMM built from the CM’s input MSA, but ignoring secondary

structure) and rigorous profile HMMs (Weinberg and Ruzzo,

2004a). Rigorous HMMs are used as heuristics by making their

probability threshold a free parameter, instead of setting it to the

CM’s threshold. For tRNAs, we compare the ML-heuristic with

tRNAscan-SE’s heuristics.

3.1 ROC-like curves

Both profile HMMs and BLAST have a tunable parameter (heuristic

threshold or E-value cutoff). Varying this parameter yields a curve

showing different sensitivity versus filtering fraction points. By

running profile HMMs on RFAMSEQ, we are able to plot sensit-

ivity versus filtering fraction at all possible score thresholds, as

described in Section 2. (The supplement says more about ROC-

like curves for BLAST.)

3.2 Analysis of ROC-like curves

To test the heuristics on relatively difficult (highly structured)

ncRNA families, we used families that could not be efficiently

scanned using a rigorous profile HMM: 5S rRNA (Rfam ID

RF00001), tRNA (RF00005), eubacterial RNase P (RF00010),

the group II intron (RF00029), SECIS element (RF00031), and

thiamin, lysine and cobalamin riboswitches (RF00059, RF00168,

RF00174). Figure 1 shows a selection of the ROC-like curves. (The

complete set is in the supplement.)

We scanned these families using sophisticated rigorous filters

(Weinberg and Ruzzo, 2004b). However, rigorous filters were

not feasible for RF00031, so we took the union of scans with all

4 heuristics (BLAST and HMMs) at relatively high filtering frac-

tions. Based on a raw CM scan of a subset of vertebrate sequences,

we estimate this union has �90% of RF00031 hits. In ROC-like

curves, we assume for convenience that this �90% is the full set of

SECIS elements.

In all cases, ignore-SS was no better than the ML-heuristic, and

was typically much worse. Although ignore-SS uses the input MSA

in a similar way to the CM, pseudocounts affect the CM differently

from the profile HMM, so ignore-SS only accurately reflects

sequence information when there are many training examples.

More generally, an advantage of the ML-heuristic is that it allows

any scheme for transforming an input MSA into a CM, since it only

uses the CM.

The rigorous profile HMM’s performance was slightly better than

the ML-heuristic in small parts of some ROC-like curves, but its

performancewasmore often noticeablyworse than theML-heuristic.

Since rigorous filters must guarantee perfect sensitivity, they optim-

ize for rare RNAs. The ML-heuristic optimizes for average-case

performance, so is expected to be usually more accurate.

Moreover, creation of an ML-heuristic profile HMM takes�1 sec

on a 2.8 GHz Pentium 4, versus 30 sec to several hours for a
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rigorous profile HMM. Rigorous and ML-heuristic HMMs run at

about the same speed; the ML-heuristic is preferred because it is

faster to create, and its sensitivity (based on ROC-like curves) is

more reliable. When rigorous HMMs are used rigorously, they

guarantee perfect sensitivity, but the ability to use a less stringent

threshold gives heuristics a considerable speed advantage.

BLAST was almost always worse than the profile HMMs. In the

most extreme case, the BLAST heuristic found only 10% of

RF00031 hits even with a filtering fraction as high as 0.1, where

the ML-heuristic found an estimated 90% of them at this filtering

fraction. There was a small, but interesting part of the ROC curve

for tRNA (RF00005) for which BLAST was better; the very large

number of training tRNA sequences may benefit BLAST.

Running BLAST is typically 2–4 times faster than a profile HMM

scan, so the BLAST heuristic may be preferred for especially easy

families where a low filtering fraction still yields high sensitivity.

However, the single best heuristic as measured by ROC-like curves

seems to be the ML-heuristic. This is particularly relevant at higher

levels of sensitivity on these difficult families, where the time spent

running the CM would dominate overall scan time.

3.3 tRNAscan-SE heuristics

We compared ML-heuristic profile HMMs with tRNAscan-SE.

tRNAscan-SE is used to predict tRNAs in most genome projects.

Its heuristics are based on two previously created tRNA annotation

programs that were selected based on superior sensitivity and select-

ivity, from 7 tRNA annotation programs. Thus, tRNAscan-SE rep-

resents significant effort to create CM filters for a specific, well-

studied family and exploits a substantial body of work on tRNA

detectors. We were interested to see how well the generic ML-

heuristic compares with this specialized case.

Because tRNAscan-SE has many complex parameters, we avoid

ROC-like curves, using only the default parameters. Three euka-

ryotic nuclear genomes were scanned, as was archaeal and eubac-

terial DNA (all archael/eubacterial DNA in RFAMSEQ).

The filtering fraction of tRNAscan-SE was measured on each of

the test genomic databases, ML-heuristic profile HMMs were run at

the same filtering fraction, and run time and sensitivity were

measured; see Table 1.

By default, tRNAscan-SE uses a window length of 500, but its

heuristics can find intervals that are much smaller, and typically do.

A window length of 500 is highly disadvantageous to our profile

HMMs. For example, consider a 10 Kb sequence with 5 widely

separated tRNAs of length 100. With window length 100, and fil-

tering fraction 500/10 000, a profile HMM could potentially select

all 5 tRNAs, attaining 100% sensitivity. However, with that same

filtering fraction, but window length 500, even a perfect HMM

could attain no better than 20% sensitivity, since only one of the

tRNA hits (with 400 extraneous flanking nucleotides) could be

reported without exceeding the filtering limit. This explains the

(A)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-08  1e-06  1e-04  0.01  1

S
en

si
tiv

ity

Filtering fraction

RF00174

ML-heuristic
Rigorous HMM

BLAST

(B)

 1e-06  1e-04  0.01  1

Filtering fraction

RF00005

ML-heuristic
Rigorous HMM

BLAST

(C)

 1e-08  1e-06  1e-04  0.01  1

Filtering fraction

RF00031

ML-heuristic
Rigorous HMM

BLAST

Fig. 1. SelectedROC-like curves.All plot sensitivity against filtering fraction,with filtering fraction in log scale. (A) RF00174 is typical of the other families; the

ML-heuristic is slightly better than the rigorous profile HMM, and both often dramatically exceed BLAST. (B) Atypically, in RF00005, BLAST is superior,

althoughonly in one region. (C) BLASTperforms especially poorly forRF00031. (Recall that rigorous scanswere not possible forRF00031, so only�90%of hits

are known; see text.) The supplement includes all ROC-like curves, and the inferior ignore-SS.

Table 1. ML-heuristic versus tRNAscan-SE heuristics

Sequence Size t-SE Sensitivity of heuristic (%) Total run time, heuristic + CM (CPU hours)

data (Mb) filtering t-SE ML ML t-SE ML ML Raw

fraction W ¼ 500 W ¼ 100 W ¼ 500 W ¼ 100 CM

Archaea 47 0.0034 98.5 77.6 99.3 0.21 1.54 0.67 503

Eubacteria 640 0.0034 99.4 99.6 99.8 2.79 21.43 10.03 6553

Caenorhabditis elegans 100 0.0012 98.1 55.1 97.5 0.13 3.42 1.03 1056

Drosophila 117 0.00036 99.7 56.9 99.3 0.08 1.33 1.12 1233

Human 3070 0.00055 83.4 86.8 90.4 3.41 53.75 30.86 32422

column is without any filter.) Most of the increase in profile HMM run time is because the profile HMM is slower than tRNAscan-SE’s heuristics.

First two columns: genome sequences tested and size in megabases. The next column is tRNAscan-SE’s filtering fraction with default settings (with domain of life specified on the

command line); the ML-heuristic scans were run at this same filtering fraction. The next three columns are sensitivity relative to rigorous scans for tRNAscan-SE (‘t-SE’), the ML-

heuristic with window lengthW¼500 andW¼ 100. (See text for whyW¼ 500 is worse.) The next four columns givemeasured run times, including the time used to run the CM. (Last
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reduced sensitivity of theW¼ 500 case in Table 1. So, we also tried

a window length of 100, the value used for Rfam’s tRNA family. In

all cases, the CM’s window length was 500. (Overlapping windows

of length 100 can create larger interval sizes.)

We emphasize that sensitivity measurements in Table 1 are the

heuristic sensitivity relative to the CM, not the sensitivity relative

to any experimental criteria. Both heuristics have low sensitivity on

human, and tRNAscan-SE is lower. The HMM finds 64 hits that

tRNAscan-SE does not. tRNAscan-SE has additional heuristics to

predict pseudo-tRNAs, which indicate that 29/64 are likely pseudo-

tRNAs. Of the 16 putative tRNAs found with tRNAscan-SE but not

HMMs,16/16are predictedpseudo-tRNAs.Among the592hits com-

mon to tRNAscan-SE and the HMM, 91 are likely pseudo-tRNAs,

so the change in number of pseudo-tRNAs is probably not drastic.

tRNAscan-SE’s filters seem preferable to the ML-heuristic for

tRNA detection, certainly in speed. However, if the results extra-

polate to other ncRNA families, they suggest that generic heuristics

are a more cost-effective solution for these other families than

family-specific tools. The sensitivity of the ML-heuristic is similar

to that of tRNAscan-SE, and the speed is in the same league, and

still practical. Since most other ncRNA families have no detection

tools like those in tRNAscan-SE’s heuristics, the ML-heuristic

would require significantly less work than a family-specific scheme,

yet can be expected to provide comparable results.

4 DISCUSSION

Profile HMMs appear to have superior accuracy to BLAST,

although the region in Figure 1B where BLAST was superior sug-

gests it may have advantages in families with many known mem-

bers. BLAST itself runs 2–4 faster than the HMM, making it a

logical tool for families with high sequence conservation where

BLAST’s accuracy is adequate. Tuning of BLAST, e.g. tuning

the DNA substitution matrix, may improve its overall accuracy.

In using BLAST, there are two main heuristics being used:

BLAST’s word-matching heuristic to seed gapped alignments,

and the gapped alignments used as a heuristic for CMs. It is unclear

which heuristic is hurting sensitivity. The issue is subtle because,

even though most database subsequences have an exact word match

to at least some known family member, it may not match the most

useful member for the alignment phase.

We were surprised by how competitive ML-heuristic profile

HMMs are to tRNAscan-SE’s heuristics, given that tRNAscan-

SE was explicitly designed to detect tRNAs. The profile HMM

itself is slower than tRNAscan-SE’s heuristics, though not in a

totally different class. In terms of sensitivity at a given filtering

fraction, the heuristics were comparable, usually within a fraction of

a percentage point of each other.

These results suggest that the ML-heuristic is generally a pre-

ferred method for heuristic filters of new ncRNA families for which

creation of a family-specific filter would be a large amount of work.

Although some families may have features different from tRNAs

that family-specific filters could exploit, it is possible that such

features could be integrated into a generic filter. Moreover, there

is clearly room for improvement to the ML-heuristic, such as aug-

menting the profile HMM with structural information (Weinberg

and Ruzzo, 2004b).

Our heuristics make scans for SECIS elements (RF00031) 9 times

more sensitive than with BLAST. This allowed the detection of

known, more diverged SECIS elements, e.g. the first known viral

SECIS (in a poxvirus). So, our filters may be useful in selenoprotein

detection pipelines (Kryukov et al., 2003). (See supplement.)

CMs were recently augmented with a ‘local alignment’ feature,

which helps them to detect anomalous ncRNAs with missing/added

domains. This functionality is used in several Rfam families and in

the RSEARCH program (Klein and Eddy, 2003), which attempts to

find homologs of a single ncRNA. A forthcoming paper will intro-

duce heuristic and rigorous profile HMM filters for this feature, to

speed RSEARCH and Rfam. That paper addresses a question not

addressed in the current paper: what is the best filter to find homo-

logs highly diverged from all training ncRNAs? RSEARCH (even

with heuristic filters) can, e.g. find archaeal SRPs from human or

from eubacterial SRPs. In this context, BLAST’s performance is

very poor compared with the ML-heuristic.

We have designed a new heuristic filter for CM searches, the ML-

heuristic, and shown it superior to previous heuristics. We have also

shown a method to evaluate a heuristic CM filter, using an ROC-like

curve, and how results of rigorous scans can be used to measure the

sensitivity of the filter itself. We therefore anticipate further devel-

opments in heuristic filters for CM-based searches.
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