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ABSTRACT

Motivation:Gene selection algorithms for cancer classification, based

on the expression of a small number of biomarker genes, have been

the subject of considerable research in recent years. Shevade and

Keerthi propose a gene selection algorithm based on sparse logistic

regression (SLogReg) incorporating aLaplaceprior to promote sparsity

in the model parameters, and provide a simple but efficient training

procedure. The degree of sparsity obtained is determined by the

value of a regularization parameter, which must be carefully tuned in

order to optimize performance. This normally involves a model selec-

tion stage, based on a computationally intensive search for the mini-

mizer of the cross-validation error. In this paper, we demonstrate

that a simple Bayesian approach can be taken to eliminate this regu-

larization parameter entirely, by integrating it out analytically using an

uninformative Jeffrey’s prior. The improved algorithm (BLogReg) is

then typically two or three orders of magnitude faster than the original

algorithm, as there is no longer a need for a model selection step. The

BLogReg algorithm is also free from selection bias in performance

estimation, a common pitfall in the application of machine learning

algorithms in cancer classification.

Results: The SLogReg, BLogReg and Relevance Vector Machine

(RVM) gene selection algorithms are evaluated over the well-studied

colon cancer and leukaemia benchmark datasets. The leave-one-out

estimates of the probability of test error and cross-entropy of the

BLogReg and SLogReg algorithms are very similar, however the

BlogReg algorithm is found to be considerably faster than the original

SLogReg algorithm. Using nested cross-validation to avoid selection

bias, performance estimation for SLogReg on the leukaemia dataset

takes almost 48 h, whereas the corresponding result for BLogReg is

obtained in only 1 min 24 s, making BLogReg by far the more practical

algorithm. BLogReg also demonstrates better estimates of conditional

probability than the RVM, which are of great importance in medical

applications, with similar computational expense.

Availability: A MATLAB implementation of the sparse logistic regres-

sionalgorithmwithBayesian regularization (BLogReg) is available from

http://theoval.cmp.uea.ac.uk/~gcc/cbl/blogreg/

Contact: gcc@cmp.uea.ac.uk

1 INTRODUCTION

Cancer classification based on microarray gene-expression data,

ideally identifying a small number of discriminatory biomarker

genes, provides one of the earliest applications of machine learning

methods in computational biology. A wide variety of machine

learning algorithms have been applied to this problem, including

the support vector machine (Guyon et al., 2002), sparse logistic

regression (SLogReg) (Shevade and Keerthi, 2003), the relevance

vector machine (RVM) (Li et al., 2002), Gaussian Process models

(Chu et al., 2005) and simple decision rules (Tan et al., 2005). The
common aims of such algorithms are 2-fold: primarily to distinguish

between patients suffering from subtly different forms of cancer,

with the highest possible degree of accuracy, on the basis of their

gene expression profiles obtained by broad-spectrum microarray

analysis. The second goal is to identify a small sub-set of biomarker

genes, for which expression patterns are highly indicative of a

particular form of cancer, and are therefore implicated by asso-

ciation. This second goal is concerned with improving our under-

standing of the underlying causes of the cancer.

In this paper, we propose a substantial improvement to the sparse

logistic regression (SLogReg) approach of Shevade and Keerthi

(2003). The SLogReg algorithm employs an L1-norm regularization

term (Tikhonov and Arsenin, 1977), corresponding to a Laplace

prior over the model parameters (c.f Williams, 1995), in order to

identify a sparse sub-set of the most discriminatory features corre-

sponding to biomarker genes. Both the generalization ability of

the classifier and the level of sparsity achieved are critically depen-

dent on the value of a regularization parameter, which must be

carefully tuned to optimize performance. This is normally achieved

by a computationally intensive search for the minimizer of a cross-

validation based estimate of generalization performance. Instead,

we adopt a Bayesian approach, in which the regularization parame-

ter is integrated out analytically, using an uninformative Jeffery’s

prior, in the style of Buntine and Weigend (1991) (see also Lehrach

et al., 2006). The resulting parameterless classification algorithm

(BLogReg) is very much easier to use, is comparable in perfor-

mance with the original sparse logistic regression algorithms, but is

two or three orders of magnitude faster, as there is no longer a need

for a model selection stage to optimize the regularization parameter.

The remainder of this paper is structured as follows: The existing

sparse logistic regression (SLogReg) algorithm (Shevade and

Keerthi, 2003) is reviewed in Section 2. The modified Bayesian

logistic regression (BLogReg) algorithm is then introduced in

Section 3. Experimental results obtained on the well-studied

colon cancer (Alon et al., 1999) and leukaemia (Golub et al.,
1999) benchmark problems are presented in Section 4, demonstrat-

ing the competitiveness of the improved algorithm. Finally, the

work is summarized and conclusions drawn in Section 5.�To whom correspondence should be addressed.
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2 SPARSE LOGISTIC REGRESSION

We are commonly faced with statistical pattern recognition prob-

lems, where we must learn some decision rule distinguishing

between objects belonging to one of two classes, based on a set

of ‘ training examples,

D ¼ fðxi‚yiÞg
‘
i¼1‚ xi 2 X � R

d‚ yi 2 f� 1‚ þ 1g‚

where xi represents a vector of measurements describing the i-th

example, and yi indicates the class to which the i-th example

belongs, with yi¼ +1 representing class C1 and yi¼�1 representing

class C2. Logistic regression is a classical approach to this problem,

that attempts to estimate the a-posteriori probability of class mem-

bership based on a linear combination of the input features,

pðC1 j xÞ ¼
1

1þ exp f� f ðxÞg ‚ ð1Þ

where

f ðxiÞ ¼
Xd
j¼1

ajxij þ a0: ð2Þ

The parameters of the logistic regression model,

a ¼ ða0‚a1‚ . . . ‚adÞ, can be found by maximizing the likelihood

of the training examples, or equivalently by minimizing the nega-

tive log-likelihood. Assuming D represents an independent and

identically distributed (i.i.d.) sample from a Bernoulli distribution,

the negative log-likelihood is given by

ED ¼
X‘
i¼1

gf� yi f ðxiÞg‚

where

gfjg ¼ logf1þ exp ðjÞg:

Minimizing the negative log-likelihood is relatively straightfor-

ward as the first and second derivatives, with respect to individual

model parameters, are continuous and easily computed,

@ED
@aj

¼�
X‘
i¼1

expf� yi f ðxiÞgyixij
1þ expf � yf ðxiÞg

ð3Þ

and

@2ED
@a2

j

¼
X‘
i¼1

expf� yi f ðxiÞgy2i x2ij
½1þ expf�yf ðxiÞg�2

: ð4Þ

The resulting model is however fully dense, in the sense that none

of the model parameters a are in general exactly zero. Ideally we

would prefer a model based on a small selection of the most infor-

mative features, with the remaining features being ‘pruned’ from the

model. A sparse model can be introduced by adding a regularization

term to the negative log-likelihood (e.g. Williams, 1995), corre-

sponding to a Laplace prior over a, to give a modified training

criterion,

M ¼ ED þ lEa; where Ea ¼
Xd
i¼1

jaij ð5Þ

and l is a regularization parameter, controlling the bias-variance

trade-off and simultaneously the sparsity of the resulting model.

Note that the usual bias parameter a0 is normally left unregularized.

At a minima of M, the partial derivatives of M with respect to the

model parameters will be uniformly zero, giving

@ED
@ai

¼ l if jaij > 0 and
@ED
@ai

����
���� < l if jaij ¼ 0:

����
����

This implies that if the sensitivity of the negative log-likelihood

with respect to a model parameter, ai, falls below l, then the value

of that parameter will be set exactly to zero and the corresponding

input feature can be pruned from the model. The principal short-

comings of this approach lie in the training algorithm no longer

involving an optimization problem with continuous derivatives and

in the need for lengthy cross-validation trials to determine a good

value for the regularization parameter l. Shevade and Keerthi

(2003) provide a solution to the first problem, described in the

remainder of this section. This paper proposes a Bayesian solution

to the second problem, where the regularization parameter is inte-

grated out analytically.

2.1 An efficient optimization procedure

The training algorithm proposed by Shevade and Keerthi (2003)

seeks to minimize the cost function (5) by optimizing one parameter

at a time via Newton’s method. However, owing to the discontinuity

in the first derivative at the origin, care must be exercised when the

value of a model parameter passes through zero. This is achieved by

bracketing the optimal value for a model parameter, ai, by upper

and lower limits (H and L respectively) such that the interval does

not include 0, except perhaps at a boundary. These limits can be

computed using the gradient ofM with respect to ai computed at its

current value and at zero, from both above and below, as shown in

Table 1 and illustrated by Figure 1.

A model parameter must be selected for optimization at each

iteration, the parameter with the gradient of the greatest magnitude

is a sensible choice. In order to improve the speed of convergence,

we begin by optimizing only active parameters (those with non-zero

values), and only consider inactive parameters if no active parame-

ter can be found with a non-zero gradient. Iterative optimization

procedures do not generally reduce the gradient exactly to zero, and

so in practice we only consider parameters for optimization if they

have a gradient exceeding a pre-defined tolerance parameter t.

The algorithm terminates when no such parameter can be found.

Table 1. Special cases that must be considered in optimizingM with respect

to ai in order to avoid difficulties due to the discontinuity in the first deriva-

tive at the origin

Case ai
@M
@ai

���
ai

@M
@ai

���
0�

@M
@ai

���
0þ

L H

1 0 — <0 <0 0 +1
2 0 — >0 >0 0 �1
3 <0 >0 — — �1 ai

4 >0 <0 — — ai +1
5 <0 <0 >0 — ai 0

6 >0 >0 — <0 0 ai

7 <0 <0 — >0 0 +1
8 >0 >0 <0 — �1 0

9 <0 <0 �0 �0 0 0

10 >0 >0 �0 �0 0 0
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For a complete description of the training algorithm, see Shevade

and Keerthi (2003).

3 BAYESIAN REGULARIZATION

In this section, we demonstrate how the regularization parameter

may be eliminated, following the methods of Buntine and Weigend

(1991) and Williams (1995), before going on to describe the modi-

fication of the training procedure of Shevade and Keerthi (2003)

required to accommodate the revised optimization problem.

3.1 Eliminating the regularization parameter l

Minimization of (5) has a straight-forward Bayesian interpretation;

the posterior distribution for a, the parameters of the model given by

(1 and 2), can be written as

pðajD‚lÞ / pðDjaÞpðajlÞ:
M is then, up to an additive constant, the negative logarithm of the

posterior density. The prior over model parameters, a, is then given

by a separable Laplace distribution

pðajlÞ ¼
� l

2

�N

expf� lEag ¼
YN
i¼1

l

2
expf� ljaijg‚ ð6Þ

where N is the number of active (non-zero) model parameters. A

good value for the regularization parameters l can be estimated,

within a Bayesian framework, by maximizing the evidence

(MacKay, 1992a, b, c) or alternatively it may be integrated out

analytically (Buntine and Weigend, 1991; Williams, 1995). Here

we take the latter approach, where the prior distribution over model

parameters is given by marginalizing over l,

pðaÞ ¼
Z

pðajlÞpðlÞ dl:

As l is a scale parameter, an appropriate ignorance prior is given

by the improper Jeffrey’s prior, pðlÞ / 1/l, corresponding to a

uniform prior over log l. Substituting Equation (6) and noting

that l is strictly positive,

pðaÞ ¼ 1

2N

Z 1

0

lN�1 expf� lEag dl:

Using the Gamma integral,
R1
0

xn�1e�mx dx ¼ GðnÞ
mn (Gradshteyn

and Ryzhic, 1994, equation 3.384), we obtain

pðaÞ ¼ 1

2N
GðNÞ
EN
a

) � log pðaÞ / N logEa‚

giving a revised optimization criterion for sparse logistic regression

with Bayesian regularization,

Q ¼ ED þ N logEa‚ ð7Þ

in which the regularization parameter has been eliminated, for fur-

ther details and theoretical justification, see Williams (1995). The

use of a Laplace prior and Jeffrey’s hyper-prior in sparse supervised

learning has also been proposed by Figueiredo (2003), along with an

Expectation-Maximization (EM) style training algorithm. Unfortu-

nately this training procedure involves solving a system of ‘ linear
equations, analogous to the normal equations to be solved in linear

regression, and so is not suitable for large-scale applications, such as

the analysis of microarray data. Fortunately the method of Shevade

and Keerthi (2003) can easily be adapted to sparse logistic regres-

sion with Bayesian regularization.

3.2 Minimizing the Bayesian training criterion

Shevade and Keerthi (2003) demonstrate that the cost function for

sparse logistic regression using a Laplace prior can be iteratively

minimized in an efficient manner one parameter at a time. Note that

the objective function is non-smooth, as the first derivatives exhibit

discontinuities at ai ¼ 0‚ 8i 2 f1‚2‚ . . . ‚Ng, but is otherwise

smooth. These properties of the objective function are clearly
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Fig. 1. Graphical depiction of the special cases, listed in full in Table 1, to be considered in optimizing amodel parameter in order to deal with the discontinuity in

the first derivative at the origin. Note that even and odd numbered cases differ only by reflection.
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evident from the first and second derivatives,

@

@ai
logEa ¼ ai

jai j
1

Ea

and
@2

@a2
i

logEa ¼ � 1

E2
a

:

The training criterion incorporating a fully Bayesian regulariza-

tion term can be minimized via a simple modification of the existing

training algorithm for sparse logistic regression. Differentiating the

original and modified training criteria (5,7), we have that

rM ¼ rED þ lrEa and rQ ¼ rED þ ~llrEa,

where

1

~ll
¼ 1

N

XN
i¼1

jaij: ð8Þ

From a gradient descent perspective, Minimizing Q effectively

becomes equivalent to minimizing M, assuming that the regular-

ization parameter, l, is continuously updated according to (8)

following every change in the vector of model parameters, a

(Williams, 1995). This requires only a very minor modification

of the code implementing the sparse logistic regression algorithm,

whilst eliminating the only training parameter and hence the need

for a model selection procedure in fitting the model.

3.3 Relationship with the evidence framework

It has been observed that the ‘integrate-out’ approach to deal with

the regularization parameter (Buntine and Weigend, 1991) is likely

to lead to over-regularized models that under-fit the data, for neural

network models with a traditional Gaussian weight-decay prior, and

that evidence framework (MacKey, 1992a, b, c) is generally to be

preferred (MacKay, 1994). However, it is relatively straight forward

to show that, in the case of the Laplace prior, the iterative update

formula for the effective regularization parameter (8) is identical to

the update formula for the regularization parameter under the evi-

dence framework (Williams, 1995).

4 RESULTS

In this section, we evaluate the performance of the proposed

logistic regression method with Bayesian regularization using a

Laplace prior against the sparse logistic regression method of

Shevade and Keerthi (2003), on which it is based, and the RVM

(Tipping, 2001), which represents the most direct competing

approach. The performance of all three classifiers are evaluated

over two commonly used benchmark datasets: the colon cancer

dataset, introduced by Alon et al. (1999) and the leukaemia dataset

introduced by Golub et al. (1999). Sections 4.1–4.3 outline key

aspects of the experimental methodology, the experimental results

are given in Sections 4.4 and 4.5.

4.1 Performance evaluation

Cross-validation (Stone, 1974) is a commonly used procedure

for evaluating the quality of statistical models. In k-fold cross-

validations, the available data are partitioned into k disjoint

sub-sets of approximately equal size. A set of k classifiers is

then constructed; each classifier is trained on a different combina-

tion of k�1 sub-sets and tested on the remaining sub-set. The

average test performance of the k classifiers generally provides

a good estimate of the generalization performance of a single

classifier trained on the entire dataset. Cross-validation is especially

attractive in applications with relatively limited amounts of data as

all observations are used as both training and test data. The most

extreme form of cross-validation, where each partition contains a

single pattern, is known as leave-one-out cross-validation, and has

been shown to provide an almost unbiased estimate of the true test

error (Luntz and Brailovsky, 1969). Leave-one-out cross-validation

is rarely used in performance evaluation owing its high computa-

tional expense, but also because is has been observed to exhibit a

higher variance than conventional k-fold cross-validation (Kohavi,

1995). However, if the amount of available data are severely lim-

ited, leave-one-out cross-validation becomes the more attractive

option, and not only because the computational expense involved

becomes less of an issue. In these circumstances, k-fold cross-

validation can also exhibit a high variance because more data are

held out for testing in each fold, and the classifiers may then have

too little data to form a stable decision rule (i.e. a small change in the

training data may lead to a significant change in the decision rule).

The estimator then becomes sensitive to issues such as the parti-

tioning of the data. In microarray analysis, we typically have only a

few tens or hundreds of training patterns with a few thousand fea-

tures. We therefore use leave-one-out cross-validation as it is likely

to provide a more reliable indicator of generalization performance

than five- or ten-fold cross-validation.

4.2 The relevance vector machine

The RVM is included in the evaluation as it implements a logistic

regression model, where the amount of regularization applied and

the degree of sparsity obtained are also governed within a Bayesian

framework, rather than by an explicit parameter which must be

tuned by the user. The algorithm therefore generates a model

of the same form as the proposed method, also without the need

for a model selection stage to choose good settings for any hyper-

parameters. The RVM, however, is based on a separable Gaussian

prior over the model parameters, with a distinct regularization

parameter for each weight. The regularization parameters are

adjusted so as to maximize the marginal likelihood of the model,

which tends to force the values of redundant weights strongly

towards zero, so that they can be identified and pruned from the

model, via a process known as automatic relevance determination

(ARD). The implementation used here is based on the fast marginal

likelihood approach described by Faul and Tippline (2002, 2003),

however rather than re-fitting the Laplace approximation after each

update of a regularization, it is only updated when a significant

increase in the marginal likelihood is no longer possible via updates

of the regularization parameters. This strategy was found to be

considerably faster in practice.

4.3 Model selection for sparse logistic regression

The existing sparse logistic regression model of Shevade and

Keerthi (2003) includes a regularization parameter, controlling

the complexity of the model and the sparsity of the model para-

meters, which must be chosen by the user or alternatively optimized

in an additional model selection stage. In this study, the value of this

parameter is found via a (computationally expensive) minimization

of the leave-one-out cross-validation estimate of the cross-entropy

loss. Again, leave-one-out cross-validation is appropriate as the

amount of training data is severely limited. However, we cannot

use the same leave-one-out cross-validation estimate for both model
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selection and performance evaluation as this would introduce a

(possibly quite strong) selection bias in favour of the existing sparse

logistic regression model. A nested leave-one-out cross-validation

procedure is therefore used instead. Leave-one-out cross-validation

is used for performance evaluation in the ‘outer loop’ of the pro-

cedure, in each iteration of which model selection is performed

individually for each classifier based on a separate leave-one-out

cross-validation procedure. Obviously this is computationally

expensive, but provides an almost unbiased assessment of general-

ization performance as well as a sensible automatic method of

setting the value of the regularization parameter.

4.4 Results on the colon cancer dataset

The colon cancer dataset (Alon et al., 1999) describes the expres-

sion of 2000 genes in 40 cancer and 22 normal tissue samples, the

aim being to construct a classifier capable of distinguishing between

cancer and normal tissues. Table 2 shows the leave-one-out cross-

validation estimate of the cross-entropy and error rate for the RVM,

SLogReg and BlogReg algorithms over the colon dataset. All three

classifiers achieve the same error rate of 17.7%. The cross-entropy

provides a more refined indicator of the discriminative ability of

a classifier, and in this case shows that the SLogReg and BLogReg

algorithms clearly outperform the RVM, but that the difference in

performance between the SLogReg and BLogReg algorithms is

minimal. The higher cross-entropy of the RVM is however offset

by the use of a much smaller sub-set of the available features.

Figure 2 shows the frequency of selection and the mean weight

for each feature comprising the colon dataset for RVM, SLogReg

and BlogReg algorithms, averaged over 1000 bootstrap realizations

of the data. Note that in each case, a small sub-set of features are

selected on a regular basis with significant weights, however the

sub-sets of features chosen in each iteration exhibit substantial

variation. The BLogReg algorithm is marginally more expensive

than the RVM, each fold of the leave-one-out cross-validation pro-

cedure taking on average 1.03 and 0.84 s respectively. The SLogReg

algorithm is very much more expensive, owing to the need for a

model selection stage to choose a good value for the regularization

parameter, l, with each fold of the leave-one-out cross-validation

procedure taking� 317 s. The choice of algorithm is then dependent

on whether sparsity or predictive power (as measured by the cross-

entropy) is most important. Given the minimal difference in

performance and substantial difference in computational expense

there is little reason to prefer the SLogReg over the BLogReg

algorithm.

4.5 Results on the leukaemia dataset

The aim of the leukaemia benchmark (Golub et al., 1999) is to form
a decision rule capable of distinguishing between acute myeloid

leukaemia (AML) and acute lymphoblastic leukaemia (ALL). The

data describe the expression of 7128 genes in 47 ALL samples and

25 AML samples. The original benchmark partitions the data into

training and test sets, however as leave-one-out cross-validation is

used in this study, owing to the small size of the dataset, we have

neglected this division. Again the leave-one-out cross-validation

error rates are very similar, with the original SLogReg model gen-

erating four leave-one-out errors and the BLogReg and RVM mod-

els both generating five. The RVM and SLogReg models both

produce very sparse models, however the BLogReg model still

uses on average only 11.59 of the 7128 features (only 0.16%).

However, the additional features used by the BLogReg model

do provide additional discriminatory power, as the BLogReg

model achieves the lowest cross-entropy score. The BlogReg

model is slightly faster than the RVM model, in this case each

fold of the leave-one-out cross-validation process taking an

average of 1.16 s for the BlogReg model and 2.78 s for the

RVM model. The BLogReg model is however more than three

orders of magnitude faster than the existing SLogReg model,

which requires an average of 2392.2 s, owing to the model selection

stage required to optimize the value of the regularization parameter

(Fig. 3 and Table 3).

4.6 Discussion

It is interesting to compare the BLogReg and RVM approaches from

a theoretical perspective as BLogReg, which integrates out the

hyper-parameters and subsequently optimizes the parameters

implements a strategy that is diametrically opposed to that of the

RVM, which integrates over the model parameters and optimizes

the hyper-parameters. The proper Bayesian approach to dealing

with hyper-parameters seeks to define a suitable hyper-prior and

integrate them out analytically (Buntine and Weigend, 1991;

Willams, 1995), or via Markov Chain Monte Carlo (MCMC) meth-

ods (Williams and Rasmussen, 1996). On the other hand, MacKay

(1999) notes that, at least in the case of a Gaussian prior, optimizing

the hyper-parameters under the evidence framework is often pre-

ferable. In the presence of many ill-defined parameters, the

integrate-out approach often leads to over-regularization of the

model, also the skewness of the posterior means that the usual

Laplace approximation is not representative of the volume of the

true posterior under the integrate-out approach. However, in the

case of the Laplace prior, the pruning action of the regularizer

eliminates any ill-determined parameters, and so the model will

not generally be overly regularized. Also the model being sparse

and composed solely of well-determined parameters, the posterior is

likely to be comparatively compact, and so the Laplace approxima-

tion under the Laplace prior can be expected to be relatively accu-

rate. Indeed, the integrate-out and optimization approaches have

been shown to be equivalent in the case of the Laplace prior

(Williams, 1995). The theoretical justification for the BLogReg

algorithm is thus at least as sound as that of the RVM. The BLogReg

and RVM have also been evaluated for the task of discriminative

detection of regulatory elements (Cawley et al. 2006a), where the

BLogReg algorithm generally out-performed the RVM, although

the difference in performance was relatively slight.

Table 2. Leave-one-out cross-validation estimate of the cross-entropy and

error rate for RVM, SLogReg and BLogReg algorithms on the colon bench-

mark and a bootstrap estimate of the average number of features used.

Algorithm Cross-entropy Error rate # Features

RVM 0.567 ± 0.178 0.177 ± 0.049 5.60 ± 0.040

SLogReg 0.506 ± 0.094 0.177 ± 0.049 15.54 ± 0.103

BLogReg 0.510 ± 0.098 0.177 ± 0.049 11.74 ± 0.033

All averages are given with the associated standard error of the mean.
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The Jeffreys prior is used here as this is the standard reference

prior for a scale parameter (Jeffreys, 1961), expressing ignorance of

the true value on a logarithmic scale. The other advantage of the

Jeffreys prior is entirely practical, in that it results in an analytic

solution for the desired integral, giving rise to the modified training

criterion (7). It is likely that good results may be obtained using

other reasonable hyper-priors, although the resulting training algo-

rithm is likely to be of a less convenient form.

Selection bias is an important issue in performance evaluation of

cancer classification algorithms (Ambroise and McLachlan, 2002).

The proposed BLogReg is essentially free from selection bias as it is

self-contained, without parameters that must be optimized during

model selection. The use of a nested leave-one-out cross-validation

procedure, in order to optimize the regularization parameter without

incurring selection bias difficulties, makes the SLogReg algorithm

essentially impractical. In the case of the leukaemia dataset, unbi-

ased performance estimation for the SLogReg algorithm took

almost two days on a modern PC, but <2 min using the BLogReg

algorithm. Given the minimal difference in generalization perfor-

mance between the original and improved sparse logistic regression

models, there is little practical reason not to prefer the BLogReg

variant. More recently, multinomial variants of the BLogReg and

SLogReg algorithms were evaluated over a suite of nine benchmark

datasets (Cawley et al. 2006b). Again the differences in general-

ization performance were generally minimal, with the BLogReg

algorithm being generally two or three orders of magnitude faster.

It should be noted that in this study, the RVM produces models

with significantly fewer input features, than the other models. How-

ever, this is achieved at the expense of the accuracy of the condi-

tional probability generated by the model (as measured by the leave-

one-out cross-entropy statistic). Qi et al. (2004) also show that the

RVM selects too few input features, and therefore under-fits the data

in cancer-classification using gene-expression data. Accurate

estimation of conditional probabilities is essential in statistical deci-

sion making (Berger, 1985), especially in medical applications

where false-positive and false-negative costs may be different, or

where we may wish to reject an uncertain diagnosis in favour of

performing additional tests. Unless the focus is on identifying the

smallest possible set of biomarker genes, rather than predictive

performance, the BLogReg algorithm is likely to be the better

option.

5 CONCLUSIONS

In this paper we demonstrate that the regularization parameter

arising in the sparse logistic regression algorithm (SLogReg) of

Shevade and Keerthi (2003) can be eliminated, via Bayesian

marginalization, without a significant effect on predictive perfor-

mance. Results on the well-studied colon cancer and leukaemia

benchmarks clearly demonstrate that the proposed algorithm for

sparse logistic regression with Bayesian regularization (BLogReg)

is competitive with the original SLogReg and RVM algorithms in

terms of performance and sparsity. However, as the need for a cross-

validation based model selection process is obviated, the improved

algorithm is two to three orders of magnitude faster than its pre-

decessor. The computational expense of eliminating selection bias

for the existing SLogReg algorithm is shown to be prohibitive; in

this study estimation of the error rate for the SLogReg algorithm

took just under five and a half hours, whereas a comparable estimate

for the BLogReg algorithm took just over one minute, clearly a very

significant improvement. The absence of a model selection stage

also automatically eliminates any risk of selection bias in the

estimation of the test error rate. Further work will investigate the

use of Bayesian logistic regression using, e.g. radial basis functions

as an alternative to the RVM in a more general non-linear pattern

recognition setting.
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