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ABSTRACT

We present a novel method for finding low-dimensional views of high-

dimensional data: Targeted Projection Pursuit. The method proceeds

by finding projections of the data that best approximate a target view.

Two versions of the method are introduced; one version based on

Procrustes analysis and one based on an artificial neural network.

These versions are capable of finding orthogonal or non-orthogonal

projections, respectively. Themethod is quantitatively and qualitatively

compared with other dimension reduction techniques. It is shown to

find 2D views that display the classification of cancers from gene

expressiondatawithavisual separationequal to, or better than, existing

dimension reduction techniques.

Availability: source code, additional diagrams, and original data are

available from http://computing.unn.ac.uk/staff/CGJF1/tpp/bioinf.html

Contact: joe.faith@unn.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

This article considers the problem of visualizing classifications of

samples based on high-dimensional gene expression data. There are

many powerful automatic techniques for analysing such data, but

visualization represents an essential part of the analysis as it facili-

tates the discovery of structures, features, patterns and relationships,

which enables human exploration and communication of the data

and enhances the generation of hypotheses, diagnoses and decision

making.

Visualizing gene expression data requires representing the data in

two (or occasionally one or three) dimensions. Therefore, tech-

niques are required to accurately and informatively show these

very high-dimensional data structures in low dimensional represen-

tations. In the particular case considered here, showing classified

gene expression data taken from cancer samples, the most useful

view will be one that clearly shows the separation between classes,

allowing the analyst to easily identify outliers and cases of possible

misdiagnosis, and to visually compare particular samples.

There are many established techniques for viewing high-

dimensional data in lower dimensional spaces. Among these,

multi-dimensional scaling (MDS), including Sammon mapping,

finds an arrangement of the data that best preserves the distances

between points (Ewing and Cherry, 2001); VizStruct is a technique

based on radial coordinates (Zhang et al., 2004); dendrograms may

be used to linearly arrange and display clustered gene expression

data (Eisen et al., 1998); and projection pursuit (Lee et al., 2005)
finds linear projections that optimize some measure of their quality

(the ‘projection pursuit index’).

Each of these techniques has limitations and advantages. MDS is

able to scale to very high-dimensional data spaces but is a map-

based, rather than projection-based, technique in which adding sin-

gle datum requires creating a new view of the entire set; thus, it is

not possible to visualize the relationships of new or unclassified

samples to existing ones. VizStruct is not optimized for viewing

classifications of the data, and is also only able to accurately visu-

alize data across relatively small number of genes (e.g. 12)—hence

is reliant on reducing the dimensionality of the original data through

some form of feature selection. And dendrograms arrange samples

in just a single dimension for display.

A fundamental advantage of using linear projections for visual-

ization compared to, for example, MDS, is that they define a trans-

form that can be applied to any point in gene-space. In particular, the

projection contains information about the respective significance of

each gene, and how they can be best combined to perform functions

such as classification and genetic feature selection, or to identify

gene expression signatures (Misra et al., 2002). Projection pursuit

is a standard technique for finding linear projections optimized for

particular purposes, such as classification, and has recently been

applied to gene expression data (Lee et al., 2005).
Here we present an alternative to conventional projection pursuit

for finding orthogonal and non-orthogonal 2D linear projections,

which yield views of the data that are closest to a hypothesized

optimal target. The method is compared both quantitatively and

subjectively with existing techniques and is found to perform simi-

larly to the best of alternatives. When combined with other tech-

niques it can find views that are better than alternatives.

2 TARGETED PROJECTION PURSUIT

Conventional projection pursuit proceeds by searching the space of

all possible projections to find that which maximizes an index that

measures the quality of each resulting view. In the case considered

here, a suitable index would measure the degree of clustering

within, and separation between, classes of points (Lee et al.,
2005). Targeted projection pursuit, on the other hand, proceeds

by hypothesizing an ideal view of the data, and then finding a

projection that best approximates that view. The intuition motivat-

ing this approach is that the space of all possible views of a

high-dimensional dataset is extremely large, so search-based�To whom correspondence should be addressed.
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methods of finding particular views may not be effective. Hence, the

alternative technique is pursued for suggesting an ideal view and

then finding a nearest match.

Suppose X is an n · p matrix that describes the expression of

p genes in n samples and T is a n · 2 matrix that describes a 2D

target view of those samples. We require the p · 2 projection matrix,

P, that minimizes the size of the difference between the view

resulting from this projection of the data and our target:

minkT � XPk‚ ð1Þ

where k · k denotes the Euclidean norm.

Two methods are considered for solving Equation (1), depending

on whether the projection matrix is required to be orthogonal or not.

2.1 Orthogonal projections

If we make the restriction that projection P is an orthogonal-column

matrix, then Equation (1) is an example of a Procrustes problem

(Gower and Dijksterhuis, 2004), and a solution may be found using

the following version of the singular values decomposition (SVD)

method presented by Golub and Loan (1996) [see Cox and Cox

(2001) for a discussion of earlier treatments].

Golub and Loan’s method finds the p · p projection matrix, Q,
that best maps an n · p set of data, X, onto an n · p target view, S, as
follows:

Q ¼ UVT‚ ð2Þ

where the superscript T in Equation (2) denotes the transpose

operator, and where U and V are the p · p square matrices with

orthogonal columns derived from the SVD of STX:

STX ¼ UDVT where D is diagonal. ð3Þ

However if the target view, T, is n · 2 then it can be expanded to

an n · p matrix, S by padding with columns of zeroes. And the

required p · 2 projection, P, can be derived from Q by taking just

the first two columns.

Efficient methods for SVD are available in most common mathe-

matical and statistical packages such as MATLAB and R. Moreover

the complexity of calculating a SVD is dependent on the rank of the

matrix, i.e the number of linearly independent rows or columns,

rather than its absolute size. Thus, where the number of samples is

much less than the number of genes (n � p), then the complexity

of solving a Procrustes equation will end to be dependent on the

former rather than the latter. Hence, this technique scales extremely

efficiently to high gene numbers.

2.2 Non-orthogonal projections

If the projection P is not required to be orthogonal then a solution to

Equation (1) may be found by training a single layer perceptron with

p input units and two linear output units (Fig. 1). Each of the n data
rows in X are presented in turn, and standard back-propagation is

used to train the network to produce the corresponding row of T in

response. Once converged, the network can be used to transform

data from the original gene-space to a 2D view, with the weight of

the connection from the i-th input neuron to the j-th output neuron

corresponding to the value of the projection matrix Pij.

3 TARGETED PROJECTION PURSUIT FOR
CLASSIFICATION VISUALIZATION

Given a dataset X and a target view T, then the methods described in

Sections 2.1 and 2.2 will find views of X that approximate T. But
what is the appropriate target view when considering the classifica-

tion of gene expression data? If the samples are partitioned into k
known classes then the ideal view would be that in which the classes

are most clearly separated; that is, where all members of the same

class are projected onto single points and where those points are

evenly spaced. Thus, the ideal view is one in which all the members

of each class are projected onto a single vertex of a geometric

simplex.

The k-simplex, or hypertetrahedron, is the generalization of an

equilateral triangle (k ¼ 3) or tetrahedron (k ¼ 4) to higher dimen-

sions. That is, the simplest possible polytope in any given space, that

in which all vertices are equidistant from each other. The k-simplex

itself is a polytope in k � 1 dimensions, but 2D graphs of the three-,

four- and five-simplices are shown in Figure 2.

For example, given a set of samples taken from three classes over

a large number of dimensions then the ideal view of that data would

approximate an equilateral triangle, with the samples of each class

clustered at the vertices, and hence would show the clustering

within, and the separation between, classes. Whether or not an

accurate approximation to such a view can be found depends on

how well separated the original data is.

The significance of using a k-simplex rather than just a regular

polyhedron as our projection target can be shown by considering

the case of k ¼ 4. It may be supposed that the separation of classes

could be effectively shown by projecting the members of each class

onto the vertices of a square. However, the vertices of a square are

Fig. 1. Schematic diagram of a single layer perceptron for projecting

p-dimensional data presented to the top input layer (Ii), to a 2D view output

at the bottom layer (O1,O2). The connection weight (Pij) describes the weight

given to each gene in the projection.

Fig. 2. Graphs of the three-, four- and five-simplex used as target views onto

which the gene expression data are projected.
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not equidistant: the two diagonal pairs of vertices are further apart

from the pairs of vertices on each edge. Therefore, using a square as

a projection target would entail breaking symmetry; effectively

assuming that the pairs of classes that are mapped onto the diago-

nally opposed vertices are further separated than the other pairs.

And this assumption may not be justified. Mapping to the tetrahe-

dron, on the other hand, makes no such assumption. Symmetry is not

broken since each pair of vertices are equally separated.

It may be the case in fact that certain classes are more closely

related than others, in which case the projection pursuit procedure

will produce a view in which they are shown closer together; how-

ever, this breaking of symmetry will be due to the nature of the data

rather than any assumption made on the experimenters part. This

issue is explored empirically below.

The procedure of mapping data onto a target view can also be

considered in two other ways, other than the geometric interpreta-

tion given above. First, as a set of binary classification problems and

second as a spatial classification problem.

First, note that the coordinates of the vertices of the k-simplex can

be generated by taking the rows of the k-dimensional identity

matrix, i.e. the unit diagonal matrix,

1 0 . . . 0

0 1 . . . 0

..

. ..
.

»
..
.

0 0 . . . 1

0
BB@

1
CCA

Now, if Ci is the set of members of the i-th class (with comple-

ment �CiCi ), then mapping the sample classes onto the k-simplex is

equivalent to k individual binary classification problems, in which

the i-th column of our projection matrix, denoted as P:i, maps the

members of Ci to 1 and the members of �CiCi to 0. [A similar technique

for reducing a multiclass classification problem to multiple binary

classifications is explored by Shen and Tan (2006).]

Alternatively, the projection onto a simplex can be thought of as

mapping the original data into ‘class space’—a k-dimensional space

in which the j-th ordinate of the i-th point represents how closely the

i-th sample is related to the members of the j-th class.

Whether considered as a mapping onto a simplex, as a combina-

tion of binary classification tasks or as a mapping into class space,

the view of the data produced by targeted projection pursuit is

k-dimensional. Therefore where there are two or three classes the

result can be visualized directly. However, when k > 3 then a further

dimension reduction step is required to view the data. Here we use

principal components analysis (PCA) on the rows of our projection

matrix, Pi:, each a k-dimensional vector, to find a lower dimensional

projection that best preserves the information in P. (The first two

principal components are chosen, based on the square roots of the

eigenvalues of the covariance matrix.) Thus, we have a two-stage

dimension reduction process, each stage of which is based on a

linear projection; therefore, the combined result is itself a linear

projection (Fig. 3).

Note that by taking a linear projection of the original data that

approximates a k-simplex we are effectively ignoring all infor-

mation about the distances between individual points per se, and
instead utilizing information about the relationships with other

points discriminated by class. Contrast this with MDS, which

finds a representation of the data that best preserves distances

between data points and ignores classification [though a version

of MDS that uses cluster information for visualization purposes

is discussed by Schwenker et al. (1996)].

4 METHODS

The targeted projection pursuit techniques outlined in Sections

2 and 3 were tested for their ability to produce 2D views of data

that clearly separate sample classes. The techniques were tested

on three publicly available datasets, and the views were compared

with the output from standard dimension reduction techniques.

The views of each dataset produced by each technique were tested

both quantitatively and qualitatively. The views were quantitatively

compared in two ways: first, by submitting them to a standard

classification algorithm and measuring the resulting generalization

performance; and, second, by using a standard statistical measure of

class separability. The views were qualitatively compared by visual

inspection.

The following dimension reduction techniques were compared:

� SLP:The result of targeted projection pursuit using a single layer

linear perceptron network, followed by PCA.

� PRO: The result of targeted orthogonal projection pursuit using

the solution to a Procrustes equation, followed by PCA.

� PP: The linear projection produced by search-based projection

pursuit (Lee et al., 2005).

� SAM: The result of a SammonMDA (Ewing and Cherry, 2001).

� VS: The result of a VizStruct projection onto radial coordinates

(Zhang et al., 2004).

Further details of the techniques used, including original source

code where appropriate, is available from the associated website.

The following datasets were used:

� LEUK: This dataset is the result of a study of gene expression in

two types of acute leukaemia: acute lymphoblastic leukaemia

(ALL) and acutemyeloid leukaemia (AML) (Golub et al., 1999).
The samples consist of 38 cases of B-cell ALL, 9 cases of T-cell

ALL and 25 cases of AML with the expression levels of 7219

genesmeasured.Note that, followingLee et al. (2005), theB-cell
and T-cell ALL samples are considered as separate classes.

� SRBCT: This dataset comprises cDNA microarray analysis of

small, round blue cell childhood tumors (SRBCT), including

neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt Lym-

phoma (BL; a subset of non-Hodgkin lymphoma) and members

of Ewing’s family of tumors (EWS). Expression levels from

6567 genes for 83 samples were taken (Khan et al., 2001).

� NCI:This dataset records thevariation ingeneexpressionamong

the 60 cell lines from the National Cancer Institute’s anticancer

drug screen (Scherf et al., 2000). It consists of eight different
tissue types where cancer was found: nine breast, five central

Original Data
p-dimensional
gene space

k-dimensional
class space

Final View
2 dimensions

Targeted
Projection

Pursuit

Principal
Components

Analysis

Fig. 3. Two-stage dimension reduction. Targeted projection pursuit is used

to reduce the original high-dimensional dataset to k dimensions (where k is

the number of classes in the original data). Principal components analysis is

then used to find a 2D projection of the k-dimensional view.

Gene expression classification visualization
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nervous system (CNS), seven colon, six leukaemia, eight

melanoma, nine non-small-cell lung carcinoma (NSCLC), six

ovarian, two prostate and eight renal. A total of 9703 cDNA

sequences were used.

No further normalization was applied to any dataset, beyond that

described in the original references, though the top 50 most discrimi-

natory genes were chosen on the basis of the ratio of their between-

group to within-group sums of squares (Dudoit et al., 2002).
The classification algorithm used for the quantitative evaluation

was K-nearest neighbours (KNNs). This choice of algorithm was

motivated by two considerations. The first is that it is known to be

effective at discriminating classes of tumour using gene expression

data (Dudoit et al., 2002). The second consideration is KNN is an

instance- and distance-based measure in which the classification

of an instance is dependent on the classes of its nearest neighbours.

It is assumed that this measure would accord better with human

judgement than a probabilistic attribute-based measure such as

Naı̈ve Bayes—even though the latter may have superior classifica-

tion performance in some cases. The Weka implementation of

this algorithm was used (Witten and Frank, 2005), tested using

10-fold cross-validation and a simple percentage accuracy score

found k ¼ 5 nearest neighbours were used, since this minimized

mean cross-validation error.

Note that the accuracy of classification using KNN for each view

tested is not equivalent to a true generalization performance since

the views were produced using the full datasets, rather than a

training subset. This is because it is the class separation within

each view that is being tested, rather than the performance of

the classifier. Given a view, we would like to know how visually

separated the classes in the data are—operationalized as classifier

generalization—not which technique produces the best generaliza-

tion performance as a classifier.

The statistical measure of class separability used to compare

views was a version of Fishers’ linear discriminant analysis

index (ILDA) introduced by Lee et al. (2005), based on the ratio

of between-groups to within-groups sum of squares. If Vij is the

view of the j-th member of the i-th class then let

B ¼
Xk
i¼1

nið �VVi: � �VV::Þð �VVi:� �VV::ÞT : between-group sum of squares

W ¼
Xk
i¼1

Xni
j¼1

ð �VVij � �VVi:Þð �VVij� �VVi:ÞT : within-group sum of squares

Thus B is a measure of the variance of the centroids of the classes,

and W is a measure of the variance of the instances within each

class. In order to get a projection pursuit index in the range [0,1],

with increasing values corresponding to increasing class separation

then, ILDA, a version ofWilks Lamda, a standard test statistic used in

multivariate analysis of variance, is used:

ILDA ¼ 1 � jWj
jW þ Bj :

The R-code implementation of ILDA distributed by Lee et al.
(2005) was used to measure the class separability of the resulting

views.

The effect of the symmetry assumption mentioned in Section 3

was tested by varying the order in which the classes of data were

taken, and finding whether this had an effect on the classification

performance and class separability of the resulting views produced

by SLP.

5 RESULTS

The quantitative comparison of the four projections on the three

datasets is shown in Table 1, and a sample of the resulting views are

given in Figures 4–11. A complete set of views are available on

the accompanying website.

The first aspect of the results to note is that the choice of

dimension-reduction technique can alter radically the resulting

view of the data, judged both quantitatively and qualitatively.

The structure and relationship between clusters appears very dif-

ferently in each view, resulting in very different performances

of classification algorithms. The choice of dimension reduction

technique clearly matters in visualizing high-dimensional data

such as gene expression data.

The second aspect to note is that quantitative measures such as

ILDA or classification performance are not a reliable indicator of

visual class separation. For example, the view of the NCI dataset

Table 1. Comparison of class separability following dimension reduction for

visualization.

Dataset LEUK SRBCT NCI

Genes 7129 2308 9712

Samples 72 83 61

Classes 3 4 8

Class separation measure ILDA 5NN ILDA 5NN ILDA 5NN

SLP 0.999 100.0 0.999 100.0 0.999 83.6

PRO 0.966 97.2 0.966 89.2 0.894 49.2

Dimension reduction technique

PP 0.972 98.6 0.988 100.0 0.981 62.3

SAM 0.959 97.2 0.911 95.2 0.927 54.1

VS 0.952 95.8 0.637 56.6 0.838 32.8

SLP-PP 0.999 100.0 1.000 100.0 1.000 95.1

Each dimension reduction technique (SLP, PRO, PP, SAM,VSandSLP-PP) is evaluated

on each dataset (LEUK, SRBCT, NCI), and the separability of the resulting view tested

using both 5-nearest neighbours classification (5NN, generalization error in %) and a

version of Wilks Lamda (0 < ILDA < 1).

LEUK-SLP

ALL/B ALL/T AML

Fig. 4. View of LEUK dataset generated by SLPmethod: this method finds a

projection in which all three classes are very clearly separated. A colour

version of this figure appears in the Supplementary data.
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LEUK-PP

ALL/B ALL/T AML

Fig. 5. View of LEUK dataset generated by PPmethod: conventional search-

based projection pursuit finds a view in which there is little clear separation

between some samples of ALL/B and AML. A colour version of this figure

appears in the Supplementary data.

SRBCT-SLP

BL EWS NB RMS

Fig. 6. View of SRBCT dataset generated by SLP method, showing a clear

separation between four classes. A colour version of this figure appears in the

Supplementary data.

SRBCT-PP

BL EWS NB RMS

Fig. 7. View of SRBCT dataset generated by PP method: search-based pro-

jection pursuit distinguishes all classes, though with little clear separation

between samples of NB and RMS. A colour version of this figure appears in

the Supplementary data.

SRBCT-SAM

BL EWS NB RMS

Fig. 8. View of SRBCT dataset generated by SAM method, showing one

effect of the ‘curse of dimensionality’: Sammon mapping, like other MDS

methods, tries to find a representation that preserves distances between points.

Where the original data dimensionality is large there is less variance in

intra- and inter-class distances, and hence there is little ‘bunching’ or class

separation in the lower dimensional representation. A colour version of this

figure appears in the Supplementary data.

NCI-SLP

BREAST CNS COLON LEUKEMIA
MELANOMA NSCLC OVARIAN RENAL

Fig. 9. View of NCI dataset generated by SLP method: as the number

of classes increases to eight, so does the amount of visual overlap as the

higher-dimensional simplex is viewed in two dimensions using PCA. Only

the leukaemia and renal cancer cases are clearly separated.A colour version of

this figure appears in the Supplementary data.

NCI - PP

BREAST CNS COLON LEUKEMIA
MELANOMA NSCLC OVARIAN RENAL

Fig. 10. View of NCI dataset generated by PP method: search-based projec-

tion pursuit is only able to clearly distinguish leukaemia andmelanoma cases.

A colour version of this figure appears in the Supplementary data.
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generation using SLP has an extremely high ILDA index of 0.999,

but there is visual confusion between most of the classes (Fig. 9).

In another example, SAM produced a view of the SRBCT with a

5NN classification performance of 95.2%, but with many outliers

between classes.

Overall, VizStruct performed least well in separating classes.

Although the difference between VizStruct and the other techniques

was least for the low-k case (LEUK), the difference became more

marked as the number of classes increased. This poor performance

is unsurprising, since this technique is not explicitly designed to

accentuate classifications [though see Zhang et al. (2004)].
The Sammon mapping performed well in separating classes, but

its output was marked by the ‘curse of dimensionality’: in high-

dimensional spaces, the variance in distances between randomly

distributed points decreases. Sammon mapping attempts to preserve

the distance between data points, and hence the resulting views tend

to be evenly distributed, with little bunching of points belonging

to a single class (Fig. 8). Classification algorithms may succeed in

ascribing points to classes—and hence the classification scores for

SAM are similar to those for the linear mappings—but this may not

be an accurate reflection of the perceived class separation.

The projection pursuit methods SLP and PP performed best in

general, finding linear projections that clearly separated all classes

where the number of cancer types was small (LEUK, SRBCT).

However, as the number of classes increases the performance of

all methods degrades, rendering them ineffective with little con-

sistent distinction between classes.

Conventional search-based projection pursuit also suffered from

unreliability. Since it is partly a stochastic technique, the results could

differ.Over a sequenceof100 trials, thevalues for ILDA forPPapplied
to the NCI set ranged from 0.935 to 0.992 (mean ¼ 0.978, SD

0.00924). The values for ILDA and 5NN shown in Table 1, and the

view show in Figure 10 are for a projection of near-mean ILDA value.

Varying class order was found to have no effect on the classi-

fication performance or class separability of the views produced by

SLP (though the orientation of each view may be altered). Thus, this

technique is not affected by the symmetry assumption embodied in

targetting simplex-views of the data.

5.1 Hybrid projection pursuit

The targeted methods (SLP and PRO) performed relatively poor

in the higher-k case (NCI), compared with their success on the

lower-k cases (LEUK, SRBCT). This suggests that the drop in

performance is due to the second stage of the two-stage reduction

process, where PCA is used to reduce the dimensionality from

k-dimensional class space to the 2D visualization, rather than the

reduction from the original gene-space to k-dimensional class-space

(Fig. 3). This is presumably because classes that are separated in

k-space may overlap when viewed in two dimensions.

This hypothesis was tested by testing a hybrid dimension reduc-

tion technique, in which SLP was used to reduce the dimensionality

to k and then search-based projection pursuit was used to find a

2D view of the result (Fig. 12). Note that the combined effect of

this hybrid technique is still a linear projection of the original data.

This technique (SLP-PP) was found to be highly effective with a

clear visual separation between classes (Fig. 11). It thus seems that a

limiting factor on search-based projection pursuit is the problem of

searching a very large space using a stochastic technique, such as

simulated annealing. Combining search-based projection pursuit

with SLP reduces the size of the space for the former task from

50 · 2 dimensions to 8 · 2 in this case, and the increase in

performance is marked.

This hybrid method thus combines the strengths of targeted- and

search-based projection pursuit. Targeted projection pursuit is able

to find effective projections from very high dimensions, but only to

k-dimensional subspaces. Whereas search-based projection pursuit

produces better projections to two-dimensions than PCA, but looses

effectiveness and reliability as the dimensionality of the original

space increases.

6 DISCUSSION

The high dimensionality of microarray data introduces the need for

visualization techniques that can ‘translate’ these data into lower

dimensions without losing significant information, and hence assist

with data interpretation. Many dimension reduction techniques

are available, but in this paper we introduce the novel concept

of targeted projection pursuit—that is, finding views of data that

most closely approximate a given target view—and demonstrate the

use of solutions of Procrustes equations and trained perceptron

networks to achieve this end. In this particular case, we explore

the possibility of using targeted projection pursuit to find views that

most clearly separate classified datasets.

Targeted projection pursuit was evaluated in comparison with

three very different established dimension reduction techniques,

on three publicly available datasets. When discriminating a small

number of cancer classes the performance of the technique matched

or bettered that of established methods. When presented with a large

Original Data
p-dimensional
gene space

k-dimensional
class space

Final View
2 dimensions

Targeted
Projection

Pursuit

Projection

Pursuit

Search-based

Fig. 12. Hybrid targeted and search-based projection pursuit. Targeted

projection pursuit is used to reduce the dataset to k dimensions as before

(Figure 3), but now search is used to find the optimal two-dimensional

projection of this view.

 

NCI - SLP-PP

BREAST CNS COLON LEUKEMIA
MELANOMA NSCLC OVARIAN RENAL

Fig. 11. View of NCI dataset generated by hybrid SLP-PP method: com-

bining projection pursuit methods separates classes more clearly than either

method alone. Leukaemia, CNS and melanoma cases are clearly distin-

guished, and some separation between all other classes. A colour version

of this figure appears in the Supplementary data.
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number of classes (eight) the technique combined effectively with

other existing techniques to produce views of the data that showed

the separation between sample classes more effectively than the

alternatives evaluated.

The technique is also able to scale to large numbers of genes: the

version involving the targeted pursuit of orthogonal projections

(PRO) is able to handle an input dimensionality of tens of thousands

of genes without feature selection.

Note that the use of a target view does not constitute a limitation

of the technique. The target plays the role of a hypothesis—in this

case that the samples can be classified based on gene expression

levels—and the resulting views illustrates how well the data meets

that hypothesis. (And by using a fully symmetrical simplex as the

target view, no assumptions about the relationships between classes

are made.) Other hypothesis-targets could be used in other cases,

such as using a circular target to explore cyclical process in samples

from a time-series, or a rectilinear target to explore the existence of

simple linear relations. The same classification visualization tech-

nique employed here to classify samples in gene-space could also be

applied to the transpose problem; that of visualizing the classifica-

tion of genes on the basis of their expression profiles in varying

conditions, and so explore relationships between gene function

rather than between samples.

Targeted projection pursuit is a general purpose technique for

finding views of data that approximate optimal targets. This paper

discussed just one specific application to the problem of visualizing

classified microarray data. The authors are currently exploring other

applications in visualizing high-dimensional biological data, includ-

ing constructing a tool that would allow an user to interactively

explore the space of possible views of high-dimensional datasets.

As mentioned in Section 1, one of the principal reasons for

choosing a visualization technique based on a linear projection

rather than, say, MDS, is that the resulting projection can yield

useful information about the relative significance of particular

genes, including their respective weights for classification (Misra

et al., 2002). This paper has discussed the derivation of such

projections and the future works will explore the significance of

the resulting information.
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