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ABSTRACT

Permutation test is a popular technique for testing a hypothesis of no

effect, when the distribution of the test statistic is unknown. To test

the equality of two means, a permutation test might use a test statistic

which is the difference of the two sample means in the univariate case.

In the multivariate case, it might use a test statistic which is the maxi-

mum of the univariate test statistics. A permutation test then estimates

the null distribution of the test statistic by permuting the observations

between the two samples.

We will show that, for such tests, if the two distributions are not

identical (as for example when they have unequal variances, correla-

tions or skewness), then a permutation test for equality ofmeans based

on difference of sample means can have an inflated Type I error rate

even when the means are equal. Our results illustrate permutation

testing should be confined to testing for non-identical distributions.

Contact: calian@raunvis.hi.is

1 INTRODUCTION

A popular technique for testing hypotheses of no effect, when the

distribution of the test statistic is unknown, is to resample the data.

Permutation testing is a version of this technique.

For example, to test the equality of two means Hm
0 : mX ¼ mY‚

one might use a test statistic which is the difference of the two

sample means, and estimate its null distribution by permuting the

observations in the combined X and Y samples. The basis for per-

mutation testing is if the X data are sampled from distribution PX

and the Y data from distribution PY, then under the null hypothesis

of identical distributions HP
0 : PX ¼ PY all permutations of the

observations are equally probable.

We will show, using simple examples, that if the identical dis-

tributions hypothesis HP
0 is false, as for example when PX and PY

have unequal variances, skewness or (in the multivariate case)

unequal correlations, then a permutation test for Hm
0 based on

difference of sample means can have an inflated Type I error

rate even when Hm
0 is true. Our results thus illustrate the appropri-

ateness of permutation testing may depend on whether the purpose

of testing is to detect differences in means, or non-identical

distributions.

This purpose will depend on the intended application. Take the

analysis of gene expression levels for instance. For discovering

regulatory networks, it may be useful to detect groups of genes

with non-identically distributed expression levels between normal

and disease subjects. On the other hand, for selecting genes to train

a prognostic algorithm using supervised machine learning, as in

the re-analysis of the data in van’t Veer et al. (2002) by Ein-Dor

et al. (2005), detecting differences in gene expression levels (i.e.

testing Hm
0 : mX ¼ mY) would be of primary interest if the prog-

nostic algorithm is based on differences.

2 MAIN RESULTSAND SIMULATED EXAMPLES

In this section, we examine the distribution of test statistics for the

difference of two means. In the normal distribution case, we show

that if the sample sizes are unequal, then a permutation test will pick

up signals from unequal variances and (in the multivariate case)

unequal correlations, leading potentially to an inflated Type I error

rate. In the case of arbitrary distributions, we show even if the

sample sizes are equal, a permutation test will pick up signals

from unequal skewness and higher order cumulants, leading poten-

tially to an inflated Type I error rate. We illustrate this for a

univariate lognormal distribution.

For the univariate case, Romano (1990) showed that the differ-

ence of sample means test statistic asymptotically has the issues

described above, while Janssen (1997) showed the Welch t-test is

asymptotically valid. Our results are based on the exact distribution

of the difference in sample mean test statistic for finite samples.

Pollard and van der Laan (2005) proposed a general multiple

testing method using asymptotically linear statistics, estimating

the null distribution of the test statistic by re-sampling (with replace-

ment), centering the data or statistics appropriately. They prove that,

under regularity conditions, asymptotically (as sample size

approaches infinity) their method controls the probability of incor-

rect rejection under the true distribution. [While this error rate

control is weaker than strong control of the Familywise error

rate (FWER), it should suffice in practice.] In the case of testing

for the equality of means when the distributions do not differ by a

location shift only, their method will re-sample mean-centered data

within each group of the populations to be compared. (In other

situations such as testing the equality of correlations or in tests

parameters from non-linear models, they re-sample uncentered

data then center the test statistics distribution.) Pollard and van

der Laan (2003, 2005) then show, in testing the equality of

the mean vectors of two bivariate distributions, estimating the

null distribution of the test statistic by re-sampling the pooled�To whom correspondence should be addressed.
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mean-centered data will result in too small a critical value, resulting

in an inflated error rate, if the sample sizes are unequal and the

covariances are not the same. This is very similar to our result that

permutation test has inflated error rate in that situation. But

our method of proof differs from theirs in that they compare the

inappropriately re-sampled distribution with the asymptotic distri-

bution of the appropriate non-parametric boot-strap distribution,

whereas we compare the permutation distribution with the

exact distribution for finite samples.

To gain some intuition towards what might go wrong, before

considering permutation tests, let us consider the simpler situation

of testing by resampling with replacement, in the case of normal

distributions.

Let Xi �i:i:d: N mX‚s2
XÞ

�
and Yj �i:i:d: N mY‚s2

Y

� �
, i ¼ 1‚2‚ . . . ‚ m,

j ¼ 1‚2‚ . . . ‚ n, where N m‚s2ð Þ denotes a normal distribution with

mean m and variance s2. Consider testing the null hypothesis

Hm
0 : mX ¼ mY using the test statistic T ¼ �XX � �YY . The distribution

of T under the null hypothesis is

N 0‚
s2
X

m
þ s2

Y

n

� �
ð1Þ

If we re-sample Xi‚ i ¼ 1‚ . . . ‚m and Yj‚ j ¼ 1‚ . . . ‚n‚ from the

pooled sample fX1‚ . . .‚Xm‚Y1‚ . . . ‚Yng‚ recomputing T each time

we re-sample, it turns out the distribution of T under the null

hypothesis Hm
0 is

N 0‚
s2
X

n
þ s2

Y

m

� �
ð2Þ

This can be seen as follows. Each re-sampled observation has

chance m=ðmþ nÞ of being an X with variance s2
X, and chance

n=ðmþ nÞ of being a Y with variance s2
Y : So the variance of

�XX � �YY is

m

m þ n
s2
X þ n

m þ n
s2
Y

m
þ

m

m þ n
s2
X þ n

m þ n
s2
Y

n

¼ s2
X

1

m þ n
þ m/n

m þ n

� �
þ s2

Y

n/m

m þ n
þ 1

m þ n

� �

¼ s2
X

n
þ s2

Y

m

Thus, if s2
X 6¼ s2

Y‚ then the re-sampled distribution (2) equals the

true null distribution (1) only if m ¼ n:

2.1 Effect of different correlations

Let Xi ¼ Xi1‚ . . . ‚Xig

� �
�i:i:d: MVNg mX‚SXð Þ and Yj ¼ Yj1‚ . . . ‚

�
YjgÞ �i:i:d: MVNg mY‚SYð Þ, i ¼ 1‚2‚ . . . ‚ m, j ¼ 1‚2‚ . . . ; n, where

MVNg m‚Sð Þ denotes a g-dimentional multivariate normal distri-

bution with mean vector m and variance–covariance matrix S.

For inference on the difference of means mX � mY‚ consider the

statistics

Tl ¼
�XXl � �YYlffiffiffiffiffiffiffiffiffiffiffiffiffi

1
m þ 1

n

q ‚ l ¼ 1‚ . . . ‚g‚ ð3Þ

where �XXl ¼
Pm

i¼ 1 Xil=m and �YYl ¼
Pn

j¼ 1 Yjl=n. Under the

null hypothesis of equality of means Hm
0 : mX ¼ mY , the statistic

T¼ T1‚T2‚ ...‚Tg

� �
¼ 1ffiffiffiffiffiffi

1
mþ1

n

p �XXg� �YYg

� �
¼ 1ffiffiffiffiffiffi

1
mþ1

n

p �XX1� �YY 1‚ ...‚ �XXg� �YYg

� �
is distributed as:

T�MVNg 0‚
SX

m þSY

n
1
mþ 1

n

 !
ð4Þ

However, the permutation distribution of T may be different.

THEOREM 2.1. Let m � n. Under Hm
0 : mX ¼ mY, the permutation

distribution of T ¼ 1ffiffiffiffiffiffi
1
mþ1

n

p �XXg � �YYg

� �
is

Xm
r¼0

m
r

� �
n
r

� �
mþn
m

� � MVN 0‚

m�rð ÞSXþrSY

m2
þrSXþ n�rð ÞSY

n2

1

m
þ1

n

0
B@

1
CA ð5Þ

The proof of Theorem 2.1 is given in Appendix A.

A direct consequence of Theorem 2.1 is that

(1) If m ¼ n even though SX 6¼ SY , or if m 6¼ n but SX ¼ SY‚ the

permutation distribution of T coincides with the distribution

under the null hypothesis (4).

(2) If m 6¼ n and SX 6¼ SY , the permutation and null - hypothesis

distributions of T are different.

A common test for Hm
0 : mX ¼ mY is

Reject Hm
0 if max

i¼1‚...‚g
jTij > c:

To control the familywise error rate (FWER) at a, the threshold

c should be chosen to be the upper a quantile of the distribution

of the maximum of jT1j‚ jT2j‚ . . . ‚ jTgj, where T is distributed

according to (4).

To assess the potential effect of different correlations on com-

puting critical value based on the permutation distribution (5)

instead of the true distribution (4), we conducted a simple simula-

tion. We sampled 10 000 datasets with g ¼ 50 from the permutation

distribution (4) given by Theorem 2.1, a mixture of MVNg mX‚SXð Þ
and MVNg mY‚SYð Þ where mX ¼ mY ¼ 0, SX has all the diagonal

elements equal to 1 and all the off-diagonal elements equal to zero,

while SY has all the diagonal elements equal to 1 and all the off-

diagonal elements equal to 0.9. For m ¼ 2 and n ¼ 4‚ the permu-

tation test proves to be liberal (Fig. 1), i.e. it does not control the

Type I error rate of testing Hm
0 : mX ¼ mY‚ as the distribution of

maxi¼1‚...‚gjTij sampled from the permutation distribution (5) turns

out to be stochastically smaller than its distribution sampled from

the true distribution (4). (If m ¼ 4 and n ¼ 2‚ then the permutation

test would be conservative.)

To compare the critical values of the permutation test with

the correct critical value, we drew sets of 10 000 sample data

from the permutation distribution (5) and from the true test

statistic distribution (4), for g ¼ 500‚600‚ . . . ‚1000: Figure 2

shows the extent the permutation test critical values are too

small for m ¼ 2 and n ¼ 8.

As the maxjTj test is often used to test component hypotheses

in multiple testing, our result has implication in multiple testing

as well.

2.2 Effect of different variances

We conducted a simple simulation to show that different variances

can cause permutation test for equality of means to be either liberal

or conservative.

To permute or not to permute
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Let Xi �i:i:d: N mX‚s2
X

� �
and Yj �i:i:d: N mY‚s2

Y

� �
, i¼1‚2‚ ...‚m,

j¼1‚2‚ ...‚ n, and consider testing the null hypothesis

Hm
0 :mX¼mY using the test statistic T¼ �XX� �YYð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/mþ1/n

p
.

In the first simulation study, 10 000 sets of random samples

are drawn from N mX ¼ 0‚s2
X ¼ 1

� �
with m ¼ 6 and from

N mY ¼ 0‚s2
Y ¼ 3

� �
with n ¼ 4, independently. For each random

sample, the p-value of the permutation test is computed by complete

enumeration. Figure 3a compares the cumulative distribution of

the simulated p-values with that of the Uniform(0, 1) distribution

(a straight line along the 45� diagonal), showing that for a typical

significance level the permutation test is liberal in this case.

For instance, if the nominal significance level is 0.05, the actual

significance level is �0.09.

In the second simulation study, 10 000 sets of random samples

are drawn from N mX ¼ 0‚s2
X ¼ 1

� �
with m ¼ 4 and from

N mY ¼ 0‚s2
Y ¼ 3

� �
with n ¼ 6, independently. For each random

sample, the p-value of the permutation test is computed by complete

enumeration. Figure 3b compares the cumulative distribution of

the simulated p-values with that of the Uniform(0, 1) distribution

(a straight line along the 45� diagonal), showing that for a typical

significance level the permutation test is conservative in this case.

For instance, if the nominal significance level is 0.05, the actual

significance level is 0.04.

2.3 Effect of differences in higher order cumulants

So far, we have shown that if X and Y are multivariate normal, then

the permutation distribution of the test statistic happens to be the

same as the true distribution of the test statistic if the sample sizes

are equal ( m ¼ nÞ: This lucky coincidence only holds when X and

Y are multivariate normal, as we now show.

Suppose Xi �i:i:d: FX and Yj �i:i:d: FY‚ i ¼ 1‚ . . . ‚m‚ j ¼ 1‚ . . . ‚n,

where FX and FY are arbitrary multivariate distributions. The per-

mutation distribution of the test statistic and the true distribution

of the test statistic can be described in terms of cumulants ka FXð Þ
and ka FYð Þ‚a ¼ 1‚2‚3‚ . . . ‚ of FX and FY (assuming they exist):

THEOREM 2.2. (1) The true distribution of the test statistic
T ¼ �XX � �YY has cumulants

ka Tð Þ ¼ m1�aka FXð Þ þ �1ð Þan1�aka FYð Þ: ð6Þ

(2) For a given permutation with r elements relabeled, the
distribution (Pr) of the test statistic Tr ¼ �XXr � �YYr obtained by
permutation has cumulants

ka Trð Þ ¼ ka Tð Þ � r
1

ma
� �1ð Þa

na

� �
ka FXð Þ � ka FYð Þð Þ ð7Þ

The proof is given in Appendix B.
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For the test statistic T ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/mþ 1/n

p
Þ �XX � �YYð Þ, results are

similar except there are constants 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/mþ 1/n

p
Þ

� �a
multiplying

ka FXð Þ and ka FYð Þ in Equations (6) and (7).

We thus have

COROLLARY 2.3. (1) The true and permutation distributions of the
test statistic T will have the same even-order cumulants if m ¼ n.

(2) The true and permutation distributions of the test statistic
will not necessarily have the same ath order cumulants for a
odd, regardless of whether m ¼ n, unless ka FXð Þ ¼ ka FYð Þ:

So, if X and Y are not multivariate normal, then differences in

cumulants of order higher than two can cause permutation test for

equality of means to be liberal even if m ¼ n: We use a simulation

with different skewness to demonstrate this, even when X and Y are

univariate.

Let Xi �i:i:d: Lognormal mX‚s2
X

� �
and Yj �i:i:d: Lognormal mY‚s2

Y

� �
,

i ¼ 1‚2‚ . . . ‚ m, j ¼ 1‚2‚ . . . ‚ n, and consider testing the null

hypothesis HE
0 : E Xið Þ ¼ emX þs2

X /2 ¼ E Yj

� �
¼ emY þs2

Y /2, using the

test statistic

T ¼ �XX � �YYð Þ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/mþ 1/n

p
:

We generated 10 000 sets of random samples from mX ¼ � 0:25‚

s2
X ¼ 1‚m ¼ 5 and independently from mY ¼ 0:125‚s2

Y ¼ 0:25‚

n ¼ 5. The two distributions have the same mean (emXþs2
X /2 ¼

emYþs2
Y /2 ¼ 1:284) but different skewness, as shown in Figure 4.

For each random sample, the p-value of the permutation test is

computed by complete enumeration.

The cumulative distribution of the simulated p-values is shown in

Figure 5. The actual significance level is higher than the nominal

significance level. For instance, for a nominal significance level of

0.05, the estimated actual significance level is 0.154, with a 95%

confidence interval of (0.150, 0.157). For a nominal significance

level of 0.10, the estimated actual significance level is 0.233,

with a 95% confidence interval of (0.228, 0.237). Apparently,

the permutation test can be liberal.

3 EXAMPLES AND RECOMMENDATIONS

An advantage of permutation testing is no knowledge of the

distribution of the observations is required. Its control of error

rate, however, only holds under the condition of identical distri-

bution among groups to be compared. If the purpose of testing is to

detect differences in means, then permutation testing may pick up

unintended signals, rejecting an equality hypothesis for the wrong

reason.
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For example, van’t Veer et al. (2002) reported a 70 gene signature

as strongly predictive of short interval to distant metastasis of

breast cancer. Their data was reanalyzed by Ein-Dor et al.
(2005), in a way similar to the original data analysis. First, based

on sample fold changes, (non-statistical) filtering was applied to

select 5852 genes from the 24 481 genes probed on the microarrays.

Then 1234 genes were selected for more detailed study from these

5852 genes, those genes corresponding to the rejection of the

null hypothesis that its expression levels across patients is uncor-

related with their prognosis (a dichotomized outcome of either

metastasis-free for >5 years or not, controlling FDR at 10%).

Turns out it can be shown that permutation testing of sample

correlation between gene expression profile and dichotomized

prognoses is equivalent to permutation testing of difference in

mean gene expression levels between good and poor prognosis

groups. Since m ¼ 51 6¼ n ¼ 45 in Ein-Dor et al. (2005), such per-

mutation testing will detect, in addition to equality of means,

unequal variance, correlations and skewness. Whether detecting

such differences is useful or not may depend on the intended use

of permutation testing. As the purpose of selecting genes in van’t

Veer et al. (2002) and Ein-Dor et al. (2005) was to train prognostic

algorithms using machine learning, it seems to us the hypotheses of

primary interests are Hm
0 : mX ¼ mY and not HP

0 : PX ¼ PY (at least

for algorithm based on distances measured by differences).

Instead of permutation testing, we recommend the following

alternative approaches.

If gene expression data from microarray experiments can be

modeled, and modeling diagnostics of the residuals (observed val-

ues minus values predicted from the model) show the errors have

reasonable i.i.d. structure, then setting critical values for testing

by appropriately re-sampling the residuals controls the error rate

asymptotically. For example, Hsu et al. (2006) describe a statisti-

cally designed microarray experiment whose (logarithm of the)

expression levels can be modeled linearly. After identifying

error vectors that can be reasonably assumed to be i.i.d, they

then bootstrapped the corresponding residuals vectors to set critical

values for multiple testing.

If modeling of the data is difficult and the sample sizes are rea-

sonably large, then we recommend the non-parametric bootstrap

method of Pollard and van der Laan (2005) which re-samples data

within each group and then centers the re-sampled test statistics to

obtain a test null distribution. This re-sampling method is imple-

mented as the MTP function in the multtest package of bioconductor

(Pollard et al., 2005). They used both real and simulated data to

study the behavior of permutation methods and their bootstrap

methods, controlling generalized FWER. They found the error

rates of permutation tests to be systematically higher than the target

level, with the exception being the equal sample size case for

difference of sample means test statistics. They also found that

bootstrap methods can be either liberal or conservative in terms

of error rates, depending on the test statistics used.
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