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ABSTRACT

Motivation: It is important to predict the outcome of patients with

diffuse large-B-cell lymphoma after chemotherapy, since the survival

rate after treatment of this common lymphoma disease is <50%. Both

clinically based outcome predictors and the gene expression-based

molecular factors have been proposed independently in disease pro-

gnosis.However combining thehigh-dimensional genomicdataand the

clinically relevant information topredict diseaseoutcome is challenging.

Results:Wedescribean integratedclinicogenomicmodelingapproach

that combines gene expression profiles and the clinically based

International Prognostic Index (IPI) for personalized prediction in dis-

ease outcome. Dimension reductionmethods are proposed to produce

linear combinations of gene expressions, while taking into account clin-

ical IPI information. The extracted summary measures capture all the

regression information of the censored survival phenotype given both

genomic and clinical data, and are employed as covariates in the sub-

sequent survivalmodel formulation. A case study of diffuse large-B-cell

lymphoma data, as well as Monte Carlo simulations, both demonstrate

that the proposed integrative modeling improves the prediction

accuracy, delivering predictions more accurate than those achieved

by using either clinical data or molecular predictors alone.

Availability: R programs are available at http://www4.stat.ncsu.edu/

~li/survipi/

Contact: li@stat.ncsu.edu

Supplementary information: Supplementary data are available at

http://www4.stat.ncsu.edu/~li/survipi/bioinfo-supp.pdf

1 INTRODUCTION

Diffuse large-B-cell lymphoma (DLBCL) is the most common

type of lymphoma in adults and has an annual incidence of more

than 25 000 cases in the United States (Jaffe, 1998). It is potenti-

ally curable by anthracycline-based chemotherapy. However, only

�35–40% of patients are cured with this standard therapy. It is

thus important to predict the outcome of the treatment and to

identify DLBCL patients who are unlikely to be cured. The Inter-

national Prognostic Index (IPI) has been developed for this

purpose. It is based on clinical characteristics such as age, tumor

stage, serum lactate dehydrogenase concentration, performance

status and a number of extranodal disease sites. Although it is a

well-established predictor of the survival of DLBCL patients, the

outcome in patients who have identical IPI values still varies

considerably. Using the IPI alone as the outcome predictor is

unsatisfactory (Rosenwald et al., 2002).

Thanks to recent development of DNA microarray technology,

there have been extensive investigations studying the relation-

ship between prognosis and the molecular features of DLBCL.

Predictive models were built employing genome-wide gene expres-

sion profiles, coupled with biological insights into the disease

(Lossos et al., 2004), and machine learning techniques (Alizadeh

et al., 2000; Shipp et al., 2002; Rosenwald et al., 2002). New

statistical methods have been developed to address the high dimen-

sionality and low sample size issues of the microarray data.

Examples include partial least squares (Nguyen and Rocke, 2002;

Bair and Tibshirani, 2004; Li and Gui, 2004), supervised principal

components (Bair et al., 2004), penalized Cox model (Gui and

Li, 2005a,b), and sufficient dimension reduction (Li and Li,

2004). All the studies have demonstrated the capability of using

genomic information, in the form of gene expression patterns, to

define clinically relevant molecular factors in disease prognosis.

However all the above molecular methods and the clinically

based international prognostic methods were applied independently

to predict survival after chemotherapy for DLBCL. On the other

hand, there is a growing body of research aimed at assessing

whether integrative analysis approaches may yield more accurate

predictions than those obtained based on the use of of clinical or

molecular information alone (see, e.g. Pittman et al., 2004). In

this article, we propose an integrated clinicogenomic modeling

approach that combines gene expression profiles and the

clinically-based IPI. We demonstrate its superiority to the methods

using molecular or clinical information alone. More specifically,

dimension reduction techniques, including principal components

analysis and sliced inverse regression (SIR), are employed to

produce linear combinations of gene expressions. Such summary

measures, in conjunction with IPI information, capture all the

regression information of the survival phenotype given both

genomic and clinical data and are obtained without imposing any

probabilistic model during the dimension reduction process. The

extracted linear combinations of gene expressions and the IPI are

then employed as covariates in the subsequent survival model

formulation. A case study of DLBCL, obtained from Rosenwald

et al. (2002), demonstrates that the proposed integrative modeling

improves the prediction accuracy, delivering predictions more

accurate than those achieved by using either clinical data or

genomic predictors alone. Effectiveness of the proposed method

was also verified by another independent DLBCL data from

Shipp et al. (2002) and Monte Carlo simulations.

The remainder of the article is organized as follows. In Section 2

we first introduce the framework of sufficient dimension reduction,
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including principal components analysis and SIR. We then discuss

SIR in conjunction with preserving clinical IPI information. Next

we present an adaption of the dimension reduction methods

to the censored survival data. We then follow with Monte Carlo

simulations and the application to the real DLBCL datasets. The

paper is concluded with a brief discussion.

2 METHODS

2.1 Sufficient dimension reduction

For a given outcome variable Y 2 R and a vector of predictors

X 2 R
p, the goal of sufficient dimension reduction is to find a

p · d matrix h ¼ (h1, . . . ,hd), with d � p, such that

Y � X j h>X‚ ð1Þ

where � stands for the statistical independence. It implies that the

p-dimensional predictor vector X can be replaced by d-dimensional

linear combinations h>X without losing any information on

regression of Y given X, because given h>X, X contains no further

information about Y. The subsequent model formulation can then

be restricted to the extracted h>X. Since in practice d is often

far less than p, and in many applications, d is as small as 1 or 2,

substantial dimension reduction is achieved.

It is seen that h in (1) is not unique, because multiplying h

by any full rank matrix would result in (1) still holding. Therefore,

we seek the linear subspace that is spanned by the columns of h.

Such a space is called a dimension reduction subspace (Cook,

1998). The intersection of all the dimension reduction subspaces

is often itself a dimension reduction subspace. By definition, it is

unique, and is the smallest space that preserves all regression

information of Y given X. It is called the central subspace, denoted

by SYjX, and is the main object of interest in our dimension reduction

inquiry.

There are a number of methods to estimate SYjX without imposing

any probabilistic models for Y given X, for instance, SIR (Li,

1991) and sliced average variance estimation (SAVE, Cook and

Weisberg, 1991). In this article we focus on SIR. It is shown that,

under the linearity condition discussed below, the inverse mean

E(X j Y) resides in the central subspace (Li, 1991; Cook, 1998).

Thus the population solution of SIR amounts to the following

eigen-decomposition

SXjYhj ¼ lj SXhj‚ ð2Þ

where SX is the covariance matrix of X and SX|Y is the covariance

matrix of E(X j Y). The eigenvectors h1, . . . ,hd corresponding to the

d non-zero eigenvalues consist of a basis for the central subspace.

Given n independent realizations {(Xi, Yi), i¼ 1, . . . , n} of (X, Y),

SIR first partitions the range of Y into h slices so that each Yi belongs

to one of h slices. The sample estimate of E(X | Y) is then obtained

by averaging over all the Xis whose corresponding Yis belong to

the same slice. The usual sample covariance matrices ŜSXjY and ŜSX

are then computed and substituted in (2), resulting in the SIR sample

estimates. In this procedure, h is a tuning parameter, but it has been

shown by various studies that the choice of h does not usually affect

the SIR estimates as long as h > d (Li, 1991; Cook, 1998).

For gene expression data, the sample size n is often far smaller

than the number of predictors, i.e. the individual genes. This would

cause the sample covariance ŜSX to be non-invertible, while the

sample estimation of (2) requires ŜSX to be invertible. To circumvent

this problem, we combine principal components analysis with SIR.

That is, we first obtain q principal components, gTX, where g is a

p · q matrix with q < n. g is taken as the first q eigenvectors

of the covariance matrix SX, corresponding to the largest q
eigenvalues, to capture the maximum variability among the pre-

dictor space. We then apply SIR on the extracted principal com-

ponents gTX. This two-stage dimension reduction is justified by the

assumption that SYjX � Span(g), where Span(g) denotes a space

spanned by the columns of g, and we find this condition often holds

in practice. The same strategy has been employed by Chiaromonte

and Martinelli (2002) and Li and Li (2004). q is a tuning parameter

for principal components, and it has been shown by Li and Li (2004)

that the result of dimension reduction is not overly sensitive to

the choice of q. More discussion of choosing q will be presented

in Section 3.

It is noteworthy to point out that SIR does not impose any

model assumptions on the distribution of Y | X. Instead, it requires

the linearity condition, an assumption placed on the marginal dis-

tribution of X, which states that E(X | hTX ¼ u) ¼ A0 + A1u, where

A0 2R
p and A1 is a p · d matrix. Elliptical symmetry of the marginal

distribution of X is sufficient for the linearity condition to hold

(Eaton, 1986), and in particular, it holds when X is multivariate

normal. Hall and Li (1993) demonstrated that the linearity condition

is not a severe restriction. In addition, the condition may be induced

by predictor transformation, re-weighting (Cook and Nachtsheim,

1994) or clustering (Li et al., 2004).

2.2 Partial sliced inverse regression

To incorporate both genomic and clinical information in sufficient

dimension reduction, we consider partial dimension reduction.

Let X denote the p-dimensional gene vector, and W denote the

additional clinical information. The goal of partial dimension

reduction is to find a p · d matrix h, with d � p, such that

Y � X j ðhTX‚WÞ:

With h identified, the subsequent modeling can be focused on

h>X and W without any loss of regression information of Y on X
and W. We define the partial central subspace in a way similar to

that of the central subspace, and denote it by SðWÞ
YjX (Chiaromonte

et al., 2002).

In the DLBCL study, the clinically based IPI takes the discrete

values Low, Intermediate and High, indicating three distinct risk

groups. Correspondingly, let W take values in {1, 2, . . . ,C ¼ 3}.

Chiaromonte et al. (2002) showed that

SðWÞ
YjX ¼ �C

w¼1 SYw jXw
‚ ð3Þ

where (Xw, Yw) indicates (X, Y) | (W ¼ w) and � denotes the direct

sum between two subspaces. Equation (3) suggests a way of

estimating the partial central subspace SðWÞ
YjX through the combina-

tion of individual central subspace SYw jXw
. Specifically, consider the

eigen-decomposition

XC
w¼1

PðW ¼ wÞCovðEðXwjYwÞÞ
 !

hj

¼ lj
XC
w¼1

PðW ¼ wÞCovðXwÞ
 !

hj: ð4Þ
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By (3), the eigenvectors h1, . . . ,hd in (4) that correspond to

the d non-zero eigenvalues consist of a basis for the partial

central subspace. The sample estimates are obtained by substituting

the corresponding sample covariance estimates in (4), and

P̂PðW ¼ wÞ ¼ nw=n, where nw is the number of observations with

W ¼ w. This method is referred to as partial SIR (PSIR,

Chiaromonte et al., 2002).

2.3 Sufficient dimension reduction for survival data

Survival data are often subject to right censoring, owing to, for

instance, termination of the follow-up, or drop-out of the patients.

Let T denote the true survival time, and C the censoring time, i.e. the

time at which the censoring event occurs. The observed survival

time is Y ¼ T if T � C, and Y ¼ C otherwise. Accordingly, let d be

a binary censoring indicator with d ¼ 1 when T � C, and d ¼ 0

otherwise. For sufficient dimension reduction in survival data, the

central subspace STjX of the regression of T on X is of essential

interest. However, the central subspace SðY‚dÞjX of the bivariate

response (Y, d) given X is what we can estimate. Cook (2002)

gave the sufficient condition to connect the two central subspaces.

Letting h be a basis for STjX, it is shown that, if (T, C) � X jh>X,

or equivalently, C � X j (h>X, T), then

SðY‚dÞjX � SðT‚CÞjX � STjX: ð5Þ

Moreover, it is expected that the equality in (5) will normally hold in

practice, since proper containment requires carefully balanced con-

ditions. It is also interesting to point out that under a special case

when (T, X) � C, the sufficient condition C � X j (h>X, T) holds.

With (5), we can employ SIR of bivariate response (Y, d) to

directly construct estimates of the central subspace of regression

of T given X. This is accomplished by partitioning Y into two

subsamples, with d¼ 1 and d¼ 0, respectively, then slicing Y within

each subsample. The remaining eigen-decomposition is the same as

a standard SIR. This procedure is called double slicing (Li et al.,
1999; Li and Li, 2004). Similarly we can apply PSIR to estimate

the partial central subspace of T given X and W using double slicing.

A detailed description of the proposed algorithm of PSIR for

survival data is given as a web supplement.

3 RESULTS

3.1 DLBCL data of Rosenwald et al.

The DLBCL dataset of Rosenwald et al. (2002) was employed as

a main illustration of application of our proposed dimension reduc-

tion methods. These data consist of measurements of 7399 genes

from 240 patients obtained from customized cDNA microarrays

(lymphochip). Among those 240 patients, 222 patients had the

IPI recorded, and they were stratified to three risk groups indicated

as low, intermediate and high. A survival time was recorded for each

patient, ranging between 0 and 21.8 years. Among them, 127 were

deceased (uncensored) and 95 were alive (censored) at the end of

the study. A more detailed description of the data can be found in

Rosenwald et al. (2002).

Following Bair et al. (2004), we divided the patients into a train-

ing group of 148 samples and a testing group of 74 samples. Addi-

tionally, a nearest neighbor technique (Troyanskaya et al., 2001)

was applied to fill in the missing values for the gene expression data.

We fitted and compared three models for this data. In model 1,

we used only the clinically based IPI as the predictor and we fitted

a Cox proportional hazards model. In model 2, we applied SIR to

gene expression data without taking into account IPI informa-

tion and fitted a Cox model based on the extracted first SIR

component. In model 3, we applied the method of PSIR by incorp-

orating both IPI data and gene expression profiles and built a

Cox model with the IPI and the extracted first PSIR component

as covariates. For both models 2 and 3, principal components were

first identified based on the training data. Approximately 55–95% of

total predictor variations were accounted for, with the number of

principal components ranging from 20 to 120. We chose q¼ 40 PCs,

which accounts for �70% of the total variation, for subsequent

analysis. The choice of q will be discussed later. The extracted

PCs were then employed as input variables for inverse regression

estimation. Additionally, examining the marginal scatter plot

of the 40 principal components reveals no strong violation of

the linearity condition. Table S1 (web supplement) summarizes

the fitted models based on the training samples. In the table, the

discrete-valued IPI variable was coded as two indicator variables,

IPI-Intermediate and IPI-High, with the first level of IPI, IPI-Low,

as the baseline. It is seen from the table that all terms were signi-

ficant, with P-values < 0.0001. This indicates that the patients’

survival may be best predicted by incorporating both clinical and

genomic information.

We next compared the three models in predicting patients overall

survival. Figure 1 shows the Kaplan–Meier estimates of survival

curves for three groups of patients defined by the fitted models, the

low-risk patients, the intermediate-risk patients and the high-risk

patients. For model 1, there are naturally three groups. For models 2

and 3, the cutoff values for the three risk groups were determined

by the 33 and 66% quantiles of the estimated scores based on the

training data. The same cutoff values were then applied when

assigning the test samples into three risk groups. The log-rank

test of difference among three survival curves is reported, with a

smaller P-value indicating a better model fitting for the training

data, and better prediction for the testing data. It is first noted that

all three models achieved good separation of three risk groups

for the training data. Among them, models 1 and 2 showed similar

performance, while model 3 was slightly superior. The log-rank test

yielded P-values of 2.14e�09, 1.47e�08 and 0, for models 1, 2

and 3, respectively, which confirms our visual examination. For

the testing data, using the IPI score alone (model 1) provides reas-

onably good stratification of different risk groups of patients, with

a P-value of 0.02470 for the log-rank test, verifying the value of

this well-established clinical prognosis indicator. On the other

hand, using gene expression independently of the IPI (model 2)

yielded a better stratification than using IPI alone, with a

P-value of 0.00171 for the log-rank test. This demonstrates the

predictive power of the gene expression profiles of DLBCL,

which agrees with the findings of Rosenwald et al. (2002), Bair

and Tibshirani (2004), Bair, et al. (2004) and Li and Li (2004). By

combining both clinical and genomic information, model 3 yielded

a P-value of 0.00006 for the log-rank test, thus is demonstrated to

have the best predictive performance in predicting future patients’

survival risks.

To further evaluate and compare the predictive performance

of those three models, we employ the time-dependent receiver-

operator characteristics (ROC) curve for censored data and the

area under the curve (AUC) as the criterion. These methods

were developed by Heagerty et al. (2000) in the context of medical
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diagnosis. The idea is to use sensitivity and specificity, which in this

case are both time dependent, to measure the prognostic capacity of

a given survival model. More specifically, for a given score function

f(x), we define the time-dependent sensitivity and specificity func-

tions as

sensitivityðc‚ t j f ðxÞÞ ¼ Prff ðxÞ > c j dðtÞ ¼ 1g‚

specificityðc‚ t j f ðxÞÞ ¼ Prff ðxÞ � c j dðtÞ ¼ 0g:

The corresponding ROC(t j f(x)) curve, for any time t and the score

function f(x), is defined as the plot of {sensitivity(c, t j f(x))} versus

{1 � specificity(c, t j f(x))}, with the cutoff point c varying. The

area under the curve, AUC(t j f(x)), is then defined as the area under

the ROC(t|f(x)) curve. Here d(t) is the event indicator at time t.
A nearest neighbor estimator for the bivariate distribution function

is used for estimating these conditional probabilities accounting

for possible censoring (Akritas, 1994). Following these definitions,

a larger AUC at time t indicates a better predictability of time to

event at time t, as measured by sensitivity and specificity evaluated

at time t. Figure 2 shows the AUCs for the three models with the

survival time ranging from 1 to 10 years. This plot reinforces our

observations in Figure 1 that model 3 has the best performance both

in fitting the training data and in predicting the future patients’

survival risks among the three models. Additionally, models

2 and 3 had similar predictability of time to event when it is

7 years or longer. In summary, the model combining both clinical

and genomic information delivered predictions more accurately

than those made using clinical or genomic data alone.

The proposed dimension reduction methods employ both

principal components and SIR. As a comparison, we also examined

the performance of a Cox regression using PC alone. Specifically,

a Cox model with 40 principal components as predictors (model a)

and a Cox model with 40 PCs plus IPI (model b) were fitted to the

training data and then evaluated on the testing data. The log-rank

test for the testing data yielded the P-values of 0.00504 and 0.00397

for models a and b, respectively. Both are superior compared with

the Cox model using IPI alone, but both are outperformed by the

models employing SIR. This is further verified by the AUCs as

Fig. 1. Kaplan–Meier estimates of survival curves for three risk groups of patients defined by the fitted models. The left panels are for the training data, and the

right panels are for the testing data. The P-values of the corresponding log-rank test are indicated. Model 1 uses clinical IPI information only, model 2 uses gene

expression data with PC + SIR, and model 3 uses both clinical and genomic information with PC + PSIR.

Fig. 2. Area under ROC curves at time 1 to 10 years for three models. The

left panel is for the training data, and the right panel is for the testing data.

Model 1 uses clinical IPI information only, model 2 uses gene expression

data with PC + SIR, and model 3 uses both clinical and genomic infor-

mation with PC + PSIR. As a comparison, model a uses gene expression

data with PC only, and model b uses both clinical and genomic information

with PC only.
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shown in Figure 2. The Cox model with IPI and PC alone seems to

overfit the training data, and our proposed integrated method

employing PC, SIR and IPI dominates all other methods in

prediction.

The choice of the number of principal components q was also

examined using a 10-fold cross-validation. For both SIR and PSIR,

we tried a sequence of q values ranging from 20 to 120. Models

were fitted to 9/10 of the training data and were evaluated for the

remaining 1/10 of the samples. Figure S1 (web supplement) shows

the average AUCs of cross-validation for model 2 (left panel) and

model 3 (right panel). It is noted that the AUCs are very close for

all qs, with a possible overfitting for a very large value of q. This

demonstrates the relative insensitivity of the dimension reduction

methods to the choice of q. We also found through cross-validation

that the performance of the proposed method is stable.

3.2 DLBCL data of Shipp et al.

To further test the robustness of our proposed methods with respect

to cross-platform prediction, we applied the methods to the DLBCL

data of Shipp et al. (2002). For 56 DLBCL patients, the IPI was

recorded, and the expression values of 7129 genes were measured

using Affymetrix microarrays. Among them, 26 patients died of

lymphoma or experienced recurrent refractory or progressive

disease (uncensored), and 30 patients remained disease-free

(censored). The survival time or time to recurrence ranged between

3.2 and 182.4 months. Shipp et al. (2002) give a more detailed

description of this dataset.

We first randomly partitioned all patients into a training group

of 40 and a testing group of 16. We then applied the proposed

dimension reduction methods jointly with a Cox model fitting.

The patients were originally divided by Shipp et al. (2002) into

four groups according to their IPI scores, Low, Low-Intermediate

High-Intermediate and High. Owing to the small sample size in

each group, we combined the patients in the first two groups as

the Low-IPI group and the remaining as the High-IPI. We again

compared models 1–3 as in the previous example, and we focused

on the prediction performance of the fitted models. The results agree

with those from the previous example. Model 1 which employs IPI

as the sole covariate and model 2 using only expression predictor

performed similarly, with the P-value for the log-rank test equal to

0.0013 and 0.0480, respectively. Model 3 that incorporates both

clinical and genomic information performed best, yielding a P-value

of 0.0006. We also point out that the sample size of this data is

relatively small, while the proposed methods work best with large

samples.

3.3 Monte Carlo simulations

We have conducted Monte Carlo simulations to evaluate the per-

formance of the proposed dimension reduction methods and com-

pared various models. Gene expression data with p ¼ 1000 genes

was simulated. The first 30 predictors are independent normal ran-

dom variables with variance 5, and the remaining predictors are

independent standard normal variables. Let X denote this 1000-

dimensional gene vector. A binomial random variable W with two

trials and success probability of 0.4 at each trial was also generated.

Let Wj denote the level j of W with the first level of W as the

reference, j ¼ 2, 3. The survival time is related with X and W
through a Cox proportional hazards model with the score function

f(x, w), where x ¼ bTX, w ¼ W2 + 1.5W3 and b has the first

30 elements taking the value of 1=
ffiffiffiffiffi
30

p
, and the remaining com-

ponents equal to 0. Four different score functions were examined:

Design 1: f ðx‚wÞ ¼ �12w
Design 2: f ðx‚wÞ ¼ 5x
Design 3: f ðx‚wÞ ¼ 10wþ 5x
Design 4: f ðx‚wÞ ¼ 7wþ 3x� x2=2

A Weibull distribution with the shape parameter 10 and the scale

parameter 1 was used for the baseline hazard function. Censoring

time was simulated from a uniform distribution U(0, 8), yielding a

censoring proportion ranging between 10 and 35%. The observed

survival time ranges between 0 and �6 (years). The sample size was

taken as n ¼ 200.

For the simulated training data, four models were fitted. Model 1

used only W as the predictor; model 2 applied SIR to the X data and

used the extracted first SIR component as the predictor; model 3

applied partial inverse regression to both W and X, and regressed on

both W and the extracted first PSIR component; model 4 added the

quadratic term of the PSIR component to model 3. The areas under

the ROC curves were then evaluated on an independently generated

testing data, and this procedure was repeated 100 times. The median

and the median absolute deviation of the AUCs at time 1, 3 and 6

(years) are summarized in Table S2 (web supplement) for different

designs and different models.

For Design 1, the survival time is based on W only. Model 1

showed the best performance, while model 2 failed in this case

since it completely ignores the information of W. For Design 2,

the survival time relates only with X, thus model 2 performed well,

while model 1 failed. In both cases, models 3 and 4 were compar-

able with the best performing model. For Design 3, model 3, which

incorporates both W and X information, was superior than either

model 1 with W alone or model 2 with X data alone. For Design 4

where a quadratic term of X data is present, model 4 worked the

best, as we would have expected. Overall, models taking into

account both W and X information performed the best, especially

when both data were involved in the true data generation.

4 DISCUSSION

We have proposed an integrated modeling approach, which com-

bines genomic information, in terms of gene expression profiles,

and the clinically based IPI, to predict the survival of patients with

DLBCL after chemotherapy treatment. Dimension reduction

techniques were employed to reduce the high dimensionality of

gene expression data, meanwhile taking into account the clinical

information. The survival phenotype was preserved, and the sur-

vival model was formulated based on the reduced-dimensional

genomic and clinical covariates. Both the real data analysis and

the Monte Carlo simulations demonstrated that the proposed integ-

rative modeling improved the prediction accuracy over those

methods using either clinical or genomic factors alone.

The focus of this article is on the prediction of patients’ survival,

and the proposed methods were designed for this purpose. In this

case we assume there exist a large number of genes that jointly

regulate the phenotype, and the extracted gene components after

principal components and SIR may be regarded as ‘supergene’

factors (West et al., 2001). However, in many studies, it is of

great interest to identify individual genes that are most significantly

correlated with the phenotype and have the best predictive power.
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Dimension reduction methods that integrate both outcome pre-

diction and gene selection are currently under active investigation.

An alternative method for integrative prediction and gene selection

is the penalized estimation approach. Gui and Li (2005a,b) explored

the L1-penalized Cox model and the threshold gradient descent

method using gene expression data alone to predict the patients’

survival. Those methods are computationally intensive but prom-

ising. However, no studies have been published using the penalized

methods on combined genomic and clinical data; this line of

research is being investigated.
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