
Vol. 23 ISMB/ECCB 2007, pages i337–i346
BIOINFORMATICS doi:10.1093/bioinformatics/btm189

A Chado case study: an ontology-based modular schema for

representing genome-associated biological information

Christopher J. Mungall1,*,†, David B. Emmert2,† and The FlyBase Consortium
1Lawrence Berkeley National Laboratory, Lawrence Berkeley National Lab, Mail Stop 64R0121, Berkeley, CA 94720
and 2Harvard University, Molecular and Cell Biology: FlyBase, 16 Divinity Avenue, Cambridge, MA 02138, USA

ABSTRACT

Motivation: A few years ago, FlyBase undertook to design a new

database schema to store Drosophila data. It would fully integrate

genomic sequence and annotation data with bibliographic, genetic,

phenotypic and molecular data from the literature representing

a distillation of the first 100 years of research on this major animal

model system. In developing this new integrated schema, FlyBase

also made a commitment to ensure that its design was generic,

extensible and available as open source, so that it could be

employed as the core schema of any model organism data

repository, thereby avoiding redundant software development and

potentially increasing interoperability. Our question was whether we

could create a relational database schema that would be success-

fully reused.

Results: Chado is a relational database schema now being used to

manage biological knowledge for a wide variety of organisms, from

human to pathogens, especially the classes of information that

directly or indirectly can be associated with genome sequences or

the primary RNA and protein products encoded by a genome.

Biological databases that conform to this schema can interoperate

with one another, and with application software from the Generic

Model Organism Database (GMOD) toolkit. Chado is distinctive

because its design is driven by ontologies. The use of ontologies

(or controlled vocabularies) is ubiquitous across the schema, as they

are used as a means of typing entities. The Chado schema

is partitioned into integrated subschemas (modules), each encapsu-

lating a different biological domain, and each described using

representations in appropriate ontologies. To illustrate this metho-

dology, we describe here the Chado modules used for describing

genomic sequences.

Availability: GMOD is a collaboration of several model organism

database groups, including FlyBase, to develop a set of open-source

software for managing model organism data. The Chado schema is

freely distributed under the terms of the Artistic License (http://

www.opensource.org/licenses/artistic-license.php) from GMOD

(www.gmod.org).

Contact: cjm@fruitfly.org or emmert@morgan.harvard.edu.

1 INTRODUCTION

1.1 On the need for standardized database schemas

Organism-specific genome databases are expertly curated

repositories of data and knowledge concerning a particular

biological species, or a collection of closely related similar

species. These biological databases are typically (but not

always) implemented as relational databases that encode their

domain model using the relational model. A relational database

requires a data base management system (DBMS) to access and

update data. Data housed in a database must be modeled

according to a database schema, a computable description of

the data domain, expressed mainly as table definitions. Data

modelers, in conjunction with domain experts, design database

schemas. Users interact with the database via software

applications and user interfaces (often via another layer of

indirection, i.e. an intermediate, middleware layer). The design

and implementation of database applications is time-

consuming and labor-intensive. Furthermore, when database

applications are constructed to work with a particular schema

or set of schemas, changes to the database schema may dictate

reciprocal changes to this software. All of this makes schema

evolution a costly affair. From this it would seem to follow that

a small number of stable schemas would be favored over

a plethora of rapidly evolving schemas, and yet the latter is

more common in bioinformatics. Why is this the case?

1.1.1 New knowledge Schemas must evolve to cope with

changes in requirements. Most critical are the changes in the

nature of the underlying data, which is constantly accruing

and evolving. The nature of biological data has expanded

tremendously over time, ranging from classical genetic studies

performed a century ago (Morgan, 1907), to present-day

genome-scale molecular knowledge. For example, a database

schema built around the one-time central dogma of ‘one gene

codes for one enzyme’ (Beadle and Tatum, 1941) would be

considerably simpler than a schema that accurately represents

our present understanding of the complexities of genetic

information transfer. As our understanding of the natural

world changes over time, the requirements must necessarily

change as well.

1.1.2 New experimental techniques Concomitant with our

accrual of biological knowledge, are the advances in the

methods and materials we use to gain this understanding.

These rapid technological changes place additional require-

ments on the schema. During the short time that genetic

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024

http://
http://creativecommons.org/licenses/


databases have been in existence we have seen experimental
techniques expand from physical mapping and PCR; to

sequencing of whole genomes; to modern high throughput
technologies for microarray and proteomics analysis: all of

which place increasing demands on the database schema that

must represent these.

1.1.3 Different organisms A wide variety of species are used
in research because each offers unique leverage to explore

certain aspects of life. The taxonomic variance of biological
properties, along with the different experimental methods

utilized in these species, add another dimension to the

requirements. Any given organism is selected for a research
project based on its utility in answering different questions, and

this has made it historically difficult to create a species-blind
database schema.

1.1.4 Acceptability Coupled with the innate complexity of
the data; the changing requirements as science and technologies

progress; and the variability between research projects, the
design of stable, shared schemas that are acceptable to a wide

variety of different projects is a challenging task. Even within
the realm of model organism database projects, the historical

tendency has been for each project to design their own schema

de novo, or in some cases to start with an existing schema
and customize it to satisfy a different set of requirements.

Such customizations inevitably lead to divergence, loss of

interoperability and duplication of effort.
Because these factors make it difficult to create schemas that

are stable, schemas are constantly evolving with concomitant

high costs in software maintenance. The challenge of biological

database design is how to keep pace with a moving target.

1.2 Existing approaches to biological schemas

As might be expected, there are a wide variety of approaches in

designing schemas for biological databases. Some of the more
notable schemas, with which we have direct personal experi-

ence, include: ACeDB, ArkDB, Ensembl, Genomics Unified

Schema (GUS) and Gadfly (Mungall et al., 2002). ACeDB
(A C.elegans Database) was one of the first model organism

databases. It was built for Caenorhabditis elegans (Durbin and
Theirry-Mieg, 1994) and is actually a DBMS that follows a

hierarchical rather than relational model. ACeDB was adapted

for use in a number of model organism projects (as well as
projects not related to biology at all, testimony to its flexibility).

The ArkDB schema (Hu et al., 2001) was created to serve the
needs for the subset of the model organism community

interested in agriculturally important animals. It has been

successfully used across different species by different commu-
nities, but is rarely used outside the agricultural community.

The Ensembl database system and schema was initially

constructed to analyze the newly sequenced human genome
(Hubbard, 2002) and serve the results to the scientific

community. It has since been adopted by other groups and is
used for a large variety of (primarily chordate) species. Its focus

has also expanded, and now Ensembl includes a variety of

federated databases accessible through the EnsMart. Like the
other databases, GUS was specifically built for transcript

analysis, and to serve the needs of the Plasmodium research

community, and has been extended to serve additional

communities. GadFly was designed to serve as a repository of
Drosophila genomic annotations, but was also used to hold

honeybee and Anopheles annotations.

1.3 Ontologies and terminologies

Chado differs from the schemas mentioned above by the

centrality of ontologies and terminologies as a core component.

Chado uses ontologies not just for annotation of biological

entities, but also as a schema-wide entity-typing and entity-

relationship-typing mechanism. This methodology of ontology-

driven design is explored in this article. We contend that it is the

key to the success and flexibility of Chado and of its adoption

by a wide variety of research projects. In other schemas with

which we have experience, typing of the data is enforced at the
relational layer. In Chado, in contrast, data typing is driven

by ontologies in the controlled vocabularies module, and this

makes it possible for the same schema and application to be

reused and to evolve over time.

2 SYSTEM AND METHODS

The Chado package uses postGreSQL and Perl. In addition to the

Chado DDL (Data Definition Language), installation requires three

additional Perl packages: bioperl-live, go-perl and DBIx::DBStag.

To install on Fedora Core 1-5, OS X or CentOS 4 you may use the

RPM packages for installing Chado, and its prerequisites, provided by

Allen Day (http://biopackages.net). Otherwise installation requires

checking out the Chado package via anonymous CVS and performing

a series of command line operations. Instantiations of Chado in Oracle

or mySQL idiom are also available.

3 DESIGN APPROACH

Because Chado makes extensive use of ontologies (also known

as controlled vocabularies1) as a means of typing entities in the

schema, and as metadata for extensible data properties,

an appreciation of the fundamentals of ontologies and how

they are coded in the Chado schema is required. The rationale

for this approach is 2-fold. It addresses both the significant

issue of constantly evolving requirements and provides support

for reasoning. An ontology is a representation of the different

types of entity that exist in the world, and the relationships that

hold between these entities. Examples would be the anatomical

type ‘eye’ or the process type ‘cysteine biosynthesis’. These

types stand in certain relationships to one another; for example,

‘eye is_a sense organ’ or ‘ommatidium part_of compound eye’.

The relationships in an ontology can be represented as a graph
(often, but not always a directed acyclic graph, or DAG).

The OBO relationships paper by Smith et al. in 2005 provides a

detailed treatment of relationship types in biological ontologies.

Of particular interest to Chado is the relation, which specifies

a subtyping relationship between two terms or classes. It is the

relations that exist between the types in the ontology that

supply a means of supporting reasoning.

1In fact there are crucial differences between ontologies and vocabul-
aries. However, not everyone agrees on what these are. For the
purposes of this article it is simpler to gloss over these differences.

C.J.Mungall et al.

i338

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024

http://biopackages.net


3.1 Chado querying exploits ontological relations

Determining the answers to simple queries involves, broadly

speaking, traversing a DAG defined by the ontology along both

‘is_a’ and ‘part_of’ edges. For example, the sequence ontology

(SO) (Eilbeck et al., 2005), a collection of sequence feature

types, is used for typing features in the sequence module of

Chado. Tables, such as the feature table, define a foreign key

column to indicate the specific type or class of entity for each

row in that table. In addition to typing features, all relation-

ships between features are also consistently typed, using the

relationships defined by the SO. For example, SO has a part_of

relationship between the type ‘exon’ and the type ‘transcript’.

According to the definition of part_of in the OBO relations

ontology, this means that all exons are necessarily part_of some

transcript at some point during their existence. To answer the

query, ‘find all exons that contain both CDS and 5’ UTR’, may

involve selecting all rows in the feature table that are either of

type ‘5_prime_UTR’ or of type ‘CDS’, that are both also

‘part_of’ the same row in the feature table which is of type

‘exon’. Implementing these ‘transitive closure’ queries can be

difficult using many existing implementations of database

query languages, so Chado allows for precomputation of

these inferences. These SO relationships are uniformly applied,

that is, a single relationship type between features always

implies the same thing. In cases where a new relationship type is

needed, one that is not yet present in the SO (for example

‘duplicate’ for relationships between chromosome aberrations

and genes), the normal process of discussion and resolution

takes place to assure this consistency.

3.2 Generic schemas

The combination of the type_id column and the is_a relation-

ship gives Chado a data sub-classing system, beyond that

possible with traditional SQL database semantics. Chado uses

the same table for all different kinds of feature, and uses the SO

as a typing system. This same strategy, a single table that is

typed according to an ontology, is repeated throughout the

schema. Chado balances the strengths and weaknesses of this

generic schema approach using a system of layered compliance,

a novel approach to relational database typing. The different

layers can be seen as akin to a protocol stack in network

communication systems.
At the bottom is level-0 compliance, relational schema

compliance. As in standard RDBMS implementations, the

Chado relational schema defines table structures, foreign keys,

uniqueness and other constraints. An example of a constraint

enforced at the relational level is a constraint on feature

locations, which ensures that the start position of a feature

is less than the end position (fmin5fmax, see SQL).

The capabilities that are built into the DBMS require that all

data conform to some schema, and automatically enforces

such relational constraints, thus it is impossible to have a

Chado instance that is not compliant with some version of the

schema. However, it is still possible to talk of two versions

of the schema being non-compliant with respect to one another,

or to talk of one instance of Chado being level-0 backwards

compatible with respect to another.

The next level is level-1 compliance, based on ontologies.

This means that all values in the type identifier column in the

database refer to some subtypes of the official Chado base

types. For example, all sequence feature types must be kinds of

sequence features; there must be a path over the ‘is_a’ relation

from the feature type to the SO type ‘locatable_sequence_

feature’. Likewise, all sequence feature property type identifiers

must refer to a type that can trace an ‘is_a’ path back to the

type ‘feature_property’ in the OBO feature property ontology.
Because the standard relational model does not handle

subtyping, we call these extrarelational constraints. These

constraints can either be encoded in external software and

applied as part of a data validation check, or in the DBMS as

rules and automatically enforced. If the constraints are encoded

in external software such as middleware, then all applications

or tools, which are capable of modifying the database, must

interface the database through this middleware layer; and

this can be overly restrictive on software development.

Constraints encoded in the DBMS as rules can be enforced

via database triggers, and this is preferred for ensuring data

consistency, but it inflicts a data update performance penalty.

4 IMPLEMENTATION

Chado is implemented as an RDBMS, and as such, consists

primarily of a collection of table definitions, each of which

corresponds to a high-level category of entity. Above these

tables, Chado is logically partitioned into different modules,

each of which model distinct domains of the data. Modularity

(or encapsulation) is a fundamental principle in the design of

any large software or information system. It reduces complexity

and interdependencies, in contrast to a monolithic approach.

Whilst Chado modules are not completely autonomous, and

there are some intermodule dependencies, these are minimized.

Each module only ‘exposes’ a subset of its tables to other

modules. This modular system allows different local Chado

installations to plug in their own modules to extend the schema,

or to replace existing modules with their own customized ones.

Five ‘core’ modules are required by all Chado installations.

Beyond these core modules, only the subset of the modules that

are required for a project are installed; with the caveat that

due to the aforementioned interdependencies, sometimes use of

one module will entail the use of another. The five core modules

cover: general usage, such as database cross-references; pub-

lications and citations; auditing; controlled vocabularies

(ontologies); and sequence features. That biological sequence

features are core to any Chado implementation is a reflection of

the fact that in Chado, data is tethered to the genome similarly

to how it is organized in nature. As such, in Chado, sequence

features are similarly used for relating genetic, phenotypic and

functional data, and these five cross-cutting modules are

applicable to all biological domains.
The optional Chado modules cover a diverse range of

domains across molecular biology. There are modules in Chado

for comparative analysis, expression studies (both microarray

and in situ), mapping data, phylogenetics, genetics, clone

libraries, organism taxonomies, phenotypes and personal

address information.

Chado: an ontology-based modular schema

i339

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024



The central module is the sequence module, which models
biological sequence features. Sequence features include the

genetically encoded entities such as genes, gene products, exons,

regulatory regions and other heritable genomic entities.
Sequence features are central to the Chado model and are the

focus of this discussion; only when the Chado model of features

is understood can one move on to other kinds of data such as
expression and genetic data.

4.1 Core modules in Chado

4.1.1 General usage module The primary purpose of this
module is to provide data entities with stable, global, unique

identifiers, although it also contains other schema metadata

tables. In Chado, all identifiable data entities have tripartite
identifiers, consisting of a database name, an accession,

together with an optional version suffix. In most Chado

instances, the version is seldom used, so this is effectively
a bipartite identifier.

Each identifier is stored as a row in the dbxref table, together
with a column linking it to the database name, which is stored

in a separate table. A database name uniquely identifies the

authority responsible for a particular ID-space. Keeping
the database name in a separate table ensures that the schema

retains its commitment to normalization (so there cannot

be two distinct databases called ‘GO’ in any single Chado
instance). The accession (plus version) must be unique within

an ID-space (enforced by the schema). Thus there can be two

accessions ‘0008045’, but there can only be one data artefact
identified as ‘GO:0008045’. All stable identifiers are stored,

whether or not they refer to external entities. Chado does not

have an explicit notion of a data entity being external. Database
names may be associated with URIs for compatibility with

other identifier schemes (e.g. LSID, Clark et al., 2004). Entries

in other tables refer to entries in the dbxref table by means

of foreign keys.

4.1.2 Publication module Data provenance is of central

importance in any curated database. In Chado, the pub table,
in the module of the same name, handles provenance. The name

pub indicates the most common use for this table, publications.

However, the scope of this table is not limited to published
documents, in Chado terms, a publication is any attributable

source of data, including personal communications and

database analyses.

4.1.3 Audit module This module is autogenerated from the

database schema itself. For each table in the database, there is
a set of trigger functions which populate a single auditing

table, called ‘audit_chado’, such that when there is an update

or delete in the parent table, there is an insert of the unique

key for the old record into the audit table with a time stamp
and an identifier for the user who did the commit.

4.1.4 Ontologies and controlled vocabularies
module Ontology and controlled vocabularies are integral to

Chado, enabling the generic schema and subclassing, and hence
the CV (controlled vocabulary) module occupies a prominent

place in the schema. In Chado, each type is represented as

an entry in the cvterm table. The cvterm table is also used

for representing all types of relations. Links between types

are represented by entries in the cvterm_relationship table.

Types can have synonyms and definitions (specified using

both natural language and machine interpreted logical

definitions). The Chado schema CV module represents these

and related data.

4.2 Sequence feature module

The sequence module, more particularly the feature table in this

module, is central to Chado sequence data management. Chado

defines a feature as a region of a biological macromolecule

(i.e. a DNA, RNA or a polypeptide molecule) or an aggregate

of regions on this polymer. As the term is used here, ‘region’

can be the entire extent of the molecule, or a junction between

two bases. Features are typed according to the SO, may be

localized relative to other features, and may stand in certain

relations to other features.

4.2.1 Features and sequences In Chado, all genetically
encoded or transmitted entities, including genes, transcripts,

proteins, alleles and so on, are modeled as entries in the

feature table of the sequence module. Absolutely no distinction

is made between a feature entity and a sequence entity, they are

considered one and the same. Entries may optionally have

DNA or amino acid residue sequence attached, but attaching

residues is not mandatory because it is sometimes necessary to

create feature entries for entities whose sequence is currently

unknown (such as a gene that is identified only through

traditional genetic techniques, or a cDNA that has only been

partially sequenced). This is a crucial aspect of the Chado

design, and is in contrast to other schemas and common

bioinformatics formats, where features are inherently artifacts

with mandatory placement on some external sequence coordi-

nate system. It follows that, while a feature may or may not

have sequence, every sequence is a feature: it is impossible to

store a sequence in Chado except as a feature. This makes

Chado different from almost all other schemas used in

genomics, in that its design was chosen to reflect both the

biological reality and practical considerations—Chado does

not need to assign separate identifiers for sequence and feature

entries in the database.

4.2.2 Feature location Sequence features are typically
localized using a coordinate system. Chado uses a relative

localization model: all feature localizations must be relative

to another feature. Features (e.g. exon) hold a relationship to

a location, i.e. coordinates, which itself holds a relation

to a source feature (e.g. chromosome). Locations are stored

in the featureloc table.

A feature may have zero or more featurelocs, although it will

typically have either one (for features of which the location is

known) or zero (for unlocalized features such as chromosomes,

or for features for which the location is not yet known,

discovered using classical genetics techniques). Multiple

featurelocs are used to localize alignments. A featureloc is an

interval in interbase sequence coordinates (Fig. 1), bounded

by the fmin and fmax columns, respectively, representing the

lower and upper linear position of the boundary between bases

C.J.Mungall et al.

i340

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024



or base pairs, with directionality indicated by the strand

column.
Other non-sequence-oriented kinds of localization (such as

physical localization from in situ experiments, or genetic

localizations from linkage studies) are modeled outside the

sequence module, for example, in the expression or map

modules, but a discussion of these is beyond the purview of

this paper.
Interbase coordinates were chosen over the more commonly

used base-oriented coordinate system because they are more

naturally amenable to the standard arithmetic operations that

are typically performed upon sequence coordinates. This leads

to cleaner and more efficient database coding logic that is

arguably less prone to errors. Of course, interbase coordinates

are typically transformed into the more common base-oriented

system used by BLAST reports and henceforth prior to

presentation to the end-user. As mentioned earlier, the Chado

schema includes a constraint which ensures that fmin5¼ fmax

is always true–any attempt to set the database in a state which

violates this will flag an error.2

The featureloc table also holds the srcfeature_id, that is, the

foreign key referencing the feature that its coordinates are

relative to. There is nothing in the schema prohibiting

localization chains; for example, locating protein domains

relative to polypeptide(s) that in turn may be localized to their

respective transcripts, or locating an exon relative to a contig

that is itself localized relative to a chromosome (Fig. 2).

The majority of Chado database instances will not require this

flexibility; all features are typically located relative to chromo-

somes or chromosome scaffolds. Nevertheless, the ability to

store such localization networks or location graphs are

particularly useful for unfinished genomes or parts of genomes

such as heterochromatin (Hoskins et al., 2002), in which it

is desirable to locate features relative to stable contigs or

scaffolds, which are themselves localized to an unstable

assembly to chromosomes or chromosome arm scaffolds.
We will now present a short formal treatment of the

properties of these hierarchies of localization using graph

theory. This treatment can be ignored for the purposes of

understanding the basics of managing sequence data in the

Chado schema; the end-user of the database will be entirely

unaware of such technicalities. However, for the purposes of

software engineering and ensuring interoperability between

different Chado database instances and different applications,

formal treatments such as these are an essential requirement

for software specifications.

We define a featureloc graph (LG) as being a set of vertices

and edges, with each feature constituting a vertex, and each

featureloc constituting an edge going from the parent feature_id

vertex to the srcfeature_id vertex. The node is labeled with

column values from the feature table, and the edge is labeled

with column values from the featureloc table. The LG is not

allowed to contain cycles: it is a directed acyclic graph (DAG).

This includes self-cycles, as no feature may be localized relative

to itself.
The roots of the LG are the features that do not themselves

have an associated localization—frequently chromosomes

or chromosome arms, although LG roots may also be

unassembled contigs, scaffolds or features for which sequence

localization is not yet known. The leaves of the LG are any

features that are never present as a srcfeature_id in any

featureloc row, typically the bulk of features, such as exons,

matches and so on. The depth of a particular LG g, denoted

D(g), is the maximum number of edges between any leaf–root

pair. As has been previously noted, many Chado implementa-

tions will have LGs with a uniform depth of 1. Such LGs are

said to be simple and the features within them are said to be

singletons. The maximum depth of all LGs in a particular

database instance i is denoted LGDmax(i).

Fig. 1. Chado uses the interbase method to manage sequence length.

Counts begin at zero, and the space between two bases is what is

counted. In this example, the codon for Methionine begins at 0 and

ends at 3.

Fig. 2. Localization of features as represented in Chado. (a) visualiza-

tion of a gene located relative to a contig feature. The exons are

numbered and depicted in blue, the contig in green. Dotted lines show

the relative location of the start of exon2 as 1 kb along the contig, and

the end at 2 kb. (b) The same gene at a decreased zoom level. The contig

in caption is shown located 48 k upstream of the start of chromosome 2.

The thinner dotted lines show exon 2’s location projected onto chr2,

49 kb upstream of the origin. (c) An abstract representation of rows in

the Chado database, with features denoted using oval boxes and

featurelocs denoted using arrows. Exon2 is located directly with

respect to contig234, contig234 is located directly relative to chr2.

Exon2 is also indirectly located relative to chr2 using a featureloc

with locgroup set to 1.

2This constraint may be relaxed if the intent is to model circular
genomes such as those found in some bacteria.

Chado: an ontology-based modular schema

i341

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024



The schema does not constrain the maximum depth of
the LG. This flexibility proves useful when applying Chado
to the highly variable needs of different genome projects;

however, it can lead to efficiency problems when querying the
database. It can also make it more difficult to write software to
interoperate with the database, as the software must take

into account arbitrary LG depths.
We can solve this problem by collapsing the LG, i.e. a graph

of arbitrary depth is flattened to a depth of 1, by projecting
featurelocs at lower levels onto the root features. The original

featurelocs are left unaltered in the database, and redundant
inferred featurelocs between leaf and root features are added
to the database. In the featureloc table, inferred featurelocs

are differentiated from direct featurelocs using the locgroup

column. Direct (non-inferred) localizations are indicated by the
locgroup column taking value 0, and transitive localizations are

indicated by this column having value40. The benefit of being
able to collapse the localization of sequence features in inferred
locations is that it allows for concise feature location

implementations of any depth, while also making it possible
to represent locations in the flattened (depth¼ 1) format
commonly used in sequence visualization tools today.

Alignments and comparative features are typically localized
using pairs of featurelocs. Such features include hits and
high-scoring pairs (HSPs) coming from sequence search

programs such as BLAST, syntenic chromosomal regions and
sequence variations such as SNPs (single nucleotide poly-
morphisms). Such features have two featurelocs: one relative to

the query or variation feature, and one relative to the subject
(hit) or reference feature. We differentiate the two featurelocs

using the rank column. A rank of 0 indicates a location relative

to the query (as is the default for most features), and a rank of
1 indicates a location relative to the subject (hit) feature
(Fig. 3). For multiple alignments (e.g. CLUSTALW results,

see Higgins et al., 1994), this scheme is extended to unbounded
ranks [0 . . . n], with arbitrary ordering. Alignments and variant
sequences may be stored in the residue_info column. The

CIGAR format defined by the Ensembl project (Hubbard et al.,
2005) is used for pair-wise alignments. The feature_id, rank and
locgroup triple uniquely identify a featureloc for any particular

feature. This means that no feature can have more than one
featureloc with the same rank and locgroup.
The implementation of all sequence as features, including

those with and without known sequence, combined with the
featureloc table—which allows any feature to be localized with
respect to any other feature—provides a significant expressive

advantage over other biological sequence models (see Stajich
and Lapp, 2006 for an overview), such as GFF3 (Eilbeck and
Lewis, 2004), GenBank, BioSQL (http://www.biosql.org),

BioPerl (Stajich et al., 2002), etc. In Chado, a feature can be
localized to the most appropriate source feature. For instance,
the protein product of an intron-containing gene can be

localized directly as a single continuous location upon the
transcript that encodes it. In other models, the location of such
a protein can only be expressed as the discontinuous set of

genomic locations corresponding to the protein-coding regions
of the gene’s exons. Thus, the Chado location more closely
reflects the actual biological relationship between transcript

and protein, and simultaneously avoids having to manage

discontinuous locations for some features, which are prone to

ambiguity.

4.2.3 Relationships between features Besides relating

sequence features by their localization with respect to one

another, it is also desirable to capture relationships that are

not location based. For example, transcripts need to be related

to the gene feature they are part of, likewise exon features

need to be related to the transcripts they are part of, and a

particular polypeptide may stand in a derives_from relationship

to a particular mRNA molecule. The collection of such

relationship links is represented in Chado using the feature_

relationship table, and is known as the feature graph (FG).

‘Subject’ and ‘Object’ describes the linguistic role the two

features play in a sentence describing the feature_relationship.

In English, many sentences follow a subject, predicate, object

word order. To say ‘exons are part_of transcripts’ is the correct

way to describe a typical biological relationship. To say

‘transcripts are part_of exons’ is either grammatically or

biologically incorrect.
Since the types of feature relations may be as varied as the

features, ontologies are used for typing these relations in

feature_relationship. In the case of sequence features, feature_

relationship types are provided by either SO (Eilbeck et al.,

2005) or the OBO relationship ontology, OBO-REL

(Smith et al., 2005).

Some example feature graphs (FGs) are shown (Fig. 4).

The FG is independent of the LG, and in general the FG

and the LG should have no edges in common. If there is

Fig. 3. This shows the main tables in the Chado sequence module.

Some tables and columns have been omitted to make the diagram

more concise.

C.J.Mungall et al.

i342

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024

http://www.biosql.org


a featureloc connecting two features, then the addition of a

feature_relationship between these same two features is

redundant. The FG is required to query the database for

things such as alternately spliced genes, exons shared between

transcripts, etc.
Although the Chado schema admits any FG, certain

configurations are biologically meaningless, and should not

be used. Unlike the LG, the FG may be cyclic, although cycles

in the FG are not common. The subset of the FG correspond-

ing to certain kinds of relationship may be acyclic, for example,

the subset of the FG connecting parts with wholes via part_of

must be acyclic.

4.2.4 Extensible feature properties The feature table has

a very limited set of columns for recording feature attributes

or properties. It was deliberately decided not to add columns

such as ‘anticodon’ to the feature table, since, considering the

many different types of features being stored, and the many

attributes which may or may not be associated with each of

those feature types, the number of columns in the table was

liable to become very large and difficult to manage, with many

columns being null for most features (for example, ‘anticodon’

does not apply to non-tRNA features).

Chado uses a single table named featureprop to store

attributes or properties of any given feature. For sequence

features, the sequence feature property ontology (see the

sequence_attribute branch at http://www.sequenceontology.

org/miSO/index.html) is typically used for setting property

types, similarly to how it is used to handle feature_relationship

types. This use of a controlled vocabulary instead of

explicit table columns allows new properties to be added

easily and without any disruption to the schema or any

software that uses the schema. Provenance of each attribute

is attached through the featureprop_pub linking table, which

may identify the person who curated this feature, the sequence

analysis program that predicted it or the publication in which

it was first described.

4.2.5 Feature synonyms Features can have multiple names

and synonyms. This is modeled in Chado with the synonym

table, which links to features via the feature_synonym linking

table. All feature_synonym links have an is_current Boolean

attribute, which distinguishes between names in current usage

and alternate or obsolete names. Depending on the experi-

mental history of a feature, multiple features can potentially

share a common synonym, and a single feature can have

multiple synonyms. The provenance of a particular synonym

is indicated using the pub_id foreign key, which references

the pub table.

4.2.6 Feature annotations Detailed annotations of features,
by associating features with types from the gene ontology

(GO, Ashburner et al., 2000) or the cell ontology (Bard et al.,

2005), can be accomplished using the feature_cvterm linking

table. Multiple ontology terms may be associated with each

feature, and terms from multiple ontologies may also be

associated with each feature. Provenance data can be attached

with the feature_cvtermprop and feature_cvterm_dbxref higher-

order linking tables.

It is up to the curation policy of each individual Chado

database instance to decide which kinds of features will be

linked to ontology and other controlled vocabulary terms using

feature_cvterm. Some may link terms to gene features, others to

the distinct gene products (processed RNAs and polypeptides)

linked to the gene features.

4.3 The Chado SQL API

Chado has a library of SQL functions for performing useful

operations on biological data. The function library is organized

by the corresponding parent schema module. Some functions

include:

� Range operations on features and featurelocs; for example

� Intersection

� Overlap

� Containment

� Range difference

� Projection (not yet implemented)

� Operations on biological sequences; for example

� DNA reverse complementation

� DNA to amino acid translation

Fig. 4. A Chado central dogma feature graph for a protein-coding gene

with two splice forms. (a) Glyph-based visualization. Boxes show exons,

connecting lines show introns. UTRs shown in blue, CDS regions in

red. (b) Feature graph depiction of rows in a Chado database:

oval boxes denote features, and lines denote feature_relationships.

Features are of type exon, mRNA, gene and protein. Feature_

relationships are of type part_of, and green lines between protein and

mRNA represent derives_from relations. Exons 2 and 4 are shared

between both splice forms. Note that the feature graph conveys

topological and temporal information, not, for example, linear order

of exons (i.e. the exon numbers do not denote order).

Chado: an ontology-based modular schema

i343

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024

http://www.sequenceontology


� Splicing features together, such as exons in a transcript

� Graph operations on ontologies; for example, dynamic

transitive closure of relations

� Operations on phylogenetic trees; for example

� Calculating height and depth of any node in a tree

� Testing for monophyleticity

� Curation dataflow operations; for example

� Providing new dbxref identifiers using standard rules

� Splitting and merging of features

All of these functions could be encoded in application

software or the middleware, and in many cases they will be.

However, there is tremendous benefit to also providing these

functions within the DBMS, since they can then be incorpo-

rated into SQL queries, increasing the power and efficiency of

the query language.
Each function has an interface definition, which is DBMS

independent, and DBMS specific implementations. Currently,

the only implementations are for the PostgreSQL specific

PL/PgSQL language. However, most could be converted to

standard SQL99 syntax fairly easily, and thus implemented

in other DBMSs such as DB2 and Oracle.
In the PostgreSQL implementations, we have used DBMS

specific data types to extend standard SQL, in order to provide

faster operations on such things as range operations (http://

www.iscb.org/ismb2003/posters/hlappATgnf.org_326.html)

These implementation details are hidden from the software

that calls the functions, except in so far as to make them

function faster.

4.4 Software interoperation and bridge layers

Chado sequence features have been incorporated into current

versions of a number of software applications, for example:

Apollo (Lewis et al., 2002), Gbrowse (Stein et al., 2002) and

CGL (Yandell et al., 2006). As previously noted, Chado’s use of

the feature table to store all features, no matter what the type,

is useful for reducing schema changes. However, it can have the

detrimental effect of introducing an extra layer of abstraction,

complicating simple queries. For examples, a query to

determine how many genes there are in the database requires

a join and constraint on the name column in the cvterm table.

The views, or bridge layers, are our solution to this problem.

4.4.1 DBMS views All major DBMSs allow the defining of
database views; a view is a kind of virtual table, defined in

terms of tables or other views. Views are used to present

a simplified means of querying the database; this is particularly

useful for helping users3 to form queries. For the purposes

of querying the database, views act just like tables; the DBMS

will transparently rewrite any query that references a view into

one using the corresponding tables. Views can also be used

to write into the database, but this requires the coding of trigger

functions particular to each view.
Views can also be used as an insulation layer, buffering

applications from changes in the schema. Schema evolution

has the potential to incur high software development costs,

as changes in the database can percolate into multiple

applications or middleware code. If the schema is modified

(in a non-backwards compatible way), views can in effect

emulate previous versions of the schema.

Views can also be used to define a common ‘export schema’

to allow applications to interoperate with multiple different

schemas. This can also be done to support application

development, in cases where a simplified version of a complex

schema can be presented via a view layer to certain applica-

tions. In a similar vein, views can be used to make one schema

appear to be another schema, we call this a bridge or

compatibility layer.

The collective name for both tables and views is a relation.4

Chado is a relational schema, and as such is a collection of

definitions of relations. These definitions are supplied

as table definitions as a matter of convenience, but there is

no reason why any of these tables should not be swapped

out for an equivalent view (with the provision that the

appropriate trigger functions are created if the database is to

be updated). This may occasionally be desirable for perfor-

mance reasons.

Views can also be turned into tables, which can then be

indexed for efficiency. This is known as view materialization.

Materialized views are most useful in situations where data

is read frequently and modified rarely or never, such as a

report/warehouse instance of a database.
Views are indispensable for both querying and developing

interoperable software for complex relational databases such as

Chado, where the high degree of abstraction and normalization

makes this more difficult. In Chado, the views are organized by

module. Name clashes between core Chado tables and views

are avoided by placing the views in different tablespaces (also

referred as schemas in the context of the PostgreSQL DBMS).

4.4.2 Chado bridge layers SOFA is a stable subset of the
entire SO; releases are made on a yearly basis. The SOFA layer

provides a view (or table) for every type in the SOFA ontology.

This stability means that software coded to the SOFA layer

will be less prone to the negative effects of schema evolution.

The SOFA layer is generated automatically and a default layer

is provided. Chado database administrators can choose to

regenerate this layer as a materialized view (table) layer if

desired.

Bridge layers are also available for the GO database (Harris

et al., 2004), which is a resource made available by the GO

Consortium, and a core part of the GO DB is a set of tables for

modeling ontologies, with many similarities to the Chado CV

module. These similarities make it relatively straightforward to

define a collection of views over a Chado database which allow

it to function with software developed for the GO Database,

including software developed by the GO Consortium such as

3In this context, ‘users’ refers to advanced users interested in data
mining, as well as programmers writing report software, as opposed to
bench biologist end-users.

4Not to be confused with the sense of how this word is used in
ontologies.

C.J.Mungall et al.

i344

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024

http://


the AmiGO ontology browser (see http://www.godatabase.org/

cgi-bin/amigo/go.cgi).

4.5 Reuse and the GMOD project

The task of effectively managing genome-scale biological data

is an enormous software engineering challenge. Given finite

resources, it would appear wise to share software components

as much as possible. This was the driving force behind the

creation of the GMOD project. Supported by several of the

major model organism projects, who have contributed funding,

software and developers, the GMOD project has become a

major organizational force in the development of software by

model organism projects around the world. GMOD required

that its adopted schema be adaptable, in order to be quickly

altered when new types of data or relations are demanded to

faithfully represent the science; that it have a suitably flexible

model, that can represent only those data that are germane to

a particular research area; that it must mirror the precision

of the experimental data, and therefore the representations

should support a varied range of classification precision; that it

must offer effective and reliable query and inference support;

that it must be interoperable with other software; and finally

that it must reduce maintenance costs. GMOD now employs

Chado as its common database schema.

5 DISCUSSION

Chado is a highly generic, flexible schema. This allows a

uniform schema to be used by different projects covering

a variety of genomes, without having to anticipate in minute

detail the individual requirements of each of these projects.

It also provides a large amount of future-proofing of the

schema in the face of changes in both our understanding of

biology and changes in the experiments and processes related

to biological discovery. Without this flexibility, the schema

would be in a constant state of migration, incurring large costs

on developers and users. In addition, the schema would most

likely bifurcate whenever different software developers have

cause to modify it to suit their individual projects’ needs.
We note that such flexibility in a schema is not without its

own costs. The most significant hurdle in adopting Chado is

establishing best practices for implementation in a schema that

is so flexible. Without constraints, different groups are liable to

model similar kinds of data in different ways. For example,

in FG typing and topology there are many choices to make

when representing a gene model: should intron and UTR

features be manifested (i.e. exist as actual rows in the feature

table) or left implicit (i.e. be derived by software as needed)?

Which SO type should be used to represent the translational

product of an mRNA: CDS or polypeptide? In both cases the

choices are logically valid, but software that is not aware of the

practical equivalence of these two types will not work equally

well across these different schema instantiations. Without clear

understanding and guidelines for implementing data in Chado

using current ontologies, it will be difficult, if not impossible,

to continue to develop interoperable application software of

any kind of complexity. Whilst the use of ontology within the

schema is of great benefit, there is still a significant task facing

application developers, who must grasp the fundamentals of the
structure and logic of ontologies if they are to achieve
interoperability.

Chado’s flexible schema is less generic than the RDF model
(Brickley and Guha, 2000), although the two are comparable as
can be seen in the ‘subject–predicate-object’ triple pattern

employed in Chado. However, there are also differences
between the systems, as can be seen by the fact that Chado
triples often take additional arguments (such as, for example,
in the case of ordering exons in a spliceform) in contrast to the

strict 3-ary pattern in RDF. However, it is our intention to be
compatible and reuse technology as appropriate so we continue
to pay attention to the evolution of RDF and attendant

technology.
Future plans for Chado include the creation of new modules

and refinement of existing modules for other domains, such as

genotype–environment–phenotype associations. This will also
require the development of ontologies for these domains.
We also intend to do more work a benchmarking suite that will

allow us to target areas in which we can make the query
response times faster.
In summary, Chado uses a novel method of constraining the

variety of representations whilst retaining useful flexibility,
through the use of ontologies and layered compliance levels.
Chado has successfully answered our initial question, whether

we could create a relational database schema that could and
would be reused, as attested by the number of groups that have
adopted Chado for production systems. Besides FlyBase,

these groups include: The Institute for Genomic Research;
BeetleBase (Wang et al., 2007); SpBase at the California
Institute of Technology for Sea Urchins; DictyBase at

Northwestern University; GeneDB at the Sanger Institute for
pathogens (e.g. Trypanosoma brucei, Leishmania major,
Plasmodium falciparum, Staphylococcus aureus, Salmonella

typhi, Schizosaccharomyces pombe and scores more); Sol
Genomics Network at Cornell University for Solanaceae
(tomatoes, etc.); University of Utah, Sanchez Laboratory,

for Schmidtea mediterranea (planaria); Xenopus genome data-
base at the University of Calgary; the Paramecium database at
the Centre National de la Recherche Scientifique, (Arnaiz

et al., 2007); Princeton University MicroArray database
and the Saccharomyces Genome Database-Lite; the National
Evolutionary Synthesis Center for Heliconius (butterfly); the

Daphnia Water Flea Genome Database Indiana University;
VectorBase for A. gambiae at Notre Dame University; the
University of Wisconsin at the Wicell Research Institute;

Infobiogen in France; and at the University of California Los
Angeles both the Patricia Johnson Laboratory, for studies of
Trichomonas vaginalis and the Stan Nelson Laboratory for

studies in human genetics using microarrays. While our
technical solution is not a panacea for the challenge of
accurately reflecting biological knowledge in a computable

format, it is a step in the right direction. By leveraging the
representation of biology encoded in ontologies, the physical
representation (in the schema) is more adaptable and flexible,

and thus reduces maintenance costs; at the same time the
ontologies can be used to support varied precision in
classification, more effective query and inference support,

and support interoperability with other software.

Chado: an ontology-based modular schema

i345

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024

http://www.godatabase.org/


ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support and advice

from all of our colleagues in the FlyBase Consortium, whose
expertise and initiative led to Chado’s development. We also
gratefully acknowledge the input from everyone in the

GMOD Consortium, especially Scott Cain, Brian Osborne
and Guanming Wu for carrying this work forward for
implementation by other database groups. FlyBase is supported
by a grant from the Public Health Services (NIH grant 5P41

HG000739, through the National Human Genome Research
Institute, W. Gelbart, PI) with additional support for Chado
development from the HHMI (G. Rubin, PI). Finally, we are

extremely appreciative to Chado’s users whose feedback and
support continues to improve Chado and its associated
software.

FlyBase consortium contributions Current and former FlyBase
Consortium members making notable contributions to this
project are William M. Gelbart, Aubrey de Grey, Stan

Letovsky, Suzanna E. Lewis, Gerald M. Rubin, ShengQiang
Shu, Colin Wiel, Peili Zhang and Pinglei Zhou.

Conflict of Interest: none declared.

REFERENCES

Arnaiz,O et al. (2007) ParameciumDB: a community resource that integrates

the Paramecium tetraurelia genome sequence with genetic data. Nucleic Acids

Res., 35, D439–D444Epub.

Ashburner,M et al. (2000) Gene ontology: tool for the unification of biology.

The gene ontology consortium. Nat. Genet., 25, 25–29.

Bard,J et al. (2005) An ontology for cell types. Genome Biol., 6, R21.

Beadle,G.W. and Tatum,E.L. (1941) Genetic control of biochemical reactions in

neurospora. Proc. Natl Acad. Sci., 27, 499–506.

Brickley,D. and Guha,RV. (2000) Resource description framework (RDF)

schema specification 1.0, W3C Candidate Recommendation.

Clark,T. et al. (2004) Globally distributed object identification for biological

knowledgebases. Brief Bioinform., 5, 59–70.

Durbin,R. and Theirry-Mieg,J. (1994) ACeDB. Computational Methods in

Genome Research. Plenum, New York.

Eilbeck,K. and Lewis,S. (2004) Sequence ontology annotation guide.

Comp. Funct. Genomics, 5, 642–647.

Eilbeck,K. et al. (2005) The sequence ontology: a tool for the unification of

genome annotations. Genome Biol., 6, R44.

Harris,MA. et al. (2004) The Gene Ontology (GO) database and informatics

resource. Nucleic Acids Res., 32, D258–D261.

Higgins,D. et al. (1994) CLUSTALW: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, position-specific

gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Hoskins,RA. et al. (2002) Heterochromatic sequences in a Drosophila whole-

genome shotgun assembly. Genome Biol., 3, RESEARCH0085.

Hu,J. et al. (2001) The ARKdb: genome databases for farmed and other animals.

Nucleic Acids Res., 29, 106–110.

Hubbard,T. et al. (2005) Ensembl. Nucleic Acids Res., 33, D447–D453.

Lewis,SE. et al. (2002) Apollo: a sequence annotation editor. Genome Biol., 3,

RESEARCH0082.

Morgan,TH. (1907) The cause of gynandromorphism in insects. Am. Nat., 41,

715–718.

Mungall,CJ. et al. (2002) An integrated computational pipeline and

database to support whole-genome sequence annotation. Genome Biol.,

3RESEARCH0081.

Smith,B. et al. (2005) Relations in biomedical ontologies. Genome Biol., 6, R46.

Stajich,JE. et al. (2002) The Bioperl toolkit: Perl modules for the life sciences.

Genome Res., 12, 1611–1618.

Stajich,JE. and Lapp,H. (2006) Open source tools and toolkits for bioinformatics:

significance, and where are we? Brief Bioinform., 7, 287–296.

Stein,LD. et al. (2002) The generic genome browser: a building block for a model

organism system database. Genome Res., 12, 1599–1610.

Wang,L. et al. (2007) BeetleBase: the model organism database for Tribolium

castaneum. Nucleic Acids Res., 35, D476–D479.

Yandell,M. et al. (2006) Large-scale trends in the evolution of gene structures

within 11 animal genomes. PLoS Comput. Biol., 2.

C.J.Mungall et al.

i346

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/13/i337/229507 by guest on 09 April 2024


