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ABSTRACT

Motivation: Reductions in genotyping costs have heightened

interest in performing whole genome association scans and in the

fine mapping of candidate regions. Improvements in study design

and analytic techniques will require the simulation of datasets with

realistic patterns of linkage disequilibrium and allele frequencies for

typed SNPs.

Methods: We describe a general approach to simulate genotyped

datasets for standard case-control or affected child trio data, by

resampling from existing phased datasets. The approach allows for

considerable flexibility in disease models, potentially involving a

large number of interacting loci. The method is most applicable for

diseases caused by common variants that have not been under

strong selection, a class specifically targeted by the International

HapMap project.

Results: Using the three population Phase I/II HapMap data as a

testbed for our approach, we have implemented the approach in

HAP-SAMPLE, a web-based simulation tool.

Availability: The web-based tool is available at http://

www.hapsample.org

Contact: fwright@bios.unc.edu; fzou@bios.unc.edu;

kirk@med.unc.edu

1 INTRODUCTION

It has long been recognized (Risch and Merikangas, 1996)

that large-scale genotype–phenotype association studies will

have great power and precision to elucidate genetic influences

in complex disease (Gibbs et al., 2003; Hirschhorn and Daly,

2005). However, key issues in optimal design and analysis

remain unresolved. A partial list of areas of active research

(Hirschhorn and Daly, 2005) includes reassessment of the

relative strengths of case-control versus family based designs

(Hintsanen et al., 2006), design of multistage association

studies (Lowe et al., 2004; Satagopan et al., 2004), selection

of appropriate significance thresholds (Dudbridge and

Koeleman, 2004; Thomas et al., 2005), methods for fine-

mapping and reconstructing haplotypes (De La Chapelle and

Wright, 1998; Stephens and Donnelly, 2003) and approaches

for handling multiple interacting susceptibility loci (Marchini

et al., 2005).
In many cases, the best approaches depend on specifics of the

disease model and polymorphism in the population (Pritchard

and Cox, 2002). In order to rigorously compare competing

approaches, simulation studies must be performed which

provide realistic patterns of allele frequencies and linkage

disequilibrium (LD) structure. Unfortunately, uncertainty of

human population genetic history makes it difficult to perform

such simulations. Forward simulation approaches (Dudek

et al., 2006; Peng et al., 2007) can be sensitive to underlying

assumptions and starting genotypes, and are typically highly

variable across simulations (Calafell et al., 2000) for observed

LD and disease outcomes. Backward coalescent approaches for

multiple loci (Laval and Excoffier, 2004; Posada and Wiuf,

2003; Wang and Rannala, 2005) can be ‘calibrated’ to fit

observed data structures (Schaffner et al., 2005), but remain

computationally infeasible for dense SNP collections spanning

large genomic regions. Moreover, coalescent methods are not

well suited to handle unknown and variable selection pressures

that may have affected broad genomic regions (Altshuler et al.,

2005). These approaches involve de novo simulation of artificial

SNPs, while the researcher may be interested in simulation

tailored to a certain genomic region or the actual list of SNPs

from a favored genotyping platform. Alternatively, one might

simulate SNPs to fit pairwise LD measures observed in real

data (Montana, 2005), but this approach may be unable to

reflect higher-order haplotype structures likely crucial for

evaluating haplotype reconstruction and inference (Liu and

Lin, 2005). Moreover, it is not clear how to incorporate disease

models into this approach.
Another possible data-based approach involves cataloguing

the frequency of inferred haplotypes in real data across regions

constituting haplotype blocks (Altshuler et al., 2005), and*To whom correspondence should be addressed.
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resampling from these haplotypes. The specification of distinct
block boundaries is somewhat artificial (Schwartz et al., 2003),
and may not reflect longer-range LD that is apparent in

real data. By sampling from haplotypes of very long range, we
may avoid the problem of applying arbitrary haplotype block
definitions. Recent work (de Bakker et al., 2005) employed

resampling data across the 500-kb HapMap ENCODE regions
(Feingold et al., 2004), but it is not clear how to extend these
efforts to a large scale or how to flexibly specify disease models.
Many complex diseases are likely to be influenced by ancient

SNP variants that are common, and maintain appreciable
frequencies across continent-level populations (Altshuler et al.,
2005; Lohmueller et al., 2003; Peng and Kimmel, 2007).

Variants with low penetrance or predisposing for diseases of
old age will not have undergone strong selection, and
investigation of this class of diseases is among the motivations

for the HapMap project (Altshuler et al., 2005; Gibbs et al.,
2003). Under such a model, disease chromosomes may be
thought of as drawn from the same population as control

chromosomes, but with selection probabilities that differ from
controls at causal disease loci.
With these considerations, we developed a method to

simulate realistic human autosomal SNP data for disease
association studies, by resampling chromosome-length haplo-
types derived from real data. The simulated data follows

observed linkage disequilibrium structure and allele frequencies
at actual SNP loci, and thus is well suited for power analyses
and investigations of competing techniques for study design

and analysis. We started by assuming that phased SNP data are
available at a series of loci from a sample of individuals.
Assuming random mating, the individual typed chromosomes

form the relevant pool from which we draw in order to simulate
SNP alleles for new individuals. We further implemented an
artificial ‘crossover’ process that allows recombination of

chromosomes at simulated crossovers. This crossover process
mimics meiosis, but is arguably not necessary, as the original
chromosome sample is already reflective of the population.

However, we reasoned that a modest crossover process would
increase novelty and avoid long-range allelic association
produced by chance variation or subtle population substruc-

ture. As described below, we take care to simulate crossovers in
a manner that preserves haplotype block structure, and the
crossover rate is controlled by the user.

Figure 1 shows a schematic of the approach. The user
identifies one or more ‘disease’ SNPs in the pool data (currently
limited to one per autosome), for which ascertainment of cases

determines the genotype probabilities. Although each pool
chromosome is a high-density haplotype of allele values, only
the disease SNP is shown in the figure. We denote the genotype

at the jth disease locus by gj and the joint genotypes for the
L disease loci by g¼ {g1, . . ., gL}. We use D¼ 1 to denote a case
individual, D¼ 0 to denote control. At the direct level of

sampling from the chromosome pool, we must specify
P(g|D¼ 1) for each g. For our software, we also offer alternate
means of specifying the disease model, in terms of genotype

relative risks or absolute disease risks as described in the
Methods Section. A random g is drawn from P(g|D¼ 1), and
for each disease locus j two case chromosomes are drawn from

the pool to achieve genotype gj. Sampling is performed with

replacement, as homozygosity of short-range haplotypes may

arise in real data from a single shared ancestry. For low

penetrance diseases, this conditional sampling scheme is far

more efficient than unconditionally generating large numbers

of genotypes and retaining only the small fraction with disease.

The remaining allele values are generated by following an

artificial crossover process using the disease locus as the origin

(see Methods Section). At each generated crossover, a random

chromosome from the pool is used to continue extending the

haplotype. Final genotypes are created by combining the two

haplotypes for each individual.
Control chromosomes are generated similarly, following

P(g|D¼ 0) at the origin. These values differ from the

unconditional P(g) for diseases with high prevalence, appro-

priately reflecting that control individuals exhibit an excess of

low-risk alleles at disease loci. Our approach automatically

computes the necessary P(g|D¼ 0) values from the disease

model specification and the disease prevalence (see Methods

Section). Autosomes not containing disease loci are simulated

for both case and control by randomly sampling from the pool.

Any crossover origin may be used for such chromosomes, and

we start at the p-terminus.

0 0 0 1 1

0 0 1101 1 1 11 1 1

Chromosome pool 

Origin Origin 

Control chromosomes Case chromosomes 

Disease SNP allele
values 

 

Fig. 1. Simulation of case and control chromosomes. Chromosome

pool. These are derived from HapMap or other source as chromosome-

length haplotypes. Case chromosomes. Genotypes at the disease SNP

are determined according to P(g|D¼ 1), and pool chromosomes are

chosen to be compatible with the genotype. Then the artificial crossover

process is simulated, following the process described in the text, using

the disease SNP location as the origin. The example depicted here

shows a recessive disease, for which two ‘1’ alleles are required. Control

chromosomes. Genotypes at the disease SNP are determined according

to P(g|D¼ 0), and otherwise the process is the same as with case

chromosomes. Simulation of affected-child trio data proceeds similarly,

with transmitted chromosomes simulated in the same manner as case

chromosomes. Non-transmitted chromosomes in the trios are simulated

in a similar manner to control chromosomes, but follow the

unconditional genotype frequencies P(g) at the disease loci.
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Using the above mechanism, we may similarly generate data
for affected-child trios. In doing so, we simulate ‘transmitted’

versus ‘non-transmitted’ chromosomes (Falk and Rubinstein,

1987), obviating the need for explicit simulation of the meiotic

events in the trio. Assuming that trio ascertainment is based on

the child, the child’s (transmitted) chromosomes are simulated

in the same manner as case chromosomes above. Non-

transmitted chromosomes are simulated using the uncondi-

tional probabilities P(g) at the disease loci, because the selection

mechanism (case status of child) does not influence the

genotype probabilities for non-transmitted chromosomes.

Transmitted and non-transmitted chromosomes are then used

to obtain genotypes for the trio.

2 METHODS

2.1 A HapMap-based pool

We currently use three separate chromosome pools derived from the

HapMap population samples. These consist of (i) 30 parent–child trios

from Utah, USA, with ancestry from northern and western Europe

(CEU); (ii) data from 45 unrelated Japanese in Tokyo, Japan (JPT),

and 45 unrelated Han Chinese in Beijing, China (CHB), combined as

JPTþCHB and (iii) 30 parent-child trios of Yoruba people from

Ibadan, Nigeria (YRI). These samples provide an ideal initial dataset

for our approach. The samples were typed at �1 million autosomal

SNPs for the Phase I HapMap freeze and �3.6 million SNPs for Phase

II (containing Phase I as a subset). The data contain mostly common

SNP variants (Altshuler et al., 2005), and most SNPs from major

genotyping platforms are represented (Barrett and Cardon, 2006;

Matsuzaki et al., 2004). Our software uses haplotypes as released by the

HapMap consortium, phased using the PHASE software (Stephens and

Donnelly, 2003).

2.2 Simulation of case haplotypes

For the joint disease genotypes g¼ {g1, . . ., gL}, we currently assume

that the L disease loci reside on separate chromosomes (handling

multiple disease loci per chromosome is more complicated, and is the

subject of future research). We estimate the unconditional population

genotype probabilities P(g), assuming Hardy–Weinberg equilibrium in

the chromosome pool. Specifically, let i index the H haploid genomes in

the pool. For the L disease loci, suppose the observed allele value for

the ith haploid genome at the jth disease locus is aij2 {0,1}. Here ‘1’

always denotes the minor allele. The observed control minor allele

frequency is pj¼�iaij/H. The genotype for an individual at the jth

disease locus is denoted by the number of minor alleles, gj2 {0,1,2}.

The Hardy–Weinberg assumption is that P(gj¼ 0)¼ (1� pj)
2,

P(gj¼ 1)¼ 2pj (1� pj) and P(gj¼ 2)¼ pj
2, and finally

PðgÞ ¼
YL

j¼1
PðgjÞ:

Our approach is meaningful only for disease loci with minor allele

frequency (MAF)40 in the original pool, and gives positive prob-

abilities for every possible joint genotype for the L loci. In contrast,

the original HapMap data may not contain all possible joint genotypes,

due to table sparseness if L is large.

2.2.1 Absolute genotype (AG) specification Sampling from the

disease model is ultimately performed using P(g|D¼ 1). Using the input

type we refer to as absolute genotype (AG) specification, the user

directly specifies these probabilities, along with the disease prevalence

P(D¼ 1). Although the AG format is conceptually straightforward, it is

often more convenient to specify the model in terms of genotype relative

risks (GRR) or absolute disease risks (AR). Our approach also accepts

these latter two input types, which are automatically converted to the

AG probabilities as described subsequently. For any of these input

types there are a range of possible risk values, and values outside of this

range can result in genotype probabilities outside the range (0,1). Our

web tool described below automatically flags any such errors in risk

specification.

2.2.2 Genotype relative risk (GRR) specification The user

specifies the disease prevalence P(D¼ 1) and relative risks RRg¼

P(D¼ 1|g)/P(D¼ 1|g0) for all g compared to a referent g0 (which has

RRg0¼ 1).

We have

PðgjD ¼ 1Þ ¼
PðgÞPðD ¼ 1jgÞ

PðD ¼ 1Þ
¼

PðgÞRRg

PðD ¼ 1Þ
� PðD ¼ 1jg0Þ

and the last term may be computed using

PðD ¼ 1jg0Þ ¼

P
g PðgjD ¼ 1Þ

P
g PðgÞRRg=PðD ¼ 1Þ

¼
PðD ¼ 1ÞP
g PðgÞRRg

:

2.2.3 Absolute risk (AR) specification The user specifies

P(D¼ 1|g) for all g. We have

PðgjD ¼ 1Þ ¼
PðgÞPðD ¼ 1jgÞ

PðD ¼ 1Þ

where

PðD ¼ 1Þ ¼
X

g
PðD ¼ 1jgÞPðgÞ

is calculated directly.

Note that any of the input types requires specifying the risks

associated with each of the 3L joint genotypes. This level of detail

enables complete flexibility in specifying various penetrances and

disease locus interactions, although for many purposes users may wish

to specify only a single disease locus.

2.3 Control haplotypes

Using any of the input types, the AG values and the prevalence

P(D¼ 1) are available from the previous subsection. We obtain the

control genotype frequencies as follows. We have

PðgÞ ¼ PðgjD ¼ 0ÞPðD ¼ 0Þ þ PðgjD ¼ 1ÞPðD ¼ 1Þ

and rearranging the terms gives

PðgjD ¼ 0Þ ¼
PðgÞ � PðgjD ¼ 1ÞPðD ¼ 1Þ

PðD ¼ 0Þ
,

for which all terms on the right-hand side are known. From these

probabilities, the control chromosomes can be simulated in the same

manner as case chromosomes. For rare diseases, the P(g|D¼ 0) values

will be very close to the unselected genotype probabilities P(g).

2.4 Extreme-phenotype designs

Finally, we note that similar reasoning can be used to specify

appropriate genotype probabilities for designs in which individuals

with extreme phenotypes are chosen for genotyping. We assume that

the investigator has a model p(�|g), which is the density of a quantitative

trait � depending on the joint disease genotype. Then

Pðgj�4�upperÞ ¼
PðgÞPð�4�upperjgÞ

Pð�4�upperÞ

where

Pð�4�upperÞ ¼
X

g
PðgÞPð�4�upperjgÞ
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for some critical upper phenotype value �upper that determines the

sampling of individuals with ‘high’ trait values. The genotype prob-

abilities can be used in an AG specification to simulate ‘case high’ indi-

viduals (and any simulated controls are discarded). Similarly, values

P(g|�5�lower) for a lower threshold �lower can be used to simulate

‘case low’ individuals.

2.5 The HAP-SAMPLE tool

We have implemented our approach in a program called HAP-

SAMPLE, which has a web-based interface for ease of use by the

research community (Fig. 2, www.hapsample.org). Inputs consist of the

disease model file (the various types of specifications are given above)

with specific rs#’s for the disease SNPs, and a file listing SNPs to be

‘genotyped’. The disease SNPs need not be among the genotyped SNPs,

but both disease SNPs and typed SNPs must be available in the

chromosome pool. Output consists of SNP genotypes, reflecting current

typing technologies. In addition, the output contains the simulated

haplotypes, which are useful in evaluating the success of haplotype

reconstruction approaches. Simulation times for a sample of 1000 cases

and 1000 controls ranges from a few seconds for a few dozen SNPs to a

few minutes for 100 000 SNPs.

The default limit of SNPXgenotype observations has been set to 108

for each of the case and control groups. Thus, e.g. 1 million cases and

1 million controls can be simulated for 100 markers in a genomic

region. These simulated individuals can then be split to form 1000

independent simulations of 1000 cases versus 1000 controls. Similarly,

simulation of whole genome scans can also be performed individually

and repeatedly, although investigators should contact the authors when

planning numerous simulated whole genome scans.

2.6 The crossover process

Placing simulated crossovers in regions of high LD will tend to reduce

LD in the simulated data compared to observed data. We guard against

this possibility by mimicking meiosis down to fine scales, where the

presence of haplotype block structure reflects variation in local meiotic

recombination rates (Altshuler et al., 2005; Myers et al., 2005). We

applied the LDMAP software (Maniatis et al., 2002) to each phased

HapMap population to produce three maps of linkage disequilibrium

units (LDU). The approach has some similarities to studies of

recombination hotspots (Li and Stephens, 2003; Myers et al., 2005),

and is straightforward for frequent updating. At large scales, the LDU

map reflects the sex-averaged meiotic map (Kong et al., 2002; Tapper

et al., 2005), but provides an interpolation at much finer scales using

LD patterns observed in the HapMap data. HAP-SAMPLE users

specify a desired average number of crossovers per centiMorgan, which

are simulated according to a Poisson process (i.e. a Haldane map

function). The crossovers are then converted from genetic location to

physical location by the LDU map. The value 0.01 corresponds to the

rate of a single meiosis, and in terms of crossovers is similar to

randomly selecting pool chromosomes and performing mating for a

single generation. We recommend using a higher crossover rate of 1.0

per cM, which reduces long-range LD, but for small distances does not

reduce LD much below that observed in the pool.

Figure 3 shows the LDU map location (expressed as a fraction of the

chromosome) for an illustrative 1.2mb region of chromosome 22q,

matched with the pairwise r2 LD measure for CEU (Hudson, 1985). The

LDU map is largely flat in regions of high LD, and increases rapidly

across the boundary of regions that are in low LD. The conversion from

LDU to physical location ensures that simulated crossovers are unlikely

to occur in regions of high LD.

3 RESULTS

3.1 The HapMap samples

Phased HapMap data are available at www.hapmap.org,
computed using a version of the PHASE software (Stephens

and Donnelly, 2003). For the trios, the phasing has a very low
error rate, in the range of 0.05–0.10%, while error among

unrelateds is estimated to be �5% (Marchini et al., 2006).
The 30 trios in each of CEU and YRI produce 120 phased
chromosome-length haplotypes for each chromosome, while

the 90 individuals in the JPTþCHB dataset produces 180
phased haplotypes. Many simulations of interest will produce

far more haplotypes than the size of the pools, and a reasonable

Fig. 3. The LDU map versus physical position for an illustrative region

of chromosome 22. The lower triangle depicts the corresponding r2 LD

values from the CEU dataset. LD units increase little across regions/

blocks with high LD, punctuated by rapid increases at the block

boundaries.

Disease
model 

List of typed
SNPs

Simulation

Output (genotypes or 
phased haplotypes)
for case-control or
affected-child trio
designs

Fig. 2. Input/output schematic for HAP-SAMPLE. A disease model

file specifies the disease SNPs and their associated risks, while another

file lists the SNPs for which data are simulated. Output for case-control

or affected-child trio designs is presented as genotypes or phased

haplotypes.
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question arises: can the finite pool support such simulations?

The answer depends on the type of simulation, and a full

investigation cannot be given here. However, the questions can

be broadly addressed in terms of (i) representativeness of the

samples, and (ii) sampling variation resulting from treating the

finite sample as a population. The HapMap individuals were

not randomly sampled as representative of larger populations,

but the CEU samples have been presented as reflective of

Europeans (Altshuler et al., 2005), who may be relatively

homogeneous in LD patterns (Nejentsev et al., 2004).

Moreover, direct comparisons of CEU data to independent

Finnish (Willer et al., 2006) and Spanish (Ribas et al., 2006)

samples reveals strong concordance of allele frequencies and

LD patterns. Similarly, the CHB, JPT and YRI samples have

been used as representative in continental-level investigations of

population genetics (Lin et al., 2006; Tenesa and Dunlop, 2006;

Tenesa et al., 2007; Tian et al., 2006). Thus, we believe it is

reasonable to use the HapMap samples until more extensive

and representative data are available.

The effects of sampling variation, in contrast, can be

determined from the data using well-understood statistical

principles. Using a particular SNP as a candidate disease locus,

the sampling variation can modestly affect inference. For 120

alleles (the smallest of our pools), standard errors in minor

allele frequencies range from 0.041, for an allele with an

MAF of 0.5, to 0.020, for an allele with an MAF of 0.05.

We do not recommend using HAP-SAMPLE to simulate

disease SNPs with smaller MAF values until the available pools

are larger.
In practice, the specified disease loci are often not true

candidates, but are merely intended to be representative of

potential disease loci. Thus, e.g. a researcher interested in the

power to detect a disease locus which has a population MAF in

controls of 0.2 may choose as ‘causal’ a SNP with an observed

MAF of 0.2, and the sampling error is immaterial. For many

purposes, it is the population distribution of allele frequencies

that matters, and this is estimated highly accurately in a sample

of 120 haploid genomes. Similarly, local LD structure shows

little sampling variation for these sample sizes. Figure 4 shows a

‘heat map’ of r2 LD values using the Phase I CEU samples for

an illustrative region of chromosome 10p. Sampling variation

can be reflected by calculating r2 values in bootstrap resamples

of the 120 haplotypes spanning the region. The decay of linkage

disequilibrium is extremely similar across the bootstrapped

samples (95% interval boundaries shown in Fig. 4c), indicating

that sampling variation for the LD patterns is minor.

3.2 Simulation examples

HAP-SAMPLE is a general simulation tool that is immediately

available to the research community. We provide three case-

control examples here: a simulation of a candidate disease

region with a single causal SNP, a whole genome scan for two

causal SNPs and a three-population simulation of a region

under recent selection. The examples serve to illustrate the tool,

which can be used for a much wider variety of purposes.
For the region of 10p11 depicted in Figure 5, we supposed

that SNP rs#11007734 upstream of the gene SVIL (representa-

tive of a promoter polymorphism) would increase in allele

frequency from 0.2 in controls (n¼ 300) to 0.35 in cases

(n¼ 300). We assumed Hardy–Weinberg equilibrium among

the cases, although this is not a requirement of HAP-SAMPLE.

After a single simulation using the CEU population and all

Phase I SNPs in the region, P-values for Fisher’s exact test were

computed, and are depicted in the Figure 5a (left panel) along

with a hypothetical genome-wide threshold of P¼ 2� 10�7.

Several interesting and realistic features emerge. The causal

SNP is indeed significant, although it is not the most

significant, and several nearby markers (e.g. due to low

MAF) show little evidence of association. The leftmost

marker shows P510�4, even though it is over 200 kb distal.

This sort of observation is often puzzling for investigators,

raising suspicions of a second mutation. However, here the

observation can be explained only in terms of LD with the sole

causal SNP. We also depict in Figure 5a (left panel) the

P-values for those SNPs in the region that are on the

Affymetrix 100K SNP array. We use this array for illustration,

arrays of higher density are available and (using the array SNP

list) can be simulated via HAP-SAMPLE. Using the array, the

association is essentially overlooked (the minimum array

P-value in the region is about 0.004), illustrating that a

higher-density scan may be necessary to detect the association.

Using the same disease model and all the Phase I SNPs in the

region, we performed 1000 simulations of 500 cases versus 500

controls (Figure 5a, right panel) to compute the power to detect

association at the genome-wide threshold. The figure illustrates

the relative power for nearby SNPs, as well as the very low

(b) (a) 

(c) 

Fig. 4. r2 linkage disequilibrium patterns in an illustrative region of

chromosome 10p11, using Phase I HapMap CEU data. (a) Results

obtained after phase estimation, with allele values estimated to be

99.95% accurate. (b) Results for a single bootstrap resample of the data

from a, which is nearly identical. (c) mean r2 as a function of distance

for the region. Upper and lower quantiles for 1000 bootstrap resamples

shows little sampling variation in pairwise LD patterns.
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power of numerous less-informative SNPs in the immediate

vicinity of the causal SNP.
As another example, we consider a disease model involving

both SNPs rs#2268994 (chromosome 6, intron 1 of SLC35A1,

MAF¼ 0.49) and rs#10500350 (chromosome 16, intron 3 of

A2BP1, MAF¼ 0.10). We used HAP-SAMPLE to specify

genotype relative risks of 1.0, 2.2 and 3.3 for joint disease

genotypes {0,0}, {0,1}, {0,2}, respectively, and GRR¼ 5.0 for

the remaining joint genotypes. Figure 5b shows the Fisher’s

exact test P-values for the Affymetrix 100K array SNPs on the

two chromosomes containing the disease SNPs, which are both

on the array. SNPs at or near the causal SNPs are the most

significant, although not necessarily achieving genome-wide

significance. The figure also shows the result of a median

smoothing of the P-values, which also identifies the causal SNP

regions. Although the disease model involves an interaction

between the causal SNPs, a logistic model (data not shown)

with interaction terms for the two SNPs is not more highly

significant than the individual SNP tests.

Finally, we offer a simple illustration of how the three

populations exhibit different characteristics, which are readily

demonstrated using our approach. We used HAP-SAMPLE to

simulate 100 individuals from each of the three populations

CEU, JPTþCHB and YRI, with no disease gene, using the

SNPs on the Affymetrix 100K array. For 97 informative SNPs

in a 2.5Mb region contain the lactase gene LCT, the origin of

the three samples is apparent from the first two principal

components (Fig. 6a) (Price et al., 2006). The region is thought

to have undergone a recent selective sweep in Europeans

(Bersaglieri et al., 2004), producing a signature long region of

high LD in the CEU samples (Fig. 6b). A similar selective

sweep is thought to have occurred in East African pastoral

populations (Tishkoff et al., 2007), which does not include the

Yoruba. Accordingly, the region of high LD is much shorter in

the JPTþCHB or Yoruba samples (Fig. 6c and d). Although

the lactase region is exceptional, principal component analyses

using 1000 random SNPs (data not shown) easily distinguishes

among the three source populations. In the current HAP-

SAMPLE implementation, extreme population stratification

(at the level of the three HapMap populations) can be

simulated directly by sampling separately from the three

pools and combining the datasets. The incorporation of more

subtle stratification is the subject of future work.

4 DISCUSSION

Despite much recent work on whole genome scan designs, there

is little consensus on a number of key analytic issues. To our

knowledge, HAP-SAMPLE is the first tool that can simulate

realistic association data reflective of actual whole genome
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Fig. 5. (a) Left panel: analysis of a single CEU simulated dataset with

‘causal’ SNP rs#11007734 (upstream of SVIL, 10p11.2) using the HAP-

SAMPLE approach. Each point represents the P-value from a Fisher’s

exact test of genotype counts in cases (n¼ 300) versus controls

(n¼ 300). Controls were assumed to have a population frequency for

the minor allele equal to the observed HapMap frequency of 20%,

while cases were assumed to have frequency 35%. The arrow indicates

the causative SNP, while black points correspond to those SNPs

available on the Affymetrix 100K SNP platform. The dashed line

indicates an example genome-wide significance threshold of

P¼ 2� 10�7. Right panel: statistical power to detect an increase in

allele frequency for the same disease model and SNPs as depicted in the

left panel, using Fisher’s exact test at each SNP for 500 cases and 500

controls. The location of the causal SNP is indicated in red. (b) Results

from a simulated genome scan with the Affy 100K platform in CEU

(300 cases, 300 controls). Chromosomes 6 (left panel) and 16 (right

panel) are shown, and causal SNPs rs#2268994 and rs#10500350 (on the

platform, indicated in red) with the genotype relative risk model

described in text. Open circles show �log10(P-values) for individual

SNPs, while the black lines show the result of median smoothing the

values with SNP window width 3.
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Fig. 6. One Hundred individuals from each of the CEU, JPTþCHB

and YRI populations were simulated for the Affymetrix 100K array. (a)

Using only the 97 informative SNPs in a 2.5Mb region contain the

lactase gene LCT, the three populations can be distinguished via

principal components. (b) r2 heatmap of the CEU samples shows

markedly longer region of high LD than for (c) the combined Asian

samples JPTþCHB, or (d) the Yoruba samples YRI.
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genotyping platforms. Pure model-based simulation of such
data is particularly difficult, as the choice of typed SNPs has
resulted from additional criteria that may not be fully described

by the model, including tag-SNP selection criteria (de Bakker
et al., 2005) and biological phenomena such as restriction
enzyme sites (Matsuzaki et al., 2004). The general specification

of disease models in HAP-SAMPLE will be useful to evaluate
methods for detecting multiple risk loci (Becker et al., 2005;
Marchini et al., 2005). Moreover, our approach preserves
observed local LD structure for realistic finer scale examina-

tions of candidate genes or regions.
We anticipate that HAP-SAMPLE will be particularly useful

for investigations of haplotype–phenotype association meth-

ods, the power of which depends greatly on the length and
specificity of associated haplotypes and risk allele frequencies
(de Bakker et al., 2005). Similarly, de novo simulation

approaches may not be able to realistically reflect the utility
of phenomena such as Hardy–Weinberg disequilibrium to
detect association in case-control (Nielsen et al., 1998), or case-

only (Lee, 2003) studies.
As currently implemented, the random sampling in our

approach largely eliminates substructure within each popula-

tion, which may influence association results (Marchini et al.,
2004). Our approach might be extended to include these effects
by introducing dependencies in the pairing of pool chromo-

somes, although further work is necessary to ensure that the
results reflect observed substructure parameter estimates
(Altshuler et al., 2005). Similarly, extensions might include

artificial output for admixture mapping (Smith and O’Brien,
2005) by sampling individuals with differing genomic propor-
tions from the separate chromosome pools/populations

(Altshuler et al., 2005). However, the precise manner of
simulating stratification/admixture deserves careful study, and
such procedures will require extensive comparisons to true

admixed populations. Although HAP-SAMPLE is currently
limited to assuming random mating within the pool, it may
viewed as representative of situations where stratification has

been appropriately controlled. Extensions to the X chromo-
some will be straightforward, but will require specifying the sex
of the simulated individuals and more complicated disease

models.
The HapMap samples provide limited opportunity for

specifying rare disease variants, because of selection bias in
HapMap markers (Clark et al., 2005) and sample size

constraints. Careful analysis of the HapMap ENCODE regions
(Feingold et al., 2004) may provide the basis for adding
artificial low-frequency allelic variation to the existing data for

increased novelty of haplotypes. Our approach also might be
modified to simulate one or more recent disease mutations by
selecting pool chromosomes to harbor the mutations. Then,

forward simulation or single-locus coalescent approaches could
be used to simulate an entire set of ‘case’ chromosomes
reflecting the disease SNP ancestry.

ACKNOWLEDGEMENTS

Supported in part by the Carolina Center for Exploratory
Genetic Analysis (P20 RR020751), the Carolina Environmental

Bioinformatics Research Center (EPA RD-83272001),

NIH grants P30ES10126, P50 GM076468, R01 GM074175

and R01 HL068890, and CF Foundation Zou05P0.

Conflict of Interest: none declared.

REFERENCES

Altshuler,D. et al. (2005) A haplotype map of the human genome. Nature, 437,

1299–1320.

Barrett,J.C. and Cardon,L.R. (2006) Evaluating coverage of genome-wide

association studies. Nat. Genet., 38, 659–662.

Becker,T. et al. (2005) Haplotype interaction analysis of unlinked regions. Genet.

Epidemiol., 29, 313–322.

Bersaglieri,T. et al. (2004) Genetic signatures of strong recent positive selection at

the lactase gene. Am. J. Hum. Genet., 74, 1111–1120.

Calafell,F. et al. (2000) Haplotype evolution and linkage disequilibrium: A

simulation study. Hum. Hered., 51, 85–96.

Clark,A.G. et al. (2005) Ascertainment bias in studies of human genome-wide

polymorphism. Genome Res., 15, 1496–1502.

de Bakker,P.I.W. et al. (2005) Efficiency and power in genetic association studies.

Nat. Genet., 37, 1217–1223.

De La Chapelle,A. and Wright,F.A. (1998) Linkage disequilibrium mapping in

isolated populations: the example of Finland revisited. Proc. Natl Acad. Sci.

USA, 95, 12416–12423.

Dudbridge,F. and Koeleman,B.P.C. (2004) Efficient computation of significance

levels for multiple associations in large studies of correlated data, including

genomewide association studies. Am. J. Hum. Genet., 75, 424–435.

Dudek,S.M. et al. (2006) Data simulation software for whole-genome association

and other studies in human genetics. Proc. Pac. Symp. Biocomput., 11,

499–510.

Falk,C.T. and Rubinstein,P. (1987) Haplotype relative risks: an easy reliable way

to construct a proper control sample for risk calculations. Ann. Hum. Genet.,

51, 227–233.

Feingold,E.A. et al. (2004) The ENCODE (ENCyclopedia of DNA elements)

Project. Science, 306, 636–640.

Gibbs,R.A. et al. (2003) The International HapMap Project. Nature, 426,

789–796.

Hintsanen,P. et al. (2006) An empirical comparison of case-control and trio-based

study designs in high-throughput association mapping. J. Med. Genet., 43,

617–624.

Hirschhorn,J.N. and Daly,M.J. (2005) Genome-wide association studies for

common diseases and complex traits. Nat. Rev. Genet., 6, 95–108.

Hudson,R.R. (1985) The sampling distribution of linkage disequilibrium under

an infinite Allele model without selection. Genetics, 109, 611–631.

Kong,A. et al. (2002) A high-resolution recombination map of the human

genome. Nat. Genet., 31, 241–247.

Laval,G. and Excoffier,L. (2004) SIMCOAL 2.0: a program to simulate genomic

diversity over large recombining regions in a subdivided population with a

complex history. Bioinformatics, 20, 2485–2487.

Lee,W.C. (2003) Searching for disease-susceptibility loci by testing for Hardy-

Weinberg disequilibrium in a gene bank of affected individuals. Am. J.

Epidemiol., 158, 397–400.

Li,N. and Stephens,M. (2003) Modeling linkage disequilibrium and identifying

recombination hotspots using single-nucleotide polymorphism data. Genetics,

165, 2213–2233.

Lin,E. et al. (2006) A case study of the utility of the HapMap database for

pharmacogenomic haplotype analysis in the Taiwanese population. Mol.

Diagn. Ther., 10, 367–370.

Liu,Z.Q. and Lin,S.L. (2005) Multilocus LD measure and tagging SNP selection

with generalized mutual information. Genet. Epidemiol., 29, 353–364.

Lohmueller,K.E. et al. (2003) Meta-analysis of genetic association studies

supports a contribution of common variants to susceptibility to common

disease. Nat. Genet., 33, 177–182.

Lowe,C.E. et al. (2004) Cost-effective analysis of candidate genes using htSNPs: a

staged approach. Genes Immun., 5, 301–305.

Maniatis,N. et al. (2002) The first linkage disequilibrium (LD) maps: delineation

of hot and cold blocks by diplotype analysis. Proc. Natl Acad. Sci. USA, 99,

2228–2233.

Marchini,J. et al. (2004) The effects of human population structure on large

genetic association studies. Nat. Genet., 36, 512–517.

Simulating association studies

2587

 at U
niversity of N

orth T
exas on January 6, 2017

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


Marchini,J. et al. (2005) Genome-wide strategies for detecting multiple loci that

influence complex diseases. Nat. Genet., 37, 413–417.

Marchini,J. et al. (2006) A comparison of phasing algorithms for trios and

unrelated individuals. Am. J. Hum. Genet., 78, 437–450.

Matsuzaki,H. et al. (2004) Genotyping over 100,000 SNPs on a pair of

oligonucleotide arrays. Nat. Methods, 1, 109–111.

Montana,G. (2005) HapSim: a simulation tool for generating haplotype data with

pre-specified allele frequencies and LD coefficients. Bioinformatics, 21,

4309–4311.

Myers,S. et al. (2005) A fine-scale map of recombination rates and hotspots

across the human genome. Science, 310, 321–324.

Nejentsev,S. et al. (2004) Comparative high-resolution analysis of linkage

disequilibrium and tag single nucleotide polymorphisms between populations

in the vitamin D receptor gene. Hum. Mol. Genet., 13, 1633–1639.

Nielsen,D.M. et al. (1998) Detecting marker-disease association by testing for

Hardy-Weinberg disequilibrium at a marker locus. Am. J. Hum. Genet., 63,

1531–1540.

Peng,B. and Kimmel,M. (2007) Simulations provide support for the common

disease-common variant hypothesis. Genetics, 175, 763–776.

Peng,B. et al. (2007) Forward-time simulations of human populations with

complex diseases. PLoS Genet., 3, e47.

Posada,D. and Wiuf,C. (2003) Simulating haplotype blocks in the human

genome. Bioinformatics, 19, 289–290.

Price,A.L. et al. (2006) Principal components analysis corrects for stratification in

genome-wide association studies. Nat. Genet., 38, 904–909.

Pritchard,J.K. and Cox,N.J. (2002) The allelic architecture of human disease

genes: common disease – common variant . . . or not? Hum. Mol. Genet., 11,

2417–2423.

Ribas,G. et al. (2006) Evaluating HapMap SNP data transferability in a large-

scale genotyping project involving 175 cancer-associated genes. Hum. Genet.,

118, 669–679.

Risch,N. and Merikangas,K. (1996) The future of genetic studies of complex

human diseases. Science, 273, 1516–1517.

Satagopan,J.M. et al. (2004) Two-stage designs for gene-disease association

studies with sample size constraints. Biometrics, 60, 589–597.

Schaffner,S.F. et al. (2005) Calibrating a coalescent simulation of human genome

sequence variation. Genome Res., 15, 1576–1583.

Schwartz,R. et al. (2003) Robustness of inference of haplotype block structure.

J. Comput. Biol., 10, 13–19.

Smith,M.W. and O’Brien,S.J. (2005) Mapping by admixture linkage disequili-

brium: advances, limitations and guidelines. Nat. Rev. Genet., 6, 623–626.

Stephens,M. and Donnelly,P. (2003) A comparison of Bayesian methods for

haplotype reconstruction from population genotype data. Am. J. Hum.

Genet., 73, 1162–1169.

Tapper,W. et al. (2005) A map of the human genome in linkage disequilibrium

units. Proc. Natl Acad. Sci. USA, 102, 11835–11839.

Tenesa,A. and Dunlop,M.G. (2006) Validity of tagging SNPs across populations

for association studies. Eur. J. Hum. Genet., 14, 357–363.

Tenesa,A. et al. (2007) Recent human effective population size estimated from

linkage disequilibrium. Genome Res., 17, 520–526.

Thomas,D.C. et al. (2005) Recent developments in genomewide association scans:

A workshop summary and review. Am. J. Hum. Genet., 77, 337–345.

Tian,C. et al. (2006) A genomewide single-nucleotide-polymorphism panel with

high ancestry information for African American admixture mapping.

Am. J. Hum. Genet., 79, 640–649.

Tishkoff,S.A. et al. (2007) Convergent adaptation of human lactase persistence in

Africa and Europe. Nat. Genet., 39, 31–40.

Wang,Y. and Rannala,B. (2005) In silico analysis of disease-association mapping

strategies using the coalescent process and incorporating ascertainment and

selection. Am. J. Hum. Genet., 76, 1066–1073.

Willer,C.J. et al. (2006) Tag SNP selection for Finnish individuals based on the

CEPH Utah HapMap database. Genet. Epidemiol., 30, 180–190.

F.A.Wright et al.

2588

 at U
niversity of N

orth T
exas on January 6, 2017

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

