
Vol. 22 no. 22 2006, pages 2715–2721

doi:10.1093/bioinformatics/btl472BIOINFORMATICS ORIGINAL PAPER

Sequence analysis

Probalign: multiple sequence alignment using partition function

posterior probabilities
Usman Roshan1,� and Dennis R. Livesay2
1Department of Computer Science, New Jersey Institute of Technology, GITC 4400, University Heights,
NJ 07102, USA and 2Department of Computer Science and Bioinformatics Research Center, University of
North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA

Received on July 27, 2006; revised on July 29, 2006; accepted on September 1, 2006

Advance Access publication September 5, 2006

Associate Editor: Alex Bateman

ABSTRACT

Motivation:Themaximumexpectedaccuracyoptimizationcriterion for

multiple sequence alignment uses pairwise posterior probabilities of

residues to align sequences. The partition function methodology is

one way of estimating these probabilities. Here, we combine these

two ideas for the first time to construct maximal expected accuracy

sequence alignments.

Results: We bridge the two techniques within the program

Probalign. Our results indicate that Probalign alignments are

generally more accurate than other leading multiple sequence align-

ment methods (i.e. Probcons, MAFFTand MUSCLE) on the BAliBASE

3.0 protein alignment benchmark.Similarly, Probalign also outperforms

these methods on the HOMSTRAD and OXBENCH benchmarks.

Probalign ranks statistically highest (P-value < 0.005) on all three

benchmarks. Deeper scrutiny of the technique indicates that the

improvements are largest on datasets containing N/C-terminal

extensions and on datasets containing long and heterogeneous length

proteins. These points are demonstrated on both real and simulated

data. Finally, our method also produces accurate alignments on long

and heterogeneous length datasets containing protein repeats. Here,

alignment accuracy scores are at least 10% and 15% higher than

the other three methods when standard deviation of length is >300
and 400, respectively.

Availability: Open source code implementing Probalign as well as for

producing the simulated data, and all real and simulated data are freely

available from http://www.cs.njit.edu/usman/probalign

Contact: usman@cs.njit.edu

1 INTRODUCTION

Protein sequence alignment is likely the most commonly used

task in bioinformatics (Notredame et al., 2002). Applications

include detecting functional regions in proteins (La et al., 2005)
and reconstructing complex evolutionary histories (Notredame

et al., 2002; Durbin et al., 1998). Techniques for constructing

accurate alignments are therefore of great interest to the bio-

informatics community. Bioinformatic literature is filled with

many alignment tools, e.g. ClustalW (Thompson et al., 1994),

Dialign (Subramanian et al., 2005), T-Coffee (Notredame et al.,
2000), Probcons (Do et al., 2005), MUSCLE (Edgar, 2004)

and MAFFT (Katoh et al., 2005). In terms of accuracy, recent

comparative studies (Do et al., 2005; Katoh et al., 2005; Edgar,
2004) place MAFFT and Probcons among the very top performing

sequence alignment methods.

Given the importance of multiple sequence alignment,

several protein alignment benchmarks have been created for

unbiased accuracy assessment of alignment quality. Of these,

BAliBASE (Thompson et al., 1999a; Bahr et al., 2001;

Thompson et al., 2005) is by far the most commonly used.

The BAliBASE benchmark alignments are computed using

superimposition of protein structures. To date Probcons v1.1

and MAFFT v5.851 are the most accurate on BAliBASE,

whereas MUSCLE is among the fastest on these benchmarks

[for recent studies see Do et al. (2005), Edgar (2004) and Katoh

et al. (2005)].
MUSCLE is a sum-of-pairs optimizer, which uses the log

expectation score for aligning profiles of sequences. It is among

the fastest alignment programs in the literature. Additionally, the

accuracy of the MUSCLE alignments is generally quite good.

MAFFT is based on Fast Fourier Transforms; though, the latest

version, combines different optimization criteria that evaluate

consistency between multiple and pairwise alignments. Probcons

computes the maximal expected accuracy alignment instead of the

usual maximum sum-of-pairs or the Viterbi alignment (Durbin

et al., 1998). The expected accuracy of an alignment is based on

posterior probabilities of residues (Durbin et al., 1998; Miyazawa,

1995). Probcons computes these probabilities using a hidden

Markov model (HMM) for pairwise sequence alignment. The

HMM parameters are learned using unsupervised learning on the

BAliBASE 2.0 benchmark.

In this investigation, we bridge two important bioinformatic

techniques (for the first time) in an effort to produce more accurate

multiple sequence alignments. The first approach estimates amino

acid posterior probabilities from the partition function of align-

ments [as described by Miyazawa (1995)]. The second computes

the maximal expected accuracy alignment [as described originally

by Durbin et al. (1998)] after applying the probability consistency

transformation of Probcons (Do et al., 2005). The new method,

which we call Probalign, generally produces statistically signifi-

cantly better alignments than the state-of-the-art on the BAliBASE

3.0, HOMSTRAD and OXBENCH benchmarks. The improvements

are largest when datasets of variable and long length sequences are

considered.�To whom correspondence should be addressed.
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2 METHODS

2.1 Posterior probabilities and maximal expected

accuracy alignment

Most alignment programs compute an optimal sum-of-pairs alignment or a

maximum probability alignment using the Viterbi algorithm (Durbin et al.,

1998). An alternative approach is to search for the maximum expected

accuracy alignment (Durbin et al., 1998; Do et al., 2005). The expected

accuracy of an alignment is based on the posterior probabilities of aligning

residues in two sequences.

Consider sequences x and y and let a� be their true alignment. Following

the description in Do et al. (2005) the posterior probability of residue xi
aligned to yj in a� is defined as

pðxi � yj 2 a� j x‚yÞ ¼
X
a2A

Pða j x‚yÞ1fxi � y 2 ag ð1Þ

where A is the set of all alignments of x and y and 1(expr) is the indi-

cator function which returns 1 if the expression expr evaluates to true

and 0 otherwise. P(a j x,y) represents the probability (our belief) that

alignment a is the true alignment a�. This can easily be calculated using

a pairwise HMM if all the parameters are known (see Do et al., 2005). From
hereon, we represent the posterior probability as P(xi � yj) with the

understanding that it represents the probability of xi aligned to yj in the

true alignment a�.
Given the posterior probability matrix P(xi � yj), we can compute the

maximal expected accuracy alignment using the following recursion

described in Durbin et al. (1998).

Aði‚ jÞ ¼ max

Aði � 1‚ j � 1Þ þ Pðxi � yjÞ
Aði � 1‚ jÞ
Aði‚ j � 1Þ

8<
:

9=
; ð2Þ

Probcons estimates posterior probabilities for amino acid residues using

pair HMMs and unsupervised learning of model parameters. It then proceeds

to construct a maximal expected accuracy alignment by aligning pairs of

sequence profiles along a guide-tree followed by iterative refinement. In this

investigation, we examine a different technique of estimating posterior

probabilities; we use suboptimal alignments generated using the partition

function of alignments.

According to Equation (1) as long as we have an ensemble of alignments A

with their probabilities P(a j ,x,y) we can compute the posterior probability

P(xi � yj) by summing up the probabilities of alignments where xi is paired

with yj. One way to generate an ensemble of such alignments is to use the

partition function methodology, which we now describe.

2.2 Posterior probabilities by partition function

Amino acid scoring matrices, normally used for sequence alignment, are

represented as log-odds scoring matrices as defined by Dayhoff et al. (1978).

The commonly used sum-of-pairs score of an alignment a (Durbin et al.,

1998) is defined as the sum of residue–residue pairs and residue–gap pairs

under an affine penalty scheme.

sðaÞ ¼ T
X

ði‚ jÞ2a
lnðMij/f if jÞ þ ðgap_penaltiesÞ ð3Þ

Here T is a constant (depending upon the scoring matrix), Mij is the

mutation probability of residue i changing to j and fi and fj are background

frequencies of residues i and j. In fact, it can be shown that any scoring

matrix corresponds to a log-odds matrix (Karlin and Alstchul, 1990;

Altschul, 1993).

Miyazawa (1995) proposed that the probability of alignment a, P(a), of

sequences x and y can be defined as follows:

pðaÞ1 eSðaÞ/T ð4Þ

where S(a) is the score of the alignment under the given scoring matrix.

In this setting one can then treat the alignment score as negative energy and

T as the thermodynamic temperature, similar to what is done in statistical

mechanics. Analogous to the statistical mechanical framework, Miyazawa

(1995) defined the partition function of alignments as

ZðTÞ ¼
X
a2A

eSðaÞ/T ð5Þ

where A is the set of all alignments of x and y. With the partition function in

hand, the probability of an alignment a can now be defined as

Pða‚TÞ ¼ eSðaÞ/T /ZðTÞ ð6Þ

As T approaches infinity all alignments are equally probable, whereas at

small values of T, only the nearly optimal alignments have the highest

probabilities. Thus, the temperature parameter T can be interpreted as a

measure of deviation from the optimal alignment.

The alignment partition function can be computed using recursions simi-

lar to the Needleman-Wunsch dynamic algorithm. Let ZM
ij represent the par-

tition function of all alignments of x1..i and y1..j ending in xi paired with yj and

Sij(a) represent the score of alignment a of x1..i and y1..j. According to

Equation (5)

ZM
i‚ j ¼

� X
a2Aij

eSi�1‚ j�1ðaÞ/T

�
esðxi‚ yiÞ/T ð7Þ

where Aij is the set of all alignments of x1..i and y1..j and s(xi,yj) is the score of
aligning residue xi with yj. The summation in the bracket on the right-hand

side of Equation (7) is precisely the partition function of all alignments of

x1..i-1 and y1..j-1. We can thus compute the partition function matrices using

standard dynamic programming.

ZM
i‚ j ¼ ðZM

i�1‚ j�1 þ ZE
i�1‚ j�1 þ ZF

i�1‚ j�1Þestðxi‚ yjÞ/T

ZE
i‚ j ¼ ZM

i‚ j�1e
g/T þ Zi‚ j�1e

ext/TE

ZF
i‚ j ¼ ZM

i�1‚ je
g/T þ ZF

i�1‚ je
ext/T

Zi‚ j ¼ ZM
i‚ j þ ZE

i‚ j þ ZF
i‚ j

ð8Þ

Here s(x,y) represents the score of aligning residue xi with yj, g is the

gap open penalty and ext is the gap extension penalty. The matrix

ZM
ij represents the partition function of all alignments ending in xi paired

with yj. Similarly ZE
ij represents the partition function of all alignments in

which yj is aligned to a gap and ZF
ij all alignments in which xi is aligned to a

gap. Boundary conditions and further details can be obtained fromMiyazawa

(1995).

Once the partition function is constructed, the posterior probability of xi
aligned to yj can be computed as

Pðxi � yjÞ ¼
ZM
i�1‚ j�1Z

M
iþ1‚ jþ1

Z
esðxi‚ yiÞ/T ð9Þ

where Z0M
ij is the partition function of alignments of subsequences xi..m and

yj..n beginning with xi paired with yj and m and n are lengths of x and y,
respectively. This can be computed using standard backward recursion for-

mulas as described in Durbin et al. (1998).

In Equation (9) ZM
i�1‚ j�1/Z and Z0‚M

iþ1‚ jþ1/Z represent the probabilities of all

feasible suboptimal alignments (determined by the T parameter) of x1..i-1 and
y1..j-1 and xi+1.m and yj+1..n, respectively, where m and n are lengths of x and

y respectively. Thus, Equation (9) weighs alignments according to their

partition function probabilities and estimates P(xi � yj) as the sum of proba-

bilities of all alignments where xi is paired with yj.

2.3 Probalign:maximal expected accuracy alignment

using partition function posterior probabilities

Recall the maximum expected accuracy alignment formulation described

earlier. In order to compute such an alignment we need an estimate of

the posterior probabilities. In this report, we utilize the partition function,

posterior probability estimates, for constructing multiple alignments. For

each sequence x, y in the input, we compute the posterior probability matrix
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P(xi � yj) using Equation (9). These probabilities are subsequently used to

compute a maximal expected multiple sequence alignment using the Prob-

cons methodology. First, the probabilistic consistency transformation in Do

et al. (2005) is applied to improve the estimate of the probabilities. Briefly,

the probabilistic consistency transformation is to re-estimate the posterior

probabilities, based upon three-sequence alignments instead of pairwise.

Note that this does not mean alignments are recomputed; our estimation

(as done in Probcons) is still fundamentally based on pairwise alignments. It

is possible to compute a partition function of three-sequence alignments and

subsequently estimate posterior probabilities directly from them. However,

in this proof of concept study, we examine only the performance on pairwise

alignments.

After the probabilistic consistency transformation, sequence profiles are

next aligned in a post-order walk, along a UPGMA guide-tree. As is com-

monly done, UPGMA guide trees are computed using pairwise expected

accuracy alignment scores. Finally, iterative refinement is performed to

improve the alignment. This standard alignment procedure is described

more detail in Do et al. (2005) and is implemented in the Probcons package

(by the same authors).

We implement the Probalign approach by modifying the underlying Prob-

cons program to read the arbitrary posterior probabilities for each pair of

sequences in the input. The use of HMMs in the modified Probcons code is

disabled. We modified the probA program of Muckstein et al. (2002) for

computing partition function posterior probability estimates. The Probalign

program is represented algorithmically in Figure 1. Our current implementa-

tion is a beta version and mainly for proof of concept; however, the open

source code is fully functional and is available with full support from http://

www.cs.njit.edu/usman/probalign

2.4 Experimental design

2.4.1 Alignment benchmarks To test the accuracy of our method, we

use three popular, multiple protein sequence alignment benchmarks in the

literature: BAliBASE, HOMSTRAD and OXBENCH. BAliBASE

(Thompson et al., 2005) is the most widely used benchmark for assessing

protein multiple sequence alignments. Each alignment is well curated and

contains core regions that represent reliable structurally alignable portions of

the alignment. These alignable regions are used for evaluating accuracy and

the remainder is ignored. BAliBASE 3.0 contains five sets of multiple pro-

tein alignments, each with different characteristics. RV11 contains 38 equi-

distant families with sequence identity <20%, while RV12 contains 44

equidistant families with sequence identity between 20% and 40%. Both

of these lack sequences with large internal insertions (>35 residues). RV20

contains 41 families with >40% similarity and an orphan sequence which

shares <20% similarity with the rest of the family. RV30 contains 30 families

which contain sub-families with >40% similarity but <20% similarity across

the sub-families. RV40 contains sequences with large N/C-terminal exten-

sions and is the largest set with 49 alignments, while RV50 contains

sequences with large internal insertions and is the smallest with 16 align-

ments. Both RV40 and RV50 contain sequences that share >20% similarity

with at least one other sequence in the set. Overall, there are 217 benchmark

alignments within BAliBASE 3.0.

HOMSTRAD (Mizuguchi et al., 1998) is a curated database of structure-

based alignments for homologous protein families. We use the April 2006

release for this study which contains 1033 families. HOMSTRAD contains

all known protein structure clustered into homologous families and aligned

on the basis of their 3D structures.

OXBENCH (Raghava et al., 2003) is a set of structure-based alignments

based on protein domains. It contains three sets of unaligned sequences:

master, which are the unaligned protein domains in the true alignments; full,

which contains full length unaligned proteins; and extended which contains

additional proteins similar to the ones in unaligned master set. There are a

total of 672 true master and extended alignments and 605 full sequence ones.

Due to running time considerations, we exclude all datasets >100 sequences.

2.4.2 Determining prediction accuracy Given a true and estimated

multiple sequence alignment, the accuracy of the estimated alignment is

usually computed using two measures: the sum-of-pairs (SP) and the true

column (TC) scores (Thompson et al., 1999b). SP is a measure of the number

of correctly aligned residue pairs divided by the number of aligned residue

pairs in the true alignment. TC is the number of correctly aligned columns

divided by the number of columns in the true alignment. Both are standard

measures of computing alignment accuracy.

2.4.3 Statistical significance Statistically significant performance

differences between the various alignment methods are calculated using

the Friedman rank test (Kanji, 1999), which is a standard measure used

for discriminating alignments in benchmarking studies (Thompson et al.,
1999b; Do et al., 2005; Edgar, 2004; Katoh et al., 2005). Roughly speaking,

the lower the reported P-value the less likely it is that the difference in

ranking between the methods is due to chance. We consider P-values < 0.05

(a standard cutoff in statistics) to be statistically significant.

2.4.4 Programs compared and parameter settings We compare

Probalign to Probcons v1.1, MAFFT v5.851 and MUSCLE v3.6. These

versions are the most current at the time of writing of this article. We

use the L-INS-i strategy of MAFFT, which is the most accurate according

to latest benchmark tests by the MAFFT authors. The programs are com-

pared using the scoring matrices and gap penalties recommended for their

respective algorithms.

Probalign has two sets of parameters, one for the component that com-

putes the posterior probabilities and the other for computing the maximal

expected accuracy alignment. For the first component we use the Gonnet 160

scoring matrix (Gonnet et al., 1992) with gap open and gap extension

penalties set to �22 and �1, respectively. The default value of T (thermo-

dynamic temperature) was set to five after comparing values one through

nine on BAliBASE RV11 (Table 1). For the second component, we use the

exact same default parameters as that of Probcons, i.e. two rounds of proba-

bilistic consistency and at most 100 rounds of iterative refinement.

3 RESULTS

3.1 Effect of thermodynamic temperature

We first look at the effect of different values of the thermodynamic

temperature T on Probalign. Table 1 shows that T ¼ 5 is optimal on

 
    

   
   

  
    

 
   

   

Fig. 1. Probalign algorithmic description.

Table 1. Effect of different thermodynamic temperatures on Probalign on

RV11 subset of BAliBASE 3.0

T Mean SP/TC T Mean SP/TC T Mean SP/TC

1 51.43/24.89 4 65.23/43.03 7 60.28/36.58

2 55.06/29.08 5 69.32/45.26 8 49.51/25.76

3 57.90/32.39 6 66.18/40.87 9 41.12/18.84

Best score highlighted in bold.

Probalign
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RV11. These settings of T appear to work well for the Gonnet 160

matrix and its affine gap penalties; therefore, we set T ¼ 5 for the

remainder of our experiments.

3.2 Benchmark comparisons

In Table 2 we compare mean SP scores and TC of Probalign to other

methods on BAliBASE 3.0. Probalign averages are the highest on

the RV11, RV12 and RV40 subsets, as well as the full BAliBASE

dataset. MAFFT does better on the remaining three datasets.

Although the differences are small, Probalign ranks statistically

significantly higher than all three methods on RV12, RV40 and

the full BAliBASE dataset (Table 3). No method ranked statistically

significantly higher than Probalign on any of the BAliBASE subsets.

We also test Probcons by retraining (on BAliBASE 3.0) with

single and pair emission probabilities set to the background and

mutation matrix probabilities of Gonnet 160. In this way we can test

if the Probalign improvements are purely a result of scoring matrix

differences. The performance of Probcons performance does not

improve. In fact, it actually does worse than with training on the

(default) Blosum 62 matrix.

Table 4 compares the CPU running time of Probalign to the other

methods on RV11 and RV12 subsets of BAliBASE. While Proba-

lign is the slowest, its running time is still tractable. Our current beta

implementation is a pipeline of C++ programs and Perl scripts

linked by system calls. An integrated version (which is in progress)

will yield a much faster implementation.

Finally, Table 5 compares mean SP and TC scores on the

HOMSTRAD and OXBENCH benchmarks. Probalign mean SP

and TC scores rank highest on HOMSTRAD, OXBENCH

and OXBENCH-full with P-value < 0.005. Moreover, on the

OXBENCH-extended dataset, no method ranked statistically sig-

nificantly higher than Probalign. In fact, Probalign ranks higher than

Probcons on OXBENCH-extended with P-value 0.014.

3.3 Simulation of N/C-terminal extensions

Probalign’s performance improvement is most significant over all

methods on the RV40 subset of BAliBASE. Recall that this dataset

contains sequences with long N/C-terminal extensions. We rely on

simulation, to further test Probalign’s improvement on this type of

data. We begin by computing the maximum parsimony model trees

(with edge lengths) on arbitrary selected alignments from the RV11

subset of BAliBASE 3.0. We select the BB11003, BB11004,

BB11008, BB11009 and BB11010 alignments, all of which contain

four sequences and branch length ranging from conservative to

divergent. For each tree, we generate a root protein sequence

with the same background probability distribution as Dayhoff’s.

We define core regions of this sequence as randomly selected con-

tiguous region (with probability 0.25) ranging from length one to 30

(with uniform probability). We then evolve sequences using the

ROSE model (Stoye et al., 1998). However, in the defined core

regions, the mutation probability is reduced (by half) and no inser-

tion deletions are allowed.

Briefly, ROSE interprets each branch length as PAM units of

evolution. On a branch of length k, the probability of substitution

is given by Mk where M is the PAM1 mutation probabilities.

For insertion (or deletion) it randomly picks an amino acid with

probability insert_threshold � branch_length � sequence_length
and inserts (or deletes) a sequence of length given by an exponential

distribution. Once the simulated sequences are generated, we

attach a randomly generated sequence to each end of each seq-

uence with probability 0.25, which constitute our artificial N/C

extensions.

For each model tree, we produce a root sequence of length 100

and the (insertion, deletion) thresholds are set to (0.0005, 0.000125),

meaning the deletion threshold is one-fourth the insertion. We

generate 100 sequence sets for each model tree and align using

Probalign, MAFFT and Probcons. The alignments are compared

against the core regions of the true alignment (known by simula-

tion). Table 6 shows that Probalign wins for all model trees.

Probalign SP and TC scores also rank higher than all methods

with P-value < 0.05 (except for BB11009 where all methods do

equally well). We also examined performance on simulated data

containing long internal insertions, along with the N/C extensions

and saw similar results (data not shown).

Table 3. P-values of Friedman rank test on BAliBASE TC scores

Method RV11 RV12 RV20 RV30 RV40 RV50 All

MAFFT NS <0.005 NS NS <0.005 NS <0.005
Probcons 0.049 0.0233 NS NS <0.005 NS <0.005
MUSCLE <0.005 <0.005 0.008 <0.005 <0.005 NS <0.005

In all cases of statistical significance (< 0.05) Probalign is ranked higher. NS indicates

non-statistically significant.

Table 4. Mean CPU time (in seconds) on RV11 and RV12 subsets of

BAliBASE 3.0

Data Probalign MAFFT Probcons MUSCLE

RV11 6.64 0.98 3.65 0.71

RV12 17.73 1.28 10.46 0.74

Table 5. Mean SP/TC scores on HOMSTRAD and OXBENCH

Data Probalign MAFFT Probcons MUSCLE

HOMSTRAD 82.2/77.9 80.4/75.9 81.9/77.4 80.8/76.3

OXBENCH 89.8/85.1 88.4/83.2 89.3/84.2 89.4/84.4

OXBENCH (full) 84.0/77.0 82.8/75.3 83.2/75.7 82.6/74.8

OXBENCH (extend) 92.0/89.6 92.5/90.0 92.4/89.8 91.8/89.0

Best score for each row shown in bold.

Table 2. Mean SP/TC scores on BAliBASE 3.0

Data Probalign MAFFT Probcons MUSCLE

RV11 69.3/45.3 67.1/44.6 67.0/41.7 59.3/35.9

RV12 94.6/86.2 93.6/83.8 94.1/85.5 91.7/80.4

RV20 92.6/43.9 92.7/45.3 91.7/40.6 89.2/35.1

RV30 85.2/56.4 85.6/56.9 84.5/54.4 80.3/38.3

RV40 92.2/60.3 92.0/59.7 90.3/53.2 86.7/47.1

RV50 89.3/55.2 90.0/56.2 89.4/57.3 85.7/48.7

All 87.6/58.9 87.1/58.6 86.4/55.8 82.5/48.5

Best score for each row shown in bold.
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3.4 Datasets with long and variable length sequences

Not only the RV40 subset contain sequences with large N/C

extension, but are also highly variable in length. In fact, many

constituent proteins are at least 1000 residues in length. Based

on our results, we conjecture that Probalign does best when

presented with such datasets. To test this hypothesis, we select

all unaligned datasets in BAliBASE 3.0 where the standard devia-

tion (SD) in sequence length is at least 100 or 200 and the maximum

length is at least 500 or 1000. For these four possible permutations,

we compare the mean SP and TC scores of Probalign to the other

methods (Table 7).

Table 7 shows that the improvement of Probalign over other

methods increases as both the SD of the mean length and the

maximum sequence length increases. The Probalign mean column

score is 2.8, 2.4 and 3.7% better than MAFFT at the 500/200, 1000/

100 and 1000/200 settings, respectively and at least 5% better than

Probcons on all four combinations. Furthermore, even though the

mean TC is lower than that of MAFFT in row one, Probalign ranked
higher than all methods on each of the four settings with P-value
<0.005 (for both TC and SP scores).
Table 8 shows mean SP and TC scores broken down for each

BAliBASE subset but contains only those datasets with maximum

sequence length at least 1000 and SD of length at least 100 and

200. We omit MUSCLE from this comparison since it is poorest on

these types of datasets. At the 1000/100 setting, Probalign mean TC

score is at least 2.8, 3 and 4% better than MAFFT and Probcons

on RV12, RV30 and RV40 subsets, respectively. At the 1000/200

setting, TC improvement on both RV30 and RV40 increases to

at least 5%. However, only on RV40 is Probalign statistically

significantly ranked highest for both SP and TC score (with

P-value<0.005). No method ranked statistically significantly higher

than Probalign.

On RV50, MAFFT is the winner on both the full dataset

(Table 2) and on the subsets in Table 8, but not statistically

significantly ranked higher. By reducing the gap extension

penalty (to allow for large internal insertions), Probalign’s TC

score improves considerably (but not statistically significantly) as

shown in Table 9 below. The TC score with 0.2 gap extension

penalty is 3.2% better than Probcons and MAFFT at the 1000/

200 setting.

We perform one more test here to examine performance on

heterogeneous length sequences. We consider reference set 6 of

BAliBASE 2.0 (Thompson et al., 2001) containing repeats. Repeats
are much smaller than the original sequence and most of the repeat

datasets containing highly variable length sequences. Reference 6 of

BAliBASE contains 13 reference alignments of repeats and several

more repeat datasets classified into six different subsets. We refer

the reader to Thompson et al., 2001 for complete classification

details. We gather all datasets in reference six (for a total of 77)

and considered only those with maximum sequence length at least

500 and 1000 and SD of length at least 100, 200, 300 and 400.

Again, we omit MUSCLE because it performs worse than the three

other methods on this type of data.

Table 7. Mean SP/TC scores on BAliBASE 3.0 datasets with SD of length at

least 100 and 200 and maximum sequence length at least 500 and 1000

Max length/SD Probalign MAFFT Probcons MUSCLE

500/100 88.4/56.6 88.0/58.0 86.7/51.6 81.5 / 42.5

500/200 88.5/54.6 87.0/51.9 87.2/48.9 81.9/42.4

1000/100 91.4/58.1 90.4/55.7 89.7/51.6 84.3/44.1

1000/200 90.7/55.0 89.3/51.4 89.2/48.7 83.2/42.5

Best score for each row shown in bold.

Table 8. Mean SP/TC scores for datasets with max sequence length at least

1000 and SD of length at least 100 and 200 for each BAliBASE subset

Max length/SD Probalign MAFFT Probcons

RV11

1000/100 (1) 62.5/39.0 55.2/36.0 62.8/38.0

1000/200 (1) 62.5/39.0 55.2/36.0 62.8/38.0

RV12

1000/100 (5) 93.6/81.6 91.5/77.0 92.3/78.8

1000/200 (5) 93.6/81.6 91.5/77.0 92.3/78.8

RV20

1000/100 (6) 92.3/42.0 91.7/41.0 91.0/38.5

1000/200 (5) 91.6/34.6 90.9/34.0 90.1/30.4

RV30

1000/100 (3) 90.8/67.3 90.6/64.3 89.4/63.3

1000/200 (1) 77.2/40.0 76.1/34.0 73.6/35.0

RV40

1000/100 (25) 92.7/59.3 91.0/54.8 89.9/48.2

1000/200 (20) 93.0/57.3 90.8/52.1 90.6/47.6

RV50

1000/100 (6) 88.1/48.5 91.2/55.8 89.7/52.2

1000/200 (4) 85.0/43.5 89.1/45.8 87.3/45.8

The number of datasets in eachBAliBASE subset (RV11–RV50) satisfying these criteria

is indicated in parentheses.

Best score for each row shown in bold.

Table 6. Mean SP/TC scores on different model trees

Model tree Probalign MAFFT Probcons

BB11003 (164) 77.1/63.7 72.7/58.2 72.4/56.9

BB11004 (132) 89.5/83.0 86.7/78.3 86.8/78.5

BB11008 (92) 97.9/95.9 96.8/93.9 96.5/93.3

BB11009 (33) 99.8/99.7 99.8/99.7 99.8/99.6

BB11010 (184) 63.4/46.9 58.1/41.0 60.1/414

Also shown are average branch lengths (PAM units of evolution) for each model tree.

Best score for each row shown in bold.

Table 9. Mean SP/TC scores for the full RV50 BAliBASE dataset (long

internal insertions) in row two and for RV50 datasets with long and hetero-

geneous length sequences (last two rows)

RV50 Dataset Probalign

(gap ext 0.2)

Probalign

(gap ext 1.0)

MAFFT Probcons

Complete 87.8/56.4 89.3/55.2 90.0/56.2 89.4/57.3

Max len/SD

1000/100 (6) 88.2/56.0 88.1/48.5 91.2/55.8 89.7/52.2

1000/200 (4) 85.9/49.0 85.0/43.5 89.1/45.8 87.3/45.8

The number of datasets meeting these criteria is indicated in parentheses.

Best score for each row shown in bold.
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The Probalign improvements on these datasets, are the largest

observed so far (see Table 10 above). As the maximum sequence

length and the SD in length increases, so does the Probalign

improvement. When SD of length is at least 300 and 400, Probalign

SP and TC score is at least 10% and 15% better than the next

best method. While no method is ranked statistically significantly

better than any other on these datasets, these large Probalign

improvements gained warrant significant merit.

4 DISCUSSION

Probalign’s improved performance arises from consideration of

suboptimal alignments. Let us look at Equation (9) where the pos-

terior probabilities are estimated. Here, ZM
i�1‚ j�1/Z and Z0‚M

iþ1‚ jþ1/Z
represent the probabilities of all alignments of x1..i-1 and y1..j-1 and
xi+1.m and yj+1..n where m and n are lengths of x and y, respectively.
Strictly speaking, we are not looking at all alignments of x1..i-1 and
y1..j-1 but only a subset of suboptimal alignments determined by the

T parameter, which is analogous to the thermodynamic temperature.

These suboptimal alignments may in fact be more biologically

accurate, while not necessarily the most optimal under the employed

scoring scheme. This result was reported previously (Muckstein

et al., 2002) when examining several thousand suboptimal pairwise

alignments (generated using the partition function) for a particular

pair of proteins. Many of the suboptimal alignments were deemed to

be more biologically relevant than the optimal. This result is the

underlying motivation for our combined Probalign approach.

Further insight into Probalign is gained by generating an ensem-

ble of high probability suboptimal pairwise alignments using stoch-

astic backtracking of the partition function matrix in Muckstein

et al. (2002) and then estimating P(xi � yj) as the fraction of

alignments where xi is paired with yj. This method produces almost

exactly the same results as when using Equation (9). In light of this

result, it is now perhaps easier to see why Probalign is particularly

better than other methods at aligning heterogeneous datasets, which

are long in length. In such datasets, regions that are highly similar

will be preserved in most suboptimal alignments, even though they

may not be perfectly aligned in the optimal one (which, as we have

seen in our experiments, is usually the case).

The results in this study allow us to directly compare posterior

probability estimates using the Probcons and Probalign techniques.

Both follow the exact same strategy, once the probabilities are

specified. Probalign has the advantage over Probcons of not having

to learn model parameters from training data. This important dis-

tinction makes Probalign applicable to situations where a diverse

range of training data is not readily available (i.e. motif searching,

repeat alignments, widely variable lengths, RNA and DNA

sequences). On the other hand, the learning algorithm of Probcons

can learn optimal gap parameters directly and not have to resort to

hand-tuned ones the way that Probalign requires.

By generating a high probability alignment ensemble (for a given

pair of sequences) it is possible to assign weights to different align-

ments, based upon biological features. For example, future work

could assign weights based on features such as, number of gapless

long hydrophobic regions or number of hydrophilic residues around

gaps (similar to what is done in Do et al., 2006). Alternative appro-
aches for generating alignment ensembles remain to be explored. The

applicability of Probalign for constructing accurate RNA alignments

and also those that produce accurate phylogenetic trees also remains

to be seen. Probalign’s performance on long and heterogeneous

length datasets suggests it may be useful in aligning and detecting

motifs in long DNA genomic regions. Finally, other alignment pro-

grams based upon the Probcons framework may also perform better

with the partition function posterior probabilities [B. Paten (2005)

http://www.ebi.ac.uk/~bjp/pecan/; Schwartz et al., (2006); http://
igs-server.cnrs-mrs.fr/~cnotred/Projects_home_page/t_coffee_

home_ page.html].
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