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ABSTRACT

Motivation: Studies of gene expression quantitative trait loci (eQTL)

in different organisms have shown the existence of eQTL hot spots:

each being a small segment of DNA sequence that harbors the eQTL

of a large number of genes. Two questions of great interest about

eQTL hot spots arise: (1) which gene within the hot spot is

responsible for the linkages, i.e. which gene is the quantitative trait

gene (QTG)? (2) How does a QTG affect the expression levels of

many genes linked to it? Answers to the first question can be offered

by available biological evidence or by statistical methods.

The second question is harder to address. One simple situation is

that the QTG encodes a transcription factor (TF), which regulates

the expression of genes linked to it. However, previous results have

shown that TFs are not overrepresented in the eQTL hot spots.

In this article, we consider the scenario that the propagation of

genetic perturbation from a QTG to other linked genes is mediated

by the TF activity. We develop a procedure to detect the eQTL

modules (eQTL hot spots together with linked genes) that

are compatible with this scenario.

Results: We first detect 27 eQTL modules from a yeast eQTL

data, and estimate TF activity profiles using the method of Yu and Li

(2005). Then likelihood ratio tests (LRTs) are conducted to find

760 relationships supporting the scenario of TF activity mediation:

(DNA polymorphism! cis-linked gene! TF activity! downstream

linked gene). They are organized into 4 eQTL modules: an amino

acid synthesis module featuring a cis-linked gene LEU2 and

the mediating TF Leu3; a pheromone response module featuring

a cis-linked gene GPA1 and the mediating TF Ste12; an energy-

source control module featuring two cis-linked genes, GSY2 and

HAP1, and the mediating TF Hap1; a mitotic exit module featuring

four cis-linked genes, AMN1, CSH1, DEM1 and TOS1, and the

mediating TF complex Ace2/Swi5. Gene Ontology is utilized to

reveal interesting functional groups of the downstream genes in

each module.

Availability: Our methods are implemented in an R package: eqtl.TF,

which includes source codes and relevant data. It can be freely

downloaded at http://www.stat.ucla.edu/�sunwei/software.htm

Abbreviations: eQTL (expression Quantitative Trait Loci); TF

(Transcription Factor); QTG (Quantitative Trait Gene); SNP (Single

Nucleotide Polymorphism); FDR (False Discovery Rate); SGD

(Saccharomyces Genome Database); LRT (Likelihood Ratio Test).

Contact: kcli@stat.ucla.edu

Supplementary information: http://www.stat.ucla.edu/�sunwei/

yeast_eQTL_TF/supplementary.pdf

1 INTRODUCTION

The eQTL studies have been applied in several model

organisms and human recently (Brem et al., 2002; Chesler
et al., 2005; Morley et al., 2004; Petretto et al., 2006;

Schadt et al., 2003; Stranger et al, 2005; Wang et al., 2006).

These works have shown that gene expression level is

inheritable. A gene expression profile can be cis-linked to
a local eQTL around the gene itself or trans-linked to a

distant eQTL. Several genes’ expression profiles can be linked

to a small region, which is commonly referred to as an eQTL

hot spot. A hot spot and the genes linked to it will be called an
eQTL module hereafter. eQTL modules are the building blocks

in constructing the gene expression linkage network.
While many eQTL modules can be detected statistically,

(Bing and Hoeschele, 2005; Kulp and Jagalur, 2006)

the molecular mechanism of associating the DNA polymorph-

ism in the eQTL hot spot to the cis- or trans-linked genes is
still poorly understood (Rockman and Kruglyak, 2006).

One fundamental question concerns what roles the transcrip-

tion factors (TFs) are playing. Yvert et al. (2003) showed that

there is no TF enrichment in eQTL hot spots, thus eQTL
module regulation must involve genes other than TFs.

The following is a likely scenario, which we shall focus on.

It highlights the importance of the TFs’ activities.

(1) One or more cis-linked genes in module A are affected

by the DNA polymorphism in the corresponding eQTL

hot spot.

(2) Either these genes encode TFs; or their gene products

interact with the activities of some TFs at the protein
level.

(3) The affected TFs control the expression of their target

genes.

(4) Therefore, some of the target genes are linked to

module A.

Which modules may follow this scenario? We set out to identify

such modules in a yeast eQTL data (Brem et al., 2005a, b) using*To whom correspondence should be addressed.
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a computational approach sketched in Figure 1. In addition to

the eQTL data, we also employ TF-binding data in order

to estimate TF activity. As many authors have reported,

transcription level of a TF may not be a good indicator of its

protein activity (Rustici et al., 2005; Vleugel et al., 2004)

for reasons, such as post-translation modification, protein

translocation and so on. Although the TF activity profile is

difficult to measure directly, it can be estimated from gene

expression profiles in combination with genome-wide

TF-binding data (Liao et al., 2003), or in combination with

genome-wide TF-binding data and the known TF-TG (target

gene) relationships from literature (Yu and Li, 2005).

We estimate TF activity profile with the method of Yu and

Li (2005). After that, we formulate the proposed TF activity

mediation scenario into a statistical model and conduct

likelihood ratio tests (LRTs) (Vuong, 1989) to compare

this model with two other models representing the contrasting

situations.

2 METHODS

2.1 Detect eQTL module

Before detecting eQTL modules, we need to identify significant

and non-redundant linkages. Significant linkages are identified

according to false discovery rate (FDR), which is calculated based

on permutations (Brem et al., 2002). Because of linkage disequilibrium,

profiles of neighboring markers tend to have high correlations. Thus

if one gene is linked to one marker, it may also be linked to the adjacent

markers. Such redundant linkages need to be eliminated before

proceeding with further analysis. One simple solution for eQTL

data from a cross of inbred experimental organism is to keep

the most significant linkage for each gene expression trait in each

chromosome and discard others (Wang et al., 2006). In the next step,

we select the enriched markers, to which more genes are linked than

expected by chance. Then, the eQTL hot spots can be detected using

a marker merging procedure shown in Supplementary Figure 1a.

The basic idea is to initiate a hot spot from an enriched marker M and

to extend it iteratively. During the extension, we ask whether

an adjacent marker Mk belongs to this hot spot or not. To answer

this question, for each gene G that is linked to marker Mk, we carry

out an LRT (Vuong, 1989) to see if the hypothesis H0 holds or

not where the statement ofH0 conveys the situation that, as a candidate

marker for mapping the expression of gene G, Mk is as good as

M statistically. If H0 cannot be rejected for a majority of the genes

linked to Mk, we merge Mk to this linkage hot spot. Details of LRT

and the simulation (including power analysis) used to choose

the decision boundary are described in Supplementary Materials. We

also compare the eQTL hot spots identified from the yeast eQTL

data by our approach and those identified by the method of

Brem et al. (2002) and Schadt et al. (2003) using a fixed bin size for

all the hot spots (Supplementary Table 3).

2.2 Estimate TF activity

Since the unobserved TF activity level in general differs from

its expression level, we employ a two-stage constrained space

factor analysis (Yu and Li, 2005) to estimate TF activity. Three sets

of input data are required: a set of high confidence TF-TG (target gene)

relationship data, a set of low confidence TF-TG relationship data

and the set of gene expression data of main interest. In this article,

we use the same TF-TG relationship data as Yu and Li (2005): the high

confidence TF-TG relationship data comes from the literature

and the low confidence data comes from the genome-wide TF-binding

study (Harbison et al., 2004). The gene expression dataset comes

from 112 yeast segregants (Brem et al., 2005a, b). If two or more TFs

work together as a complex, e.g. Hap2/Hap3/Hap4/Hap5, we generate

the activity profile for the complex instead of each individual TF.

2.3 Scenario modeling and identification

Given an eQTL module, use GC to denote the expression level of

one cis-linked gene, M to denote the genotype of the marker where GC

is cis-linked, GT to denote the expression level of any gene in

the module other than GC and TA to denote a TF’s activity. We

consider three models that describe their relationships. The first one,

causal model, represents the proposed scenario for eQTL-module

regulation, while the other two are the competitive models with

equal model complexity, namely having the same number of model

parameters as the causal model:

� causal model: (M ! GC) ! TA ! GT

� reactive model: (M ! GC) ! GT ! TA

� conditional independence model: GT  (M ! GC) ! TA

where (M ! GC) represents the genetic perturbation. No arrow

points to (M! GC) because protein activity or gene expression cannot

change DNA sequence, and the expression of cis-linked genes

are tightly controlled by the DNA variation (Schadt et al., 2005; Zhu

et al., 2004). Here, each model corresponds to a conditionally

independent restriction: GT is independent of (M ! GC) given

TA for causal model; TA is independent of (M ! GC) given GT for

reactive model; TA is independent of GT given (M ! GC) for

conditional independence model. Due to the different conditionally

independent restrictions, likelihoods of different models have different

decompositions. Thus, we can compare different models by their

likelihoods. For the purpose of likelihood comparison, we can replace

M ! GC with GC since it appears in all the three models. Then the

three models to be compared are:

� causal model: GC ! TA ! GT

eQTL module = eQTL hot spot +
genes linked to the hot spot Activity profiles of TFs

eQTL  data TF binding data
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Fig. 1. A strategy of detecting the eQTL modules that are mediated by

TF activities.
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� reactive model: GC ! GT ! TA

� conditional independence model: GT  GC ! TA

An arrow in these models indicates only the direction of the relation.

There could be potential intermediate players in these models.

For example, there can be a hidden signal transduction gene

G1 lying between GC and TA : GC! G1! TA! GT. We model the

pairwise relation between GC, TA and GT by simple linear regression:

TA ¼ �0 þ �1GCþ "1; �TAjGC ¼ f�0; �1; �1g

GT ¼ �0 þ �1GCþ "2; �GTjGC ¼ f�0; �1; �2g

TA ¼ �0 þ �1GTþ "3; �TAjGT ¼ f�0; �1; �3g

GT ¼ �0 þ �1TAþ "4; �GTjTA ¼ f�0; �1; �4g

where "k � Nð0; �2
kÞ, (k¼ 1,2,3,4), and �:j: are unknown model para-

meters. The third and the fourth linear models describe the same

bivariate distribution by exchanging the input and output variables. It

is easy to write down the conditional densities for each linear model.

For example,

lðTAtjGCtÞ ¼
1ffiffiffiffiffiffi
2�
p

�1
exp �

ðTAt � �0 � �1GCtÞ
2

2� 2
1

� �
;

where t is sample index. From these conditional densities, the

likelihood functions for the proposed TF regulation scenario and

the two competitive models can be obtained easily, see Table 1.

The LRTs for non-nested models (Vuong, 1989) are conducted

to identify the model that is significantly better than the other two

models. If the result of LRT is insignificant, the corresponding

triplet (GC, TF, GT) is labeled as an in-differential case.

3 RESULT

We apply our method to a yeast eQTL dataset of 112 yeast

segregants generated from a cross of two inbred strains: BY

and RM (Brem et al., 2005a, b). The dataset includs expression

profiles of 6229 gene expression traits and genotype profiles

of 2956 SNP markers. We use student’s t-test to quantify

the significance of linkages. The cutoff P-value 4e�5 is chosen

according to FDR 5%. Redundant linkages are removed

as described in Method section. We end up with a total of

3162 linkages, which associate 2674 gene expression traits with

838 markers. Supplementary Figure 3 shows the number of

genes linked to each marker.
The specific locations and sizes of eQTL hot spots are

detected using the procedures described in Method section.

Each linkage hot spot is initiated from an enriched maker,

to which more than seven genes are linked. This cutoff

value 7 is the 95% of binomial distribution with n ¼ 3162

and p ¼ 1/838. Altogether 27 eQTL hot spots/modules are

obtained (Table 2). Table 2 also lists the cis-linked genes for

each eQTL module. We define a linkage as cis-linkage if the

corresponding marker is located within 10 kb distance of

the gene, the same definition used by Brem et al. (2002). The

lengths of the 27 eQTL hot spots vary from 1 base pair

(only one marker in the eQTL module) to 73 kb with a median

of �20 kb (Supplementary Fig. 4). Figure 2 shows the

eQTL modules detected in chromosome 2. The genes within

each eQTL module can be found in the R package: eqtl.TF.

After detecting the eQTL modules, we want to identify

the potential TFs responsible for the module regulation.

We first use the TF-binding data (Harbison et al., 2004) to

decide whether a TF binds to a gene or not (setting TF-binding

P-value cutoff to 10�3, the one used by Harbison et al.).

Then for each eQTL module, we identify the TFs that bind

more genes in the module than expected by chance.

The degree of enrichment is quantified by hypergeometric

distribution with P-value cutoff 0.01 (Table 3). We

further quantify the relevance of a selected TF to an eQTL

module by checking the correlation between the binding

strength BS (�log(binding P-value)) and the linkage strength

LS (�log(linkage P-value1)) for all the genes of the eQTL

Table 1. Likelihoods of the three models

Model Likelihood

Causal Lc¼�t l(TAt|GCt) l(GTt|TAt)

Reactive Lr¼�t l(GTt|GCt) l(TAt|GTt)

Conditional independence Li¼�t l(TAt|GCt) l(GTt|GCt)

One common term, l(GCt) is skipped in the three likelihoods.

Table 2. eQTL modules

ID Module symbol N Cis-linked genes

1 chr2_mod1 267 AMN1, ARA1, CNS1, CSH1, DEM1,

TBS1, TOS1, YBR141C

2 chr2_mod2 67 ECM2, GIP1, NRG2, TAT1, TIP1,

UBP14, YBR064W

3 chr2_mod3 19 N/A

4 chr3_mod1 92 FRM2

5 chr3_mod2 46 MATALPHA1, MATALPHA2, TAF2,

YCR041W

6 chr3_mod3 75 LEU2

7 chr3_mod4 22 N/A

8 chr3_mod5 12 GLK1, RNQ1

9 chr4_mod1 29 N/A

10 chr4_mod2 25 YDR539W, YDR541C, YRF1-1

11 chr5_mod1 36 YER119C-A

12 chr5_mod2 36 GEA2, NPP2, URA3

13 chr5_mod3 12 UBP5, YER139C, YER140W

14 chr5_mod4 13 N/A

15 chr7_mod1 21 N/A

16 chr8_mod1 82 HSE1, YHL010C

17 chr8_mod2 40 GPA1, LAG1

18 chr12_mod1 134 GSY2, HAP1

19 chr12_mod2 47 YLR455W, YLR462W

20 chr12_mod3 10 NEJ1

21 chr13_mod1 36 N/A

22 chr13_mod2 30 MDM1

23 chr14_mod1 353 RHO2, TOP2, YNL089C, YPT53

24 chr14_mod2 132 AQR1, LAT1

25 chr14_mod3 8 POR1, YNL058C

26 chr15_mod1 277 ATG19, HAL9, PHM7, YOL087C

27 chr15_mod2 43 CAT5, YOR131C

N is the number of genes within the eQTL module.

1Each gene only has only one linkage P-value describing the linkage
strength into one hot spot since we have removed the redundant
linkages.
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module (Table 3). Specifically, we fit a linear model

LS ¼ �þ �BSþ "ð" � Nð0; �2
" ÞÞ, and use the P-value of

the regression coefficient � (at the 0.01 level) to trim out the

weakly-related TFs. Table 3 shows the selected TF candidates

for further analysis.
Taking the intersection of Tables 2 and 3, we find seven

modules with both cis-linked genes and TF candidates:

chr2_mod1, chr3_mod2, chr3_mod3, chr5_mod1, chr8_mod2,

chr12_mod1 and chr12_mod2. The activity profiles of 97 TFs

are estimated (including 10 complexes; see Method section).

The information of these TFs together with their (estimated)

activity profiles can be found in the R package: eqtl.TF.
For these seven modules, we test the significance of causal
relation for each triplet {GC, TA, GT}, where GC is the

expression profile of a cis-linked gene, TA is the activity profile
of a TF and GT is the expression profile of any gene

in the module other than GC. In total, we find 760 causal
relationships that support the TF activity mediation scenario

(Table 4). Here one model is called significantly better than
the other two models if the LRT P-values are smaller than 0.01.
The four modules harboring the detected high confidence

causal relationships are discussed next. The complete result
is listed in Supplementary Table 4. If we change the LRT

P-value cutoff to 0.05, more causal relationships can be
detected, but they are still within the same four modules
(Supplementary Table 5).

Leu3 mediates causal relations in amino acids synthesis
module, chr3_mod3. Among the 75 genes of this module,

only LEU2 is cis-linked. LEU2 encodes beta-isopropylmalate
dehydrogenase, the enzyme that catalyzes the third step
in leucine biosynthesis (Andreadis et al., 1984). According

to Table 3, the enriched TF related to this module is Leu3,
which regulates the transcription of genes involved in

branched-chain amino acid synthesis (Friden and Schimmel,
1988). There are 49 significant causal relationships, one
significant conditional independence relationship, and no

significant reactive relationship in this module (Table 4).
We conduct a Gene Ontology (GO) (Ashburner et al., 2000)

analysis for the detected 49 downstream genes, using the

GO term finder in SGD (Hong et al., 2007). The most
significantly enriched terms is ‘amino acid biosynthesis’

(10 out of 49 genes, P-value 3.3E�7)2. In contrast,

Table 3. TFs related with each eQTL module

Module symbol TF q m n k p cor p_cor

chr2_mod1 Swi5 15 120 6023 266 1.9E�04 0.31 2.7E�07

Ace2 12 92 6051 266 5.6E�04 0.70 2.1E�40

chr3_mod2 Cha4 6 11 6132 43 3.7E�11 0.46 2.5E�03

Zap1 6 22 6121 43 5.6E�09 0.43 4.2E�03

Arr1 4 18 6125 43 5.9E�06 0.40 8.8E�03

Hap4 6 75 6068 43 1.2E�05 0.44 3.3E�03

Hir2 3 16 6127 43 1.7E�04 0.46 2.4E�03

Aro80 3 27 6116 43 8.3E�04 0.45 2.9E�03

chr3_mod3 Leu3 7 24 6119 75 8.9E�09 0.69 5.2E�12

chr5_mod1 Phd1 3 65 6078 36 6.3E�03 0.52 1.1E�03

Azf1 2 21 6122 36 6.5E�03 0.76 9.2E�08

Cup9 2 21 6122 36 6.5E�03 0.46 5.3E�03

Rox1 3 67 6076 36 6.8E�03 0.52 1.3E�03

Nrg1 3 73 6070 36 8.7E�03 0.57 3.3E�04

chr8_mod2 Dig1 15 45 6098 40 0.0Eþ00 0.46 2.7E�03

Ste12 15 57 6086 40 0.0Eþ00 0.50 1.1E�03

Tec1 6 39 6104 40 1.4E�07 0.45 4.0E�03

chr12_mod1 Hap1 41 149 5994 134 0.0Eþ00 0.63 3.7E�16

chr12_mod2 Gat3 25 57 6086 46 0.0E+00 0.42 4.4E�03

Rgm1 3 8 6135 46 2.1E�05 0.41 5.4E�03

chr13_mod1 Gcn4 5 75 6068 36 6.7E�05 0.69 3.7E�06

q is the number of genes within the eQTL module and bound by the given TF.

m is the total number of genes bound by the TF. n is the number of genes not

bound by the TF. k is the total number of genes with TF-binding data within the

eQTL module. This number may be smaller than the total number of genes within

the eQTL module in Table 2 due to missing of TF-binding data in some genes.

P is the hypergeometric P-value based on q, n, m and k. cor is the correlation

between TF’s binding strengths (�log(P-value)) and linkage strengths

(�log(P-value)) for the genes within the eQTL module and p_cor is the P-value

of the correlation, which is assessed by linear regression.

Table 4. Detected causal relation modules

Module

symbol

Cis-linked

gene

TF causal react con.ind in-diff

chr2_mod1 AMN1 Ace2/Swi5 136 0 1 130

chr2_mod1 ARA1 Ace2/Swi5 27 0 0 240

chr2_mod1 CNS1 Ace2/Swi5 19 0 4 244

chr2_mod1 CSH1 Ace2/Swi5 131 0 0 136

chr2_mod1 DEM1 Ace2/Swi5 122 0 0 145

chr2_mod1 TBS1 Ace2/Swi5 58 0 0 209

chr2_mod1 TOS1 Ace2/Swi5 158 0 0 109

chr3_mod3 LEU2 Leu3 49 0 1 25

chr8_mod2 GPA1 Ste12 14 0 1 25

chr12_mod1 GSY2 Hap1 18 0 0 116

chr12_mod1 HAP1 Hap1 28 0 0 106

causal is the number of significant causal relations, react is the number of

significant reactive relations, cond.ind is the number of significant conditional

independence relations and in-diff is the number of in-differential relations.

Fig. 2. eQTL modules in yeast chromosome 2. Each vertical line

corresponds to a marker. Each colored rectangle corresponds to an

eQTL hot spot. The number within each rectangle is the ID of the

marker, from which the eQTL hot spot is initiated. eQTL hot spots are

initiated from markers with more than seven linkages.

2In order to make the P-value comparable to the P-value from the 25
remaining genes, we choose 25 genes from the 49 genes to test for
enrichment. Specifically, we order the 49 genes by LRT P-values
comparing causal model against the other two models and choose the
25 genes with smallest P-values. The enriched GO term is still ‘amino
acid biosynthesis’ (9 out of 25 genes, P-value 4.5e�9)
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for the remaining 25 (¼75�49�1, excluding LEU2 itself) genes,

no enriched GO term is found. Thus the genes supporting
causal model show a better functional enrichment. Changing

LRT P-value for model comparison to 0.05 yields similar

GO term enrichments (see Supplementary Materials).
Figure 3a compares the expression patterns of the

10 downstream genes participating in amino acid biosynthesis

with the expression pattern of LEU2. LEU2 is not expressed

in RM strain because this strain is LEU2-deleted. The elevated

expressions of amino acid biosynthesis genes in RM strain

suggest an interesting compensation effect due to the loss of
LEU2. This is consistent with the phenotype of LEU2, ‘Null

mutant is viable, leucine auxotroph’ (SGD) (Hong et al., 2007).

According to the established literature, Leu3 does bind to

LEU2 (Friden and Schimmel, 1988). The expression profile of

LEU3 is not linked to the LEU2 locus and Figure 3a confirms

that the gene expression profile of LEU3 bears little similarity
with the expression profiles of its binding targets. However,

the estimated activity profile of Leu3 [denoted by Leu3(a.p.)

in Fig. 3a] shows a good coherent pattern with the expression

of its target genes.
In summary, all of the above discussion supports a causal

scenario for this eQTL module: the genetic disruption of

LEU2 perturbed the TF activity of Leu3, possibly via feedback

control and the perturbed TF activity affects the expression

of the downstream genes.
Hap1 mediates causal relations in energy-source control

module, chr12_mod1. There are 134 genes in this module,

of which two are cis-linked, HAP1 and GSY2. Only one
TF, Hap1, is related to this module according our pre-selection

(Table 3). Hap1 is a zinc finger TF involved in the complex

regulation of gene expression in response to the levels of

heme and oxygen (Pfeifer et al., 1989). Our result indicates that

both GSY2 and HAP1 can be the causative cis-linked genes

for this module (Table 4). Biologically, HAP1 is of course more
likely to be the causative gene. Hap1 is known to

repress transcription from its coding gene HAP1 (Hon

et al., 2005), suggesting a negative correlation between

its expression profile and its activity profile. Brem et al.

(2002) showed that there is a Ty1 insertion in BY allele

LEU2
LEU3

Leu3(a.p.)
ILV5
ILV2
HIS4

SER1
BAT2

ECM40
CPA2
LEU4
CIT2

MET13

RM BY

! 2 ! 1.6 ! 1.2 ! 0.8 ! 0.4 0 0.4 0 .8 1.2 1 .6 2

HAP1
GSY2

Hap1(a.p.)
ERG8

ERG10
ERG12
ERG27
ERG9

ERG26
ERG5

ERG20

! 2 ! 1.6 ! 1.2 ! 0.8 ! 0.4 0 0.4 0 .8 1.2 1 .6 2

GPA1
STE12

Ste12(a.p.)
AFR1
FIG1
FIG2

FUS1
FUS3
PRM1
PRM2
PRM6

! 2 ! 1.6 ! 1.2 ! 0.8 ! 0.4 0 0.4 0 .8 1.2 1 .6 2

A

B

C

AMN 1
CSH1
DEM1
TOS 1
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SWI5

Ace2/Swi5(a.p.)
BUD9
DSE1
DSE2
DSE3
DSE4
EGT2

SCW11
SUN4
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RMA1

−2 −1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6 2

RM BY

RM BY

RM BY

D

Fig. 3. (a) Expression profile of LEU2, LEU3 and 10 downstream

genes that participate in amino acid biosynthesis, and the activity

profile of Leu3 (Leu3(a.p.)), grouped by the genotype of LEU2.

(b) Expression profile of HAP1, GSY2 and 8 downstream genes that

participate in ergosterol biosynthesis, and activity profile of Hap1

(Hap1(a.p.)), grouped by genotype of HAP1. (c) Expression profiles of

GPA1, STE12 and 8 downstream genes response to pheromone, and

activity profile of Ste12 (Ste12(a.p.)), grouped by genotype of GPA1.

(d) Expression profiles of AMN1, CSH1, DEM1, TOS1, ACE2, SWI5

and 10 down stream genes linked to AMN1 locus identified by Yvert

et al. (2003), and activity profile of Ace2/Swi5, grouped by genotype

of AMN1.

Fig. 4. eQTL module of genes linked to GPA1 locus, those genes with

in-differential relationships are not shown in this figure. All the

significant relationships are causal except for MCM3. The expression of

MCM3 is independent with the activity of Ste12 given the expression

of GPA1.
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of HAP1 that reduces its activity. The expression profile of

HAP1 and estimated Hap1 activity profile shown in Figure 3b

are consistent with these biological facts.

The gene product of GSY2 is a metabolic enzyme, glycogen

synthase. Gsy2 may affect the activity of Hap1 via Bmh1 since

previous studies have identified protein–protein interactions

between Hap1 and Bmh1 (Krogan et al., 2002), and between

Gsy2 and Bmh1(Ho et al., 2006). Bmh1 is involved in the

regulation of many processes including exocytosis and vesicle

transport, Ras/MAPK signaling, rapamycin-sensitive signaling

(van Hemert et al., 2001). The expression of GSY2 is known to

be induced by glucose limitation, nitrogen starvation and

environmental stress. Thus this module may signify the cellular

control of energy resources including sugars and lipid, which is

further supported by the following GO analysis.
Out of the 46 cases supporting the causal model with

either HAP1 or GSY2 as the cis-linked gene, there are

5 overlapping cases. We conduct a GO analysis for the 41

downstream genes, and identify enrichments in ergosterol

biosynthesis (8 out of 41 genes, P ¼ 1.79E�10) and

cellular lipid metabolism (14 out of 41 genes, P¼1.32E�9)3.

Consistent enrichments are observed with 0.05 as LRT P-value

cutoff (Supplementary Materials). There are 26 genes involved

in ergosterol biosynthesis, of which 20 genes are included in

this module. Eight of them favor causal model with P-value

smaller than 0.01, of which the expression profiles are shown

in Figure 3b, and 14 of them favor causal model with P-value

smaller 0.05.
Ste12 mediates causal relations in pheromone response module,

chr8_mod2. Among the 40 genes in this module, 2 are cis-

linked: GPA1 and LAG1. Three TFs: Dig1, Ste12 and Tec1

may mediate the signal transduction in this module (Table 3).

No causal relationship is detected for Dig1 and Tec1

(Supplementary Table 4). In contrast, Ste12 supports a total

of 14 causal relationships, 1 conditional independence relation-

ship and no reactive relationship. All of the causal relationships

start with GPA1 as the cis-linked causative gene (Figure 4).

GPA1 encodes GTP-binding alpha subunit of the hetero-

trimeric G protein that couples to pheromone receptors

(Guo et al., 2003). GO analysis for the 14 downstream genes

shows the enrichment in the GO term ‘response to pheromone’

(8 of 14 genes, P-value 9.43E�11) and in one of its ancestor

term ‘conjugation’ (8 of 14 genes, P-value 7.57E�10). The

over-representation of these two GO terms is consistent with

GPA1’s biological function. The expression profiles of the eight

downstream genes responding to pheromone are shown in

Figure 3c. For the remaining 24 (¼40�14�2, excluding

GPA1 and STE12) genes, the enriched term is ‘conjugation’

(6 out of 24 genes, P-value 2.8E�04). Consistent over-

representation of GO terms can be found if we use 0.05

as LRT P-value cutoff. Yvert et al. (2003) have confirmed

the functional role of a missense mutation of GPA1 from RM

strain in pheromone signaling, and suggested this mutation

may affect the binding of Gpa1 to two pheromone receptors

Ste2 and Ste3, leading to expression level change of genes

response to pheromone. However, none of Gpa1, Ste2 and Ste3

has regulation role. In addition, for the eQTL dataset that we

are investigating here, expression of STE2 and STE3 are

affected by an interaction between MAT locus and GPA1 locus

(Brem et al., 2005b), and the effect of MAT locus is much

stronger so that STE2 and STE3 do not co-express with GPA1

or other linked genes. Thus, it remains a question how Gpa1 or

Ste2/Ste3 may affect the expression of other genes linked

to GPA1 locus.
Our analysis points to Ste12 as the TF that regulates

the expression of the downstream genes for this module

(Table 4). This is consistent with the biological knowledge

that in the pheromone response pathway, signals initiated from

Gpa1, Ste2 and Ste3 propagate through the MAPK

signaling cascade that reach the TF Ste12 (Veiga et al., 2006;

Wang and Dohlman, 2004). In this case, the gene expression of

Ste12 is also linked to GPA1 locus, i.e. Ste12 is one of the

trans-linked genes in this module. The activity profile of Ste12

correlates well with its expression profile (correlation ¼ 0.71,

Fig. 3c), which is consistent with the fact that Ste12 binds

the DNA sequence of itself (Harbison et al., 2004).
Ace2/Swi5 mediate causal relations in the mitotic-exit network

module, chr2_mod1. The pre-selected TFs for this module

are Ace2 and Swi5 (Table 3). Ace2 activates the expression

of the early G1-specific genes and Swi5 activates the transcrip-

tion of the genes expressed at the G1 or M/G1 boundary of

the cell cycle (Dohrmann et al., 1996). Because Ace2 and

Swi5 bind the same DNA sequences in vitro with

similar affinities, and they share most target genes in vivo

(Dohrmann et al., 1996), we treat them as one TF complex in

this study.
Among the 267 genes of this module, 8 are cis-linked.

Our analysis shows a total of 651 cases supporting the TF

activity mediation scenario. In contrast, there is no case

supporting reactive model and only five cases supporting

conditional independence model (Table 4). Among the seven

cis-linked genes supporting at least one causal relation, AMN1

has the strongest cis-linkage. AMN1 encodes a protein required

for daughter cell separation, multiple mitotic checkpoints and

stability (Wang et al., 2003). Previous works (Ronald et al.,

2005; Yvert et al., 2003) have confirmed the causal role of

AMN1. Yvert et al. (2003) identified one coherent expressed

cluster of 12 genes linked to AMN1 locus, among which 8 are

previously reported to have daughter cell specific expression.

Yvert et al. (2003) also proposed an explanation how Amn1

affects the expression of the daughter cell-specific genes: Amn1

regulates the mitotic exit network (MEN), MEN activates

Ace2, and Ace2 in turn regulates genes specifically expressed in

daughter cells during budding. This explanation is consistent

with our result of choosing Ace2/Swi5 as the mediator. Among

the 12 genes identified by Yvert et al. (2003), excluding AMN1

itself and one gene ISR1, which is linked to a locus near to,

but different from AMN1 locus in this bigger yeast cross,

causal relations are identified in 8 of the remaining 10 genes

(Supplementary Table 7, Fig. 3d).

3There are 91 genes that do not fit causal model with either HAP1 or
GSY2 as cis-linked gene at P-value 0.01. From these 91 genes, we
choose a subset of 41 genes with most insignificant LRT result (for
comparing causal model with the other two models) and test for
functional enrichment. No significant GO term enrichment is found
(Supplementary Materials).
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GO terms overrepresented by the 136 down-stream genes of
the AMN1 to Ace2/Swi5-activity causal path include ‘ribosome
biogenesis’ (58 of 136 genes, P-value 1.95E�40) and one of its

ancestor terms ‘organelle organization and biogenesis’ (71 of
136 genes, P-value 2E�17). No significantly enriched GO term
is found for the remaining 130 (¼267�136�1, excluding

AMN1 itself) genes.

4 DISCUSSION

In this study, we propose a procedure to detect eQTL modules
and identify related TFs. The novelties of this approach are:

(1) it makes a clear distinction between the unobserved TF
activity profile and the observed TF gene expression profile;
(2) external ChIP-Chip data and TF target gene informa-

tion from the literature are utilized; (3) causal modeling is
employed to formulate the scenario of TF activity mediation;
(4) a likelihood ratio test is introduced to rule out cases where

the scenarios of TF activity mediation are compatible with two
contrasting scenarios, thus reducing the chance of detecting
false positives and (5) the eQTL hot spots are allowed to have

variable lengths.
The approach of causal relation identification by model

comparison has been used by Schadt et al. (2005) in order

to dissect the relation between DNA variation, gene expression
and clinical trait. There are several differences between
our approach and Schadt et al.’s approach. First we conduct

formal statistical tests to aid the model identification, while
Schadt et al. compared different models by AIC. Secondly,

Schadt et al. did not consider the conditional independence
model. Instead, they used what they called the ‘independent
model’ as a competitive model. Their ‘independent model’

is indeed a complete model, in which any two of the three
variables are dependent. There is at least one obvious drawback
of omitting the conditional independence model. Some

in-differential cases, in which the causal model and the condi-
tional independence model are comparable, will be classified as
causal model when conditional independence model is omitted

(Supplementary Table 8).
The LRT that we used in comparing the three models

(of equal complexity) admits the complete model as the ground

truth because it contains all three sub-models. The goal of
the test is not to conclude how well a sub-model fits the
data (Vuong, 1989). Rather it is used to see which one of them

fits the data better. The finding that the causal model
outperforms the other two sub-models provides good evidence

that TF regulation is a feasible scenario. It is also an
encouraging starting point for more complex model building
to improve the goodness of fit. We further compare

the goodness of fit of our three models with the complete
model (Supplementary Table 9). We see that the majority of
the significant causal relationships detected by our approach

(Table 4) do fit the data well. For instance, out of the 136 causal
relationships with AMN1 as the causative gene for the Ace2/
Swi5 mediated module, 84 are accepted when testing against

the complete model. For Ste12, Hap1 and Leu3 modules
discussed earlier, the numbers are 10 out of 14, 23 out of 28
and 29 out of 49, respectively. In addition, the genes favoring

causal model by our approach exhibits better GO enrichment

than the genes favoring causal model obtained by Schadt’s

approach or by the approach of comparing four models

including complete model (see Supplementary Materials).
TF regulation is only one explanation why many genes

are linked to an eQTL hot spot. We should not rule out

alternative biological mechanisms for better explanations.

Nevertheless, the genes favoring TF mediation scenario

(causal model) do exhibit GO enrichments in specific biological

processes, which are consistent with the functions of the

cis-linked genes and the mediating TFs. However, without

additional information, we cannot be really sure about

excluding any compatible models.

The identification of causal TFs of eQTL modules reveal

more subtle aspects about gene expression linkages.

For medical applications, this could lead to the discovery of

more options to correct genetic defects. One of the major

objectives of eQTL studies is to identify the genetic determi-

nants/modifiers of complex traits, which are likely related

with many genes. The identification of the upstream TFs

responsible for mediating the expression of a good portion of

these genes allows us to manipulate the combined effect of the

downstream genes, which may in turn affect the disease trait.
There is room to improve our procedure. For example,

incorporating two or more TFs (TF complexes) simultaneously

for each eQTL module may help identify more causal

relationships. But this would require more sophisticated

statistical methods to estimate the unobserved TF activities,

a direction worth further investigation.
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