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ABSTRACT

Motivation: The living cell array quantifies the contribution of

activated transcription factors upon the expression levels of their

target genes. The direct manipulation of the regulatory mechanisms

offers enormous possibilities for deciphering the machinery that

activates and controls gene expression. We propose a novel

bi-clustering algorithm for generating non-overlapping clusters of

reporter genes and conditions and demonstrate how this information

can be interpreted in order to assist in the construction of

transcription factor interaction networks.

Contact: Yannis@rci.rutgers.edu

1 INTRODUCTION

One of the goals of molecular biology is deciphering the

underlying mechanisms that give rise to the observed experi-
mental responses to injury, disease or drug administration.
In most long term compensatory responses, an organism

responds to changes in its environment by altering its gene
expression and therefore the relative levels of different proteins
or enzymes which regulate key cellular processes. Therefore,
understanding the underlying transcriptional regulation would

give insights as to why organisms respond in the fashion that
they do, and offer possible ways of altering the responses for a
more desirable outcome.

The general mechanism by which transcriptional regulation
occurs involves an incoming signal which activates a transcrip-
tion factor through a mechanism such as phosphorylation or

dimerization. This activated complex then translocates into the
nucleus and binds to the promoter region of certain genes in the
genome which then either activates or represses the transcrip-

tion of a given gene. The complexity in the system arises from
the fact that genes which are activated can themselves be
transcription factors which in turn regulate other genes, or code
for an enzyme which degrades the original signal.

The methods normally used for deciphering the underlying
network architecture fall under three primary categories.
The first category consists of predicting the overall

network architecture either through computational means

or through experimental data such as Chip-Chip experiments

(Lee et al.,2002). These techniques attempt to decipher the

network structure by first identifying the regulators and genes

which they regulate. The second method for understanding

transcriptional networks falls under the category of utilizing

gene expression data to create a network where a link is drawn

if two genes are co-expressed under the experimental conditions

(D0Haeseleer et al.,2000). There exists a third technique with

attempts to reconcile the results of these two techniques.
The strictly computational techniques focus upon the

prediction of transcription factor binding sites and then using

these predicted transcription factor binding interactions

to generate a network (Pritsker et al.,2004). These techniques

however suffer from the inaccuracies associated with computa-

tional predictions and therefore the network derived from

the results can be questionable. Secondly, even if the predic-

tions are accurate, what these techniques yield is a set of all

possible connections, of which only a few may be active at a

given time due to the complexities of transcription factor

activation or through processes such as cooperative binding of

transcription factors (Janson and Pettersson, 1990). Chip-Chip

experiments on the other hand attempt to derive connections by

identifying through fluorescence-labeled transcription factors

which transcription factors bind to which genes, and construct-

ing a network from this data (Lee et al.,2002). Such techniques

have been successful in simple organisms such as yeast, but

ambiguities in the promoter region of more complex species

is problematic for this type of experiment. In mammalian

systems, promoters that lie more than 5k away from the

transcriptional start site may have an effect upon the

transcription of the gene (Kirmizis and Farnham, 2004), and

therefore the experiment may not have captured all relevant

promoter regions. Additionally, it had been shown that

transcription factors can bind in the coding region of a given

gene in Chip-Chip experiments calling into question the process

of immobilizing a given DNA strand as preparation for the

binding (Wormald et al.,2006) and removing the contribution

of in vivo DNA configuration on transcription factor binding.
Expression data can be used to build a network by making

the assumption that genes which are co-expressed probably

have a causal link between them. Techniques such as Boolean

networks have been applied in the creation of such network but

oftentimes offer contradictory network structures than the*To whom correspondence should be addressed.
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networks derived from the experimental methods (D0Haeseleer

et al.,2000).
Attempts have been made to reconcile the two different

regulatory structures as well as quantify the links between the

regulators and the genes which they regulate. Methods such as

Module Networks attempt to resolve the differences in the two

networks (Segal et al.,2003). However, even with the reconcilia-

tion of two disparate solutions, there still exists a great deal of

ambiguity in the results, i.e. the possibility that there exist

multiple transcription factors which may be co-regulating a set

of co-expressed genes. Techniques such as NCA which quantify

the links given the structure have shown that multiple

structures can reconstruct identical expression profiles

(Brynildsen et al.,2006). This is a problem because multiple

structures can be shown to have the exact same error in

reconstructing the gene expression data.
The crux of the difficulty in obtaining these gene regulatory

networks is the fact that individual contribution of a given

transcription factor to the expression level of a given gene is

unknown. This is because researchers are essentially solving

an ill posed problem, which results in the fact that one is unable

to determine the correctness of multiple structures. Essentially,

researchers have been attempting to solve for more parameters

than can be justified in the data. The living cell array (LCA)

(King et al.,2007; Thompson et al.,2004; Wieder et al.,2005)

simplifies the process of computationally determining the

structure by allowing for the measurement of activated

transcription factor activity and its effect upon the expression

level of a gene. With information as to the overall expression, it

becomes possible not only to identify the underlying transcrip-

tional network, but also to quantify the links between the genes

and their associated transcription factors.

1.1 Living cell array

The living cell array is a microfluidics device which allows the

precise control of both molecular cellular signals as well as

the seeding of cells from a certain population. The apparatus is

more comprehensively described in the original paper

(King et al.,2007). In essence, the LCA device contains

hepatocytes which were transfected with a reporter gene that

transcribes a fluorescent protein when activated by a given

transcription factor.
The promoter regions for these genes were constructed in

such a manner where only its specific transcription factor will

cause the activation. However, in spite of this design, it was

found that there was significant cross talk, for instance the

activation of the reporter gene for IL-6 (STAT3 promoter)

being activated as well by TNF-�. The possibility of non-

specific binding of TNF-� that normally binds to the response

element sequence GGGAATTTCC to the response element

sequence for STAT3 (TTCCCGAA) was examined. While this

is possible due to a common run of the short TTCC motif,

this possibility seems to be unlikely.
An alternative explanation being explored is that the non-

specific activation of the reporter gene can occur via a

secondary mechanism, i.e. the transcription of its associated

transcription factor due to the effect of another transcription

factor. To examine this possibility, a tri-clustering approach to

determine which genes are co-expressed over a variety of

conditions has been formulated. If the reporter gene is highly

co-expressed over a range of different conditions, then it would

suggest that there is a definite link between the two transcrip-

tion factors in terms of their activation.
The tri-clustering formalism is an extension of the

bi-clustering formalism except that one clusters over condi-

tions, genes as well as time. For the purposes of deciphering the

LCA, time can be treated independently and therefore a

preprocessing clustering step can be performed to reduce the

overall formulation into a bi-clustering problem.
Our attempt at handling data which can be tri-clustered is

different from the TriCluster algorithm (Zhao and Zaki, 2005),

in which the time vectors are all treated independently. For the

LCA, the interest is which transcriptional events are tightly

coupled and therefore have similar time expression profiles

within the different conditions.
Given the artificial construction of the reporter genes, the

direct effects of a given activator/transcription factor is

clear. What is less clear are the effects of indirect activation

(IDA). Under all of the different activation conditions, all of

the reporter genes appear to be activated to a certain extent.

The primary question is therefore, what the indirect links are.

From the initial results obtained from the LCA (King

et al.,2007), it would appear that under all of the conditions,

there is significant activation of the reporter genes. It may be

possible to isolate transcription factors which are tightly

coupled, where the activation of one transcription factor

causes the activation of a second transcription factor, or

which are complementary, i.e. the activation of one system

can be accomplished via the activation of any one in a set

of transcription factors. This essentially allows for the

identification of the mechanism behind the cross-talk and

addresses issues such as why blocking a specific regulator does

not always lead to the blocking of a given cellular response.

2 METHODS

2.1 Bi-clustering

Bi-clustering, or condition-specific clustering, attempts to isolate genes

that are co-expressed under a specific set of conditions (Cheng and

Church, 2000). Bi-clustering is nominally performed over a set of genes

versus conditions with only a single value per condition. However,

in the given dataset, each gene/condition combination is described as a

time series. In bi-clustering, genes that have similar expression values

under a given condition are considered as possible candidates to be

clustered together for that specific condition. Given the temporal

expression data, the temporal expression can be simplified into an

integer, so that gene expression profiles with the same integer would

have similar expression profiles. This could have been accomplished in a

variety of ways from hashing-based methods (Lin et al.,2003), to

standard clustering algorithms in which the cluster memberships

are used to assign an integer denoting similarities in the expression

profiles of different genes under a given condition.

For this problem, k-means clustering with a cosine similarity metric

(Rahnenfuhrer et al.,2004) was selected. K-means was run with four

clusters, the minimum number of clusters needed for consistent clusters

over multiple runs. Therefore, the temporal expression profiles were

converted into integers which indicate the similarity under a given

condition of two or more genes.
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Bi-clustering itself is NP-Hard (Jiang and Zhang, 2002), and

therefore most of the algorithms which have been used for bi-clustering

are heuristics. The most obvious problem with most of the techniques

which are based upon heuristics is the fact that they do not solve

the problem to global optimality. However, just as important is the

inability for most of the heuristic-based methods to identify an arbitrary

number of over-lapping bi-clusters. In most of the bi-clustering

algorithms, finding multiple solutions involves removing a previously

found bi-cluster from the dataset through techniques such as

setting all of the values in a previous found bi-cluster to random

numbers therefore breaking up any relationships within that

cluster. There has been some work in finding overlapping clusters

(Liu and Wang, 2007). However, such techniques are limited in the

fact that one must determine before the structure of the overlap

such as overlapping percentage as well as the number of possible

overlapping structures within the data, something which is not

known a priori.

The issue of overlapping bi-clusters is important because with non-

overlapping bi-clusters, the networks which can be reconstructed

from expression data will be a set of disjoint and independent networks.

This contradicts with the general notion that transcriptional networks

form highly interconnected networks (Jeong et al.,2000). Therefore,

networks generated from the current algorithms cannot fully capture

the level of interconnectedness present in transcriptional networks.

The advantage of utilizing a math programming approach is that it is

very easy to exclude previous solutions and re-solve the problem to find

other bi-clusters which may overlap with a previous solution. Without

overlapping bi-clusters, the overall network is then reduced to a set of

independent cliques of which the most complex network which can be

created is a feed forward network.

The biggest issue that complicates the search of overlapping clusters

is illustrated in Figure 1. The primary problem is that after an optimal

solution is found and that solution is rejected, there exists an

overlapping cluster which is wholly a subset of the original solution.

A mixed integer optimizations framework was selected due its ability

to explicitly model constraints as well as solve the problem to global

optimality, something which cannot be guaranteed with the standard

heuristic-based method. In this mixed-integer framework, it is possible

to eliminate a solution as well as all subsets of its solution through a

modified system of integer cuts.

The LCA experimental results had eight conditions two of which

represented composite stimulus corresponding to inputs with multiple

factors which were excluded. The overall goal of the LCA has been the

generation of a network which can be used for the quantitative

prediction of gene activity, and these conditions were excluded to be

used as a testing set to determine how well our network can predict

overall activity given an arbitrary input. At this point, the primary

concern is whether a rational network can be generated, and the

quantification of the network, i.e. determining the weight of the links

that connect the individual nodes will be revisited at a later date.

One of the issues with using a formal mixed integer formulation is

that it requires solving the full problem and not conducting

an approximation. Therefore, the NP-hard issue still remains.

The mixed integer formulation solves the problem efficiently through

intelligent pruning of infeasible and sub-optimal solutions, but does

not change the overall algorithmic complexity. In the current iteration

of the LCA, there are six specific transcription factors being utilized

under six different conditions, and therefore the computational

complexity is not an issue. Even in the most comprehensive case

for transcriptional regulation, the problem set is still relatively small,

on the order of 200 transcription factor binding sites having been

quantified (Harbison et al.,2004), and therefore still within the limits

of solvability.

The mixed integer formulation is divided up into two portions, the

bi-clustering formulation Equation (1), and the subset removal cuts

Equation (2). The problem is solved parametrically for the number of

genes starting from N genes and decreasing until the number of genes

equals 2. The optimization criterion maximizes the number of

conditions. With this formulation, it is not necessary to define

constraints of what a good bi-cluster entails though such constraints

could be formulated. We find this to be an artificial constraint, for there

could exist two genes which are well correlated over a large number of

different conditions, of which the implications would be just as

important as a bi-cluster of 10 genes that were well correlated over

fewer conditions.

½ð�i þ �j þ �kÞ � 3� �M � ð�i þ �kÞ �Dði,kÞ � ð�j þ �kÞ �Dðj,kÞ

½3� ð�i þ �j þ �kÞ� �M � ð�i þ �kÞ �Dði,kÞ � ð�j þ �kÞ �Dðj,kÞ
ð1Þ

The bi-clustering portion described in Equation (1) requires the

discretization of the signal. This works well for the time series data

which is provided by the LCA. It essentially checks to see if two genes

under a given condition have the same value with binary variables to

indicate whether a given gene is included for the assessment. In

Equation (1), D represents the integer transformed data, � represents

the genes selected within the bi-clusters where � represents the

conditions under which the genes are co-expressed. The indices i,j,k

represent the index in the array for which the gene or condition exists.

M represents a large number that functions to essentially eliminate the

constraint when either of the two genes or conditions are not part of a

given bi-cluster. In other words, genes i and j belong to bi-cluster k, i.e.

�i¼ �j¼�k¼ 1, if and only if the symbolic representation of both genes

are the same under condition k, i.e. D(i,k)¼D(j,k). This is the only

situation that would make Equation (1) feasible. If �i¼ �j¼�k¼ 1

whereas D(i,k) 6¼ D(j,k) Equation (1) would be infeasible since the left-

hand side of both inequalities will be zero, whereas the right-hand side

is not. A schematic of how this assessment finds bi-clusters is shown in

Figure 2. In Figure 2, there are two � variables which denote the two

genes which are being checked for co-expression whilst the � represents

the condition in which they are checked from. If two genes are part of a

bi-cluster, then the value under the two different conditions ought to be

identical.

The problem with excluding subsets is simplified by the fact that the

problem will be solved to optimality at every iteration with every

iteration parametrically solving for different number of genes. The

primary idea behind Equation (2) is that a new solution requires

a condition to be included that was not in a previous solution.

Equation (2) guarantees that each solution will not be a subset of a

previously identified set of conditions. In Equation (2), �iter
k represents

the previous solution and �citer
k represents the current solution which

may or may not be excluded. Therefore, the bi-clusters are generated

sequentially and the exclusion constraints of Equation (2) guarantee

A

B

C = A∩B

Fig. 1. The problem of overlapping bi-clusters: given two bi-clusters,

A and B, the intersection of the two bi-clusters, C should be eliminated.
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that the bi-cluster at iteration ‘citer’ is not a subset of the previous

clusters ‘iter’.X
QðiterÞ

�iter
k �

X
PðiterÞ

�iter
k 5

X
k

�citer
k 8iter5 citer

PðiterÞ ¼ fij�iter
k ¼ 1g

QðiterÞ ¼ fij�iter
k ¼ 0g

Figure 3 illustrates how the subset removal cuts works. Equation (2)

essentially forces the next possible solution to include a condition that

was not included in a previous solution. If the current solution is a

subset of any previous solution, then the following holds.X
QðiterÞ

�iter
k ¼

X
k

�citer
k 8iter5 citer

Given that the formulation solves for the maximum number of

condition under which N genes is co-expressed, the exclusion only

occurs for the set of conditions. The set of cuts can be limited to only

the conditions rather than the genes because the problem is solved

parametrically with the maximum number of genes being solved in the

first iteration. This should give the smallest number of conditions which

these genes are co-expressed under. Once the number of genes has been

decreased, the set of conditions in which the genes are co-expressed

ought to have at least one condition which was not present in the

previous solution. Therefore, by solving it parametrically in N, it

removes the complexity of requiring a subset excluding cut from

requiring both the conditions as well as the set of genes. This greatly

simplifies the formulation.

After the bi-clusters were generated, they were evaluated as to

whether or not one of the condition/reporter interactions in that

bi-cluster had a 2-fold change in the overall activity. The data was

reported in fold change, and it was found that in the negative control

case, the variability in the overall intensity differed by less than 2-fold.

We opted to select bi-clusters which had at least one of the condition/

reporters show a two fold change instead of filtering out the gene/

condition combinations and then conduct the bi-clustering because it

represented a compromise between focusing solely upon co-expression

or the intensity values. The overall formulation is given in Equation (3)

and is solved using the GAMS framework (Brooke et al.,2004) running

CPLEX for the optimization.

max
X
k

�citer
k

s:t
X
i

�citeri ¼ N

½ð�citeri þ �citerj þ �citer
k Þ � 3� �M � ð�citeri þ �citer

k Þ

�Dði,kÞ � ð�citerj þ �citer
k Þ �Dðj,kÞ

½3� ð�citeri þ �citerj þ �citer
k Þ� �M � ð�citeri þ �citer

k Þ

�Dði,kÞ � ð�citerj þ �citer
k Þ �Dðj,kÞX

QðiterÞ

�iter
k �

X
PðiterÞ

�iter
k 5

X
k

�citer
k 8iter5 citer

PðiterÞ ¼ fij�iter
k ¼ 1g

QðiterÞ ¼ fij�iter
k ¼ 0g

Dði,kÞ ¼ symbolic representaion of gene‘ i’ in condition‘ k’

�citeri ¼
1, if gene i belongs to bicluster‘ citer’

0, otherwise

�

P ðiterÞ, QðiterÞ ¼ denote the set of conditions that comprised

previous biclusters

2.2 Network reconstruction

The primary purpose behind bi-clustering was to construct a network

which gives insight as to the underlying mechanism which gave rise to

the observed responses. Without any a priori information, a bi-partite

network could be obtained in which links can be created from a

regulator to a set of genes, if those regulators and genes are found in the

same bi-cluster Figure 6. However, by incorporating additional

information which is available due to the artificial construction of the

reporter genes, one can generalize the bi-partite graph into a directed

graph which gives insight as to the signaling cascade, specifically in this

case, the induction of inflammatory/anti-inflammatory signals via

external stimulus.

The specific piece of information which is utilized is the fact that the

reporter genes can only be activated by their specific transcription

factor, and therefore the only direct links that can be present in the

graph is from a transcription factor to its specific reporter. These direct

links are given in Table 1 of the original LCA manuscript

(King et al.,2007). A schematic of the translation from the bi-partite

graph in Figure 6 to a directed graph can be seen in Figure 4. One of

the bi-clusters in Figure 6, encompasses the activation of STAT3,

and NF�B via LPS, TNF-� and IFN-�. Given the direct links of TNF-�

to NF�B and IL6 to STAT3, the bi-cluster allows one to hypothesize

that the activation of STAT3 given an input of TNF-� occurs

indirectly as TNF-� activates the production NF�B, which thereby

activates IL-6, and STAT3.

This secondary activation mechanism is necessary due to the

construction of the reporter genes. The reporter STAT3 cannot

be directly activated via TNF-� due to its construction, and

0 1 1 0 1 0 1 1 Optimal Solution (N-1)
0 1 1 0 1 0 1 0 Possible Optimal (N) Utilizing Standard Cuts
1 1 1 0 1 0 0 0 Possible Optimal (N) Utilizing Subset Excluding Cuts

Conditions

Fig. 3. The solution for iterate (N–1) has five conditions, the next

optimal solution has four. However, the solution which is wholly a

subset of a previous solution should be excluded.

Fig. 2. A schematic of how the formulation in Equation (1) works.

Rows indicate genes and columns indicate conditions. Two genes

(�2¼ 1 and �6¼ 1) are similarly expressed under four conditions

(�k¼ 1, k¼ 1, 3, 6 and 7).
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therefore the induction of STAT3 must occur via a secondary

activation of IL-6.

3 RESULTS

A representative bi-cluster is given in Figure 5. In general, the

optimizations-based formulation of bi-clustering is well suited

to process integer/discretized data, but is significantly affected

by the initial clustering of time series.
Without filtering for bi-clusters that showed greater than a

2-fold change, 98 different bi-clusters of which the minimum

size were two reporters being co-expressed over two conditions

were obtained. After the 2-fold filtering, five bi-clusters in

which the minimum size was 2� 3 (either two conditions and

three reporters or vice versa) was obtained. The overall

bipartite representation obtained from the bi-clustering is

given in Figure 6, and the directed graph associated with the

bipartite graph is given in Figure 7. The links for HSE and LPS

were not included in Figure 7 due to the fact that they did not

have specific molecular activators identified, and IL1!AP1

was excluded due to the fact that it was not part of a non-trivial

bi-cluster which showed significant activation.
From the bi-clustering result and the associated bipartite

network, it was found that while HSE did not have a specific

activator under the different experimental conditions; it showed

significant co-expression and activation from a variety of

different signaling factors. The activation of the heat shock

element normally occurs in temperature above 35�, and yet it

was activated under the administrations of Dexamethasone,

IL-6 and Interferon Gamma. The possible transduction of

the HSE by Interferon Gamma has been identified (Saile et al.,

2004). The activation by Dexamethasone has been previously

identified but is weak and like the other results involving

Dexamethasone, this may be more of an artifact off the poor

data obtained via the administration of Dexamethasone.

However, perhaps as a reason for the poor results, the

administration of Dexamethasone has been shown to either

act as an antagonist for the binding of the heat shock element

as well as increase the production of the heat shock protein.

Therefore, the poor results obtained from the LCA may be

indicative of more complex behavior, for which all of the

variables have not been adequately controlled.
Incorporating the a priori information which comes from the

construction of the LCA, the directed graph given in Figure 7

was obtained. The primary salient characteristic of this graph is

the presence of loops such as those that involve IL6 IFN-�, and
IFN-� and Dex. The presence of these loops gives a possible

mechanism by which both IFN-� and Dex are responsible for

changing the way an organism responds to inflammatory

cytokines, as well as suggesting that there may be a mechanism

for inducing a tolerance phenomenon. This effect may be

mediated through the transcription of the glucocorticosteroid

receptor or the Interferon Gamma receptor which is present

in the cell (Rakasz et al.,1993; Sanceau et al.,1992).
One of the concerns which we have with the results of both

the bi-clustering as well as the network reconstruction is the

effect of noisy data. One of the drawbacks of most clustering

methods is that they oftentimes cluster all of the data without

regard to data quality. Given the fact that our bi-clustering is

highly dependent upon the initial clustering, any shortcomings

due to noisy data would thereby be carried over to the

generated network.
One of features which was noticed was the fact that the noise

level was not consistent over the entire array with some

transcription factors/reporters showing very consistent results

while other transcription factors/reporters being very incon-

sistent. We hypothesize that one of the factors which affect the

repeatability of a given experiment lies in the fact that thereFig. 4. Directed graph network generation.

LPS

5 10 15 20 25 5 10 15 20 25

5 10 15 20 25

STAT3

NFkB

STAT3

NFkB

TNF-α

STAT3

NFkB

IFN-γ

LPS TNF-a IFNg IL6 IL1 Dex
NT 1 3 1 1 1 1

ISRE 1 3 2 1 1 2
AP-1 1 1 1 3 1 2

STAT3 2 2 1 1 1 1
NFkB 2 2 1 3 2 2

GRE 1 3 2 1 1 2
HSE 2 2 2 1 3 2
D4G 3 3 3 2 3 3

Fig. 5. A representative bi-cluster identified. The bi-clustering algorithm is highly dependent upon the initial time series clustering.
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may exist complicated feedback loops that affect the transcrip-

tion of receptors for a given signal, whereas those which show a

greater repeatability between trials probably have a direct

transcriptional link such as the link between TNF-� -4NF�B -4
IL-6 and Stat 3.

4 DISCUSSION

It is arguable that bi-clustering may not be needed and that one

could easily construct a network by utilizing only the 2-fold

change criteria and creating a link between the response

element and a given gene. Such a network has been constructed

in Figure 8. It is notable that the TNF-�!NF�B! IL-6!

STAT3 link still exists. However, what this network is not able

to identify is the effect that Dex and IFN-� have upon the

overall system and leaving them as isolated interactions. This

may be because given the current construction of the reporter

genes, that the only significant change in activity is through

activation, and therefore the effects of Dex and IFN-� are not

seen because they have a significant down-regulatory effect

upon the other inflammatory cytokines such as IL6. The use of

bi-clustering and the utilization of correlation have managed to

deduce relationships that are not necessarily feed forward

activations.
One of the issues that was of concern was the effect of noise

upon the overall quality of the experiments, namely the

repeatability between trials as well as the overall effect it

would have on the overall network. It has been shown that the

presence of feedback loops themselves affect the noise

propagation properties of a given transcriptional system

(Dublanche et al.,2006), and that the effect is not entirely

consistent. Normally, the hypothesis is that a negative feedback

loop ought to dampen noise, and that a positive feedback loop

would increase noise, however, it was found that the mere

presence of loops has an indeterminate effect upon the noise

characteristics. From this conclusion, we believe that the

differences in the overall noise levels measured is evidence of

the presence of loops, something which was not isolated in the

network that only utilized up/down regulation.

Previously identified feedback loops such as those

that involve IL6!TNF-� (Moeniralam et al., 1997),

glucocorticosteorids!IL6 (Barber et al., 1993; Takeda et al.,

1998) and IL6!IFN-� (McLoughlin et al., 2003) are evident in

Figure 7. Given that these loops have been previously identified

in literature, we believe that the noise does not adversely affect

the networks drawn via our bi-clustering methodology and

serves as a confirmation of the fact that loops were isolated

instead of independent feed-forward cliques. We make the

additional hypothesis that the feedback loop IL6!TNF-� is

mediated through the activity of IFN-� which has not been

directly established. However, it has been established that

IFN-� illustrates non-trivial effects on STAT3 and TNF-�

(Kaur et al.,2003; Raponi et al.,1997) making it a possible

candidate as the hub which mediates feedback activity. This

hypothesis shows that the value of the LCA/bi-clustering lies

not only in the validation of previously identified links, but

also as a method for generating new testable hypotheses.

Therefore, while not every gene shows a significant change in

the activity, the use of correlation may still be able to identify

the presence of other links besides feed forward loops and

allows for a much more complete picture as to the overall

regulatory pathway.
This may arise primarily due to the fact that the LCA in its

current iteration is more sensitive to the up-regulation of a

given factor rather than the down-regulation of a factor.

Therefore, a network built in such a fashion may be more

complete if the LCA was better able to handle the down-

regulation aspect of transcriptional networks. However, by

utilizing correlation, it is still possible to ascertain many of the

down-regulatory aspects of gene regulation.

NFkB IL6
STAT3

INFg

ISRE

Dex

GRE

TNF

Fig. 7. The directed graph version of the bi-clustering data with HSE

and LPS removed (no specific activators). The condition specific

activators (red) regulate only a single reporter gene (black). The indirect

effects observed in the LCA have been identified as secondary effects.

The IL1-4AP1 link was not included because it was not found in a non-

trivial bi-cluster.

Fig. 8. Network generated by looking only at significant activation. By

ignoring the overall correlation between the different transcription

factor activities, one is unable to obtain networks which include the

effects of Dexamethasone and Interferon Gamma upon inflammatory

cytokines, nor obtain any feedback loops that characterize the

biological system.

Fig. 6. The bi-partite representation of the bi-clusters.
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Additionally, we assert that a bi-clustering algorithm which

was both globally optimal as well allowing for the arbitrary

overlapping of bi-clusters is necessary. Additional bi-clustering

was carried out utilizing BicAT (Barkow et al.,2006), which is a

software package that has the options of running multiple

clustering algorithms such as CC (Cheng and Church, 2000)

and xMotifs (Murali and Kasif, 2003). In this evaluation it was

found that the method by Cheng and Church was the only one

that was able to select non-trivial bi-clusters. The failure of the

other bi-clustering algorithms may be due to the structural

constraints that are placed upon the data, something which

may not be satisfied in the small dataset.
Combining the bi-clustering results as well as the network

architecture obtained via the directed graph, it is possible to

make hypotheses as to the overall mechanism behind the

response to bacterial endotoxins. In the bi-clustering, it was

found that LPS appears to regulate the activity of HSE, STAT3

and NF�B. Being that it regulate these reporter genes in similar

fashion as both TNF-� as well as IL-6, it appears that the

primary mode of LPS upon the hepatic system is through

TNF-� for which there is some evidence in other tissues (Miller-

Larsson et al.,1999). Additionally, the production of IL-6

increases with the administration of LPS (Muramami

et al.,1993), though the mechanism by the activation of IL-6

is not clear. One of the possibility is that the induction of IL-6

through LPS occurs through the TNF-� mechanism given

observation that TNF-� itself stimulates the production of IL-6

(King et al.,2007). However, it is also possible that IL-6 itself

may be directly regulated via LPS. Evidence suggests the

former due to the ability of TNF-� to stimulate IL-6, as well as

the difficulty of distinguishing between the modes of activation

for STAT3 given the administration of LPS, TNF-� or IL-6.
One of the ongoing challenges in this bi-clustering framework

lies in the creation of more efficient formulations that allow one

to tackle larger problems. The current formulation is sufficient

in solving problems up to around 200 transcription factors

which is around the number of transcription factors which have

been previously identified (Harbison et al.,2004). However,

improvements to the formulation that make it more efficient

would allow one to tackle problems that involve other aspects

of intracellular signaling. So while the scaling aspect of both

the experimental components that comprise up of LCA as well

as the algorithms behind the analysis are sufficient for

transcriptional networks, and improvement in efficiency is

still desired.

5 CONCLUSION/FUTURE WORK

From the initial prototype of the LCA, it is possible to obtain a

regulatory network which has many of the features that have

been experimentally observed. For the most part, while the

network which has been identified via the LCA and

bi-clustering appear to be well supported by experimental

evidence, there are still issues that need to be worked out such

as the large amount of error between replicates with a few of the

reporters. It may be that this lack of repeatability suggests a

more complex mechanism as previously proposed. However,

this is still an issue that needs to be addressed.

One of the exciting things with the LCA which has not been
directly addressed at this point is the possibility of whether the
LCA would be able to predict the overall behavior of the

system to a composite stimulus. In the original LCA experi-
ment, there were conditions that represented the composite
inputs of multiple factors such as IL-6, IL-1, TNF-� and

Interferon Gamma. While it has not been done, it would be
beneficial to test whether quantifying the identified network
under the cases with a single stimulus would allow for the

prediction of gene activation under a composite stimulus. If this
were possible, then it would allow researcher to use the LCA to
rapidly decipher the mechanism by which cells respond to

external stimulus.
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