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ABSTRACT

Motivation: Identifying candidate genes associated with a given

phenotype or trait is an important problem in biological and biomedical

studies. Prioritizing genes based on the accumulated information

from several data sources is of fundamental importance. Several inte-

grative methods have been developed when a set of candidate genes

for the phenotype is available. However, how to prioritize genes for phe-

notypes when no candidates are available is still a challenging problem.

Results: We develop a new method for prioritizing genes associated

with a phenotype by Combining Gene expression and protein

Interaction data (CGI). Themethod is applied to yeast gene expression

data sets in combination with protein interaction data sets of varying

reliability.We found that ourmethodoutperforms the intuitiveprioritizing

method of using either gene expression data or protein interaction data

only anda recent gene rankingalgorithmGeneRank.We thenapply our

method to prioritize genes for Alzheimer’s disease.

Availability: The code in this paper is available upon request.

Contact: fsun@usc.edu

Supplementary data: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

With the rapid development of high-throughput biotechnologies,

biologists have amassed a large amount of data at various levels

such as gene expression profiles, (Cho et al., 1998; Spellman et al.,
1998; Hughes et al., 2000; Gasch et al., 2000), protein–protein

interactions (Ito et al., 2000, 2001; Uetz et al., 2000; Gavin

et al., 2002; Ho et al., 2002), single nucleotide polymorphisms,

transcription regulation networks, etc. These resources give us

insight into the underlying mechanisms of basic biological pro-

cesses, which can lead to improvements in public health. A typical

problem in biological and biomedical studies is to identify genes

responsible for a phenotype (e.g. disease status, quantitative trait

values, gene expression values, etc.). How to integrate evidences

from different resources to assist biologists on this task remains a

challenge for bioinformaticians.

Prioritizing genes by combining genetic study results and other

molecular level data has attracted much attention recently, since

the resolution of genetic studies are low and the number of candi-

date genes could be potentially large (Maraganore et al., 2005).

Franke et al. (2006) proposed to rank genes in candidate regions

by their connectivity with the genes in other linked regions.

The intuition behind the study is that the disease associated

genes could be a set of genes interacting with each other, for exam-

ple from a particular pathway. However, this method depends

strongly on the availability of results from genetics studies.

Under similar rationale, Aerts et al. (2006) developed a Bayesian

model to identify new genes (in addition to the already known

genes) involved in a given disease, using many currently available

data types. However, they assumed that a set of genes responsible

for the disease is already known, which limits the applicability of

their method.

Gene expression data and protein interaction data have been

integrated for gene function prediction. For example, Ideker

et al. (2002) used protein interaction data and gene expression

data to screen for differentially expressed subnetworks between

different conditions. In Tornow and Mewes (2003) and Segal

et al. (2003), gene expression data and protein interactions are

used to group genes into functional modules. These methods pro-

vide insights into the regulatory modules of the whole networks at

the systems biology level. However, it is not clear how to adapt their

methods to identify genes contributing to the phenotype of interest.

Morrison et al. (2005) adapted the Google search engine to priori-

tize genes for a phenotype by integrating gene expression profiles

and protein interaction data. However, the algorithm ignores the

information from proteins linked to the target protein through other

intermediate proteins, referred to in the rest of this paper as indirect

neighbors.

Here we propose an approach motivated from Markov Random

Field theory to prioritize genes using high-throughput data, includ-

ing gene expression profiling and protein interaction mapping. Our

approach focuses on relating (ranking) genes to phenotypes without

requiring any known candidate genes. We study the effect of dif-

ferent data integration methods and different definitions of the

neighborhood of the protein interaction network. We show that

the performance of our approach outperforms that of using gene

expression data only or using protein interaction data only, as well

as that of the existing method GeneRank, which is a modified

version of Google search engine PageRank. We also study the

performance of our method with respect to noise in protein inter-

action network. Finally, we apply our approach on data from human

Alzheimer’s disease.
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2 MATERIALS AND METHODS

2.1 Materials

Three gene expression data sets are used in this study: the Yeast Com-

pendium Knockout (KO) data (Hughes et al., 2000), Stress Response

(SR) data (Gasch et al., 2000) and Cell Cycle (CC) data (Cho et al.,

1998; Spellman et al., 1998).

Several protein interaction databases for yeast are available, including

data generated using the yeast two-hybrid method (Ito et al., 2000, 2001;

Uetz et al., 2000) and the mass spectrometric analysis of protein complexes

(Gavin et al., 2002; Ho et al., 2002). The fractions of true interactions among

the different observed interaction data sets, referred to as reliability, have

been extensively studied (Mrowka et al., 2001; Deane et al., 2002; Deng

et al., 2003). We choose to use the highly reliable MIPS (Munich Informa-

tion Center for Protein Sequences) physical interaction data set (Mewes

et al., 2002), which includes interactions collected from small-scale experi-

ments and the core data of Ito et al. (2000, 2001). The other protein inter-

action data sets such as DIP (Database of Interacting Proteins) core

(Xenarios et al., 2002), Uetz (Uetz et al., 2000) and Ito (Ito et al., 2000,

2001) are also used to evaluate the robustness of our approach with respect to

noise in protein–protein interaction data.

In order to assess the usefulness of various prioritizing methods, we use

the functional annotation from the Gene Ontology (GO, The Gene Ontology

Consortium 2001). GO is a rooted directed acyclic graph (DAG) and the

nodes close to the root are more abstract than the nodes far away from the

root. To avoid the problem of too broad or too specific functional categories

in GO, we use the concept of informative GO nodes defined as those con-

taining at least 40 genes and at most 200 genes, without any of its offspring

having the same number of genes as itself, similar to the definition presented

in Zhou et al. (2002).

2.2 Gene Expression Profiles and

Association Measures

Suppose that there are m subjects (or individuals/conditions) in a study. Let

wi be the phenotype value of the i-th subject. For each subject, the expression

values of n genes are measured. Let lij be the log-expression value of the j-th

gene for the i-th subject. The phenotype values and the gene expression data

are organized as in Table 1. For simplicity of presentation, we assume that

the phenotype takes real continuous values (see Dudoit et al., 2002 for

qualitative phenotype values). The Pearson correlation coefficient between

the phenotype values and the expression values of each gene can be a

measure of the association between the phenotype and genes. Since too

many missing values will make the correlation estimate unstable, we elimi-

nate genes with >5 missing values and then standardize the remaining data

on the rows in Table 1, by subtracting the mean expression measurements

and dividing by the standard deviation. In general, the phenotype values or

gene expression values may not have a normal distribution. The following

modified correlation coefficient (MCC) can be used to avoid this problem.

Without loss of generality, we assume that both the phenotype values w

and the expression values of gene g are available for the first m � k subjects.

Let RP ¼ (rp1, rp2, . . . , rpm�k) and RG ¼ (rg1, rg2, . . . , rgm�k) be the rank of

the values of phenotypew and the gene expression values of gene g across the

first m � k subjects. In case of ties, we randomly assign ranks to these tie-

subjects. An inverse normal transform (Li, 2002) is applied to the rank

vectors RP and RG:

xi ¼ F�1ððrpi þ 0:5Þ/ðm � k þ 1ÞÞ‚

yi ¼ F�1ððrgi þ 0:5Þ/ðm � k þ 1ÞÞ‚

where the fraction 0.5 in the numerator and 1 in the denominator are

introduced to prevent the corresponding item from being 0 or 1. F is the

cumulative distribution function of standard normal. After the transforma-

tion, we use the Pearson correlation coefficient between (x1, x2, � � �, xm�k)

and (y1, y2, � � �, ym�k) to measure the association between phenotype w and

gene g:

MCCðw‚gÞ ¼ 1

m � k

Xm�k

i¼1

xiyi: ð1Þ

To make our efforts immediately applicable for robust estimation of asso-

ciation scores between the phenotype and gene expression profiles using

protein interaction data, we apply the Fisher’s transformation (David, 1949)

on the modified correlation coefficient to obtain:

Og ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � k � 3

p

2
ln

1 þ MCCðw‚gÞ
1 � MCCðw‚gÞ ‚ ð2Þ

where Og has approximate standard normal distribution N(0,1). We sort the

genes according to Og. Note that whether or not we apply Fisher’s trans-

formation does not affect the prioritizing result when using expression data

only. However, it does affect the prioritizing result when integrating gene

expression and protein interaction data. We emphasize that Og is used here to

indicate that the value in Equation (2) is the observed value, not necessarily

the true underlying association score Rg.

2.3 Prioritizing genes by combining gene expression

profiles and protein interaction data

The association scores between the phenotype value w and the expression

profiles of interacting genes are correlated. Therefore, we can use Og and Og0,

where g0 are the interaction partners of gene g, to obtain a more accurate

estimation of the association between the phenotype and gene g.

The rationale behind our approach is that (1) the gene expression profiles

measured by microarray are noisy and thus the derived association score is

also noisy; (2) a protein is likely to be co-expressed with its interaction

partners (Jansen et al., 2002); (3) estimation of the association between a

protein and the phenotype can be calibrated by considering the association

between the protein’s interaction partners and the phenotype. Since indirect

interaction partners may contribute to the accurate estimation in (3), we also

take them into consideration. The basic idea of our approach, CGI, is shown

in Figure 1.

Two issues need to be clarified. One is the definition of neighborhood

system in the protein interaction network and the other is the method for data

integration. We consider the following neighborhood systems:

(1) Direct neighbors. For a given protein g, N g ¼ fh j h interacts

with g and h 6¼ gg is the direct neighborhood of g. A similarity mea-

sure Sgh is defined as 1 if h 2 N g and 0, otherwise. S is the adjacency

matrix in graph theory. The direct neighborhood system cannot

capture information from indirect neighbors.

(2) Shortest path. Let dgh be the graph-theory shortest distance between

proteins g and h in the protein interaction network. The similarity

between them is defined as Sgh ¼ 1/(dgh + 1) (Krauthammer et al.,

2004). Shortest distance neighborhood system captures information

from indirect neighbors, and gives indirect neighbors lower weight

than direct neighbors. However, this similarity matrix may not utilize

the information contained in the neighbor proteins efficiently since in

general dgh is small.

Table 1. The data structure for the phenotype value and the gene expression

values for the studied subjects

Subject Phenotype value Gene expression

Gene 1 Gene 2 � � � Gene n

1 w1 l11 l12 � � � l1n
2 w2 l21 l22 � � � l2n
..
. ..

. ..
. ..

.
� � � ..

.

m wm lm1 lm2 � � � lmn
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(3) Diffusion kernel. The diffusion kernel is defined as K ¼ exp(tH)

(Kondor and Lafferty 2002), where H is defined as:

Hgh ¼
1 if protein h 2 N g‚

�
P

g0 :g02N g
1 if h ¼ g‚

0 otherwise:

8<
:

The similarity score between two proteins g and h are defined as

Sgh ¼ Kgh=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kgg · Khh

p
, for h 2 N g (so that S has unit diagonal ele-

ments).

To integrate protein interaction data and gene expression data, we con-

sider the following probabilistic model. Let Ri be the underlying true asso-

ciation score between the phenotype and the i-th gene of interest and R¼ {Ri,

i ¼ 1,2, . . . , n}, where n is the number of genes. We treat R as a random

vector and model R by Markov Random Field (MRF) theory (for more detail

on MRF and Gibbs distribution see Geman and Geman, 1984). We model the

probability density function of R to be proportional to exp(�U0(R)/T), where

T is called temperature in statistical physics and U0(R) is referred as the

potential function. The potential function U0(R) defines a global Gibbs

distribution of the entire configuration of random vector R:

PrðRÞ ¼ 1

Z
exp ð � U0ðRÞ/TÞ‚

where U0ðRÞ ¼
P

i6¼j SijðRi �RjÞ2
and Z ¼

P
R exp ð � U0ðRÞ/TÞ is

referred as the partition function. We also assume that the observed asso-

ciation Oi is a summation of Ri and random noise «i, i.e. Oi ¼ Ri + «i, i ¼
1, 2, . . . n, where «i are independent and identically distributed random vari-

ables with normal distribution N(0, s2). The likelihood of the observed

association scores (O1,O2, � � � ,On) can be written as

PrðOÞ � exp ð � UðRÞ/2s2Þ‚

where U(R) can be written as

UðRÞ ¼
X
i

ðOi �RiÞ2 þ l
X
i 6¼j

SijðRi �RjÞ2
‚ ð3Þ

where l ¼ 2s2/T. The first term represents the contribution of the observed

association score. The second term represents the constraint by pairwise

interactions. When no noise is present, l ¼ 0, only the first term is effective

and the maximum a posteriori (MAP) estimation for R is exactly the same as

the observed data, R ¼ O. As l becomes larger, the solution is more influ-

enced by the second term. Our goal here is to obtain the least square estima-

tion of the underlying association scores R̂R by Equation (3). We refer to the

ranking result using R̂R as CGI-1.

In addition to CGI-1, we also consider two other relatively simple meth-

ods for integrating gene expression profiles and protein interactions. The first

method is based on the assumption that the association scores between the

phenotype values and the gene expression profiles of interacting genes are

positively correlated. Therefore, we update the association score between the

phenotype and the i-th gene by the weighted average of the observed asso-

ciation scores for the neighboring genes,

R̂Ri ¼
Oi þ l

P
k:k 6¼i SikOk

1 þ l
P

k:k 6¼i Sik
‚ i ¼ 1‚2‚ � � � ‚n: ð4Þ

We can then sort the genes according to the values of R̂Ri. We refer to this

approach as CGI-2.

Although several studies have shown that interacting proteins are more

likely to be positively correlated, some interacting gene pairs can also be

negatively correlated (Deng et al., 2003). By using CGI-2, the neighbors

with positive association score and negative association score may counter-

act the significance of their contribution. Thus, we introduce a modified

version by

R̂Ri ¼
Oi þ l

P
k:k 6¼i Sik jOk j

1 þ l
P

k:k 6¼i Sik
‚ i ¼ 1‚2‚ � � � ‚n: ð5Þ

This approach is referred as CGI-3. We will show in section 3.1.3 the reason

of the usefulness of Equation (5).

2.4 Evaluation of gene prioritizing methods

One difficulty in evaluating the gene prioritization approaches is that there

are not many microarray data sets with a clearly defined phenotype in yeast.

On the other hand, highly reliable and abundant protein interaction data are

available for yeast and thus it is an ideal model organism to evaluate the

various approaches. Considering that the phenotypes of interest (e.g. disease

status in human) are generally the functional consequence of the expression

of many genes, we choose to simply take the expression levels of one (called

simple phenotype) or the average of the expression levels of two (called

complex phenotype) genes as phenotypes (we do not consider noise for

simplicity). Note that gene expression levels are frequently used as quan-

titative traits to locate quantitative trait loci (QTL) (Brem, 2002, 2005;

Morley et al., 2004). This strategy also allows us to empirically estimate

the performance of different prioritizing methods using the external criteria

of GO (The Gene Ontology Consortium 2001). For convenience of notation,

the gene whose expression level is treated as phenotype is referred as target

gene. The other genes can be regarded as genotypes as usual. The goal of our

prioritization is to rank genes with the same function (GO annotation) as the

target gene(s) on the top. We first describe how we evaluate prioritization

results using simple phenotypes. The evaluation of prioritization results

using complex phenotypes are illustrated in the Results section.

For each target gene w and its functional annotation F (informative nodes

as defined in the Materials subsection), we test the hypothesis that the genes

with functional annotation F are ranked higher than the other genes using

one-sided Wilcoxon rank sum test. Denote the resulting P-value as pw,F. We

repeat this procedure for many gene–function pairs (w,F) and obtainP-values

for these pairs. Note that a gene can be counted multiple times if it belongs to

multiple functional categories (Deng et al., 2003). Denote the empirical

cumulative distribution function of the P-values of these gene–function

pairs as G(p), p 2 [0,1]. Since it is anticipated that genes with the same

function as the target gene should have higher rank than other genes,

many gene-function pairs (w,F) will have small P-values and G(p) increases

very fast when p is close to 0. The faster G(p) increases, the better the

corresponding prioritizing method is. We define the performance measure

Fig. 1. Schematic flowchart of our approach. Shown left to the vertical

dashed line is the intuitive gene-prioritizing method using the gene expression

data only. Our approach, CGI, integrates the gene expression and protein

interaction data to obtain a calibrated association score between the pheno-

type and the gene. The GO functional annotation is used to evaluate the

prioritizing result of the intuitive method and our approach.

CGI: prioritizing genes by expression and PPI data
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as follows:

performance ¼
Z 1

0

GðpÞdðpÞ‚ ð6Þ

i.e. the area under the cumulative distribution function G(p).

Note that if a set of genes are unrelated to the target genes, the resulting

P-values would follow a uniform distribution in [0,1] and the performance

measure defined above will be 0.5. Higher performance value means better

performance of the gene prioritizing method.

3 RESULTS

In this section, we first study the effect of the three definitions of

neighborhood systems (direct neighbors, shortest path and diffusion

kernel) on the performance of the different integration approaches.

It is shown that CGI-3 combined with the diffusion kernel neigh-

borhood system consistently outperforms the other combinations.

CGI-3 combined with the diffusion kernel also outperforms the

GeneRank algorithm. The robustness of the performance of CGI-

3 with respect to noise in the protein interaction network is also

studied. We then study the performance of CGI-3 for complex

phenotypes. Finally, we apply CGI-3 to the Alzheimer’s disease

data set. Due to the incompleteness of the protein interaction data

set, we focus on the 4136 genes having at least one interacting

partners in the physical interaction data set (Mewes et al., 2002).

3.1 Effect of neighborhood systems

3.1.1 Direct neighbor and shortest path kernels Note that in this

case only one parameter l is involved. We first explore empirically

the effect of the parameter l under the direct neighborhood system,

using prioritizing methods CGI-1, CGI-2 and CGI-3, respectvely.

We tried several values for l. The optimal estimation l̂l is chosen as

the one maximizing Equation (6) for each data set (listed in ‘Direct

Neighbor’ column of Table 2). Our study shows that CGI-3

(Equation 5) outperforms the other prioritizing methods under

direct neighborhood kernel. Therefore, we first present the effect

of different values of l with CGI-3. The results of CGI-1 and CGI-2

are shown later (see Fig. 4).

Figure 2 shows the relationship between the performance index

and l for different gene expression data sets, using CGI-3. When l

¼ 0, only the gene expression information is used and the perfor-

mance index is low. The performance index first increases as l

reaches an optimal value and decreases thereafter. The optimal

values for l are consistent across the different data sets. For exam-

ple, when l ¼ 0, i.e. using only microarray data, the performance

index is 0.74, 0.74 and 0.80, for the CC, KO and SR data, respec-

tively. The corresponding performance index increases to 0.83, 0.82

and 0.85, when l is 0.5.

Similar results are observed for shortest path kernel. But in this

case CGI-3 is not always better than the other prioritizing methods.

Since the prioritizing method CGI-3 with direct neighbor kernel

outperforms that using shortest path kernel (see Fig. 4), we continue

on studying the diffusion kernel.

3.1.2 Diffusion kernel neighborhood system Here two parame-

ters l and t are involved. Again the prioritizing method CGI-3

(Equation 5) outperforms the other two methods. By sampling

l and t from 2D space [0, 6] · [0, 2 ]. We found that the optimal

value for l is always close to 1 and thus we fix l ¼ 1. The relation-

ship between the performance index and t is given in Figure 3 for

different gene expression data sets. The performance index stays

high for a large range of values of t. Comparison with the result of

direct neighborhood system also shows that the neighborhood sys-

tem defined by the diffusion kernel outperforms the directed neigh-

bors. This phenomenon has been observed to hold for protein

function prediction using protein interaction networks (Lee et al.,
2006). The empirical estimation of the optimal t is listed in Table 2.

3.1.3 Comparison of the performance of CGI-1, CGI-2, CGI-3
and GeneRank We compare the performance of different combi-

nations of neighborhood systems: direct neighbors, shortest path

and diffusion kernel with different prioritizing methods: CGI-1,

CGI-2, and CGI-3. The values of l̂l and t̂t given in Table 2 are

used. In Figure 4, the naive prioritizing method of using microarray

data only (Equation 1) is also presented as open bars (denoted by

MCC). It is clear that MCC has the lowest performance index. In

addition, we rank proteins according to the number of their inter-

acting partners (denoted as PPI in Fig. 4). This procedure always

gives highly connected proteins higher rank and does not depend on

the phenotype. Despite this drawback, it can be seen that the result

Table 2. Empirical optimal parameters for l (CGI-3 with direction neigh-

bors) and t (CGI-3 with diffusion kernel neighborhood system). CC: Cell

cycle; SR: Stress response; KO: Knockout

Direct neighbor (l̂l) Diffusion kernel (l̂l, t̂t)

CC 0.50 (1, 0.70)

SR 0.50 (1, 0.65)

KO 0.55 (1, 0.50)
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0.85

λ

P
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Cell cycle
Knock out
Stress response

Fig. 2. The performance of CGI-3 with direct neighborhood kernel for dif-

ferent ls on three data sets.
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Fig. 3. The performance of CGI-3 with diffusion kernel for different t(l¼ 1).
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of prioritizing genes by protein interaction data outperforms that by

gene expression data only.

With the direct neighborhood system, the performance of CGI-3

is much better than that of CGI-1 and CGI-2, whereas the perfor-

mance of CGI-2 is comparable with the performance of CGI-1. In

case of diffusion kernel, the performance of CGI-3 is again much

better than that of CGI-1 and CGI-2 and the performance of CGI-1

is also comparable with CGI-2. With the shortest path neighbor

system, CGI-3 is comparable with CGI-2 and better than CGI-1.

Moreover, CGI-1, CGI-2 and CGI-3 with the shortest path kernel all

perform worse than that of CGI-3 with direct neighborhood system

and the diffusion kernel system. As a conclusion, the integration

method CGI-3 with the diffusion kernel performs much better in all

three microarray data sets.

We implemented the GeneRank algorithm (Morrison et al., 2005)

and evaluated its performance using our criteria. Specifically, we

used the GeneRank algorithm to recursively update the association

score between the expression profile of each gene and the phenotype

of interest, where the protein interaction data was used as the net-

work for this algorithm. We tried different values for the free

parameter d in GeneRank from 0.5 to 1 with step 0.1. The perfor-

mance increases as d increases and reaches the optimum at d ¼ 0.9,

the same as recommended. The performance of GeneRank for dif-

ferent data sets is shown in Figure 4 as purple bars. It can be seen

that CGI-3 with direct neighbor performs similarly with GeneRank

and CGI-3 with diffusion kernel outperforms GeneRank.

The improvement by CGI-3 with the direct neighbors and the

diffusion kernel may be attributed to the following reasons. First, it

borrows strength from both positive and negative associations

between interacting proteins. On the other hand, CGI-1 and CGI-2

only borrow strength from positive association between interacting

proteins. Second, by using absolute values for the association scores

for the neighboring proteins, CGI-3 gives high weights to proteins

having large number of interaction neighbors highly associated

with the phenotype. To illustrate this point, we use the expression

values of gene YIL138C as a phenotype (TPM2/YIL138C is a

gene directing polarized cell growth in yeast by binding to and

stabilizing actin cables and filaments (Evangelista et al., 1997),

thus our phenotype is cell polarity-related). Among the genotypes,

YLR319C (a protein involved in the organization of the actin

cytoskeleton (Pruyne and Bretscher, 2000)) has the same function

as YIL138C. With the cc gene expression data, the MCC for the

expression profiles of YLR319C and YIL138C is only 0.62 with

rank 1214 (out of 3202 genes). YLR319C has eight direct neighbors

with MCC scores (1.23, �2.26, �2.65, �0.96, �3.06, �0.35, 2.36

and �1.54, note that the null distribution of the scores are standard

normal), respectively. Four out of the eight neighbors have absolute

MCC values at least 2.26. Both strong positive and negative asso-

ciation scores are present among the neighbors. CGI-3 assigns it a

rank of 312, an increase of 902 in ranking.

3.1.4 Robustness of CGI-3 with diffusion kernel with respect to
noise in the protein interaction data We study the robustness of

CGI-3 with the diffusion kernel when the reliability of protein

interaction data sets is lower than that of MIPS. We choose to

test our method using other protein interaction data sets including

DIP-core, Ito’s, and Uetz’s protein interaction data and we found

that the performance of CGI-3 with diffusion kernel decreases as the

reliability of the protein interaction data decreases. The detailed

results are presented in Supplementary materials. In addition, we

also randomly add noise into the most reliable MIPS protein inter-

action data. It is found that the performance of CGI-3 with diffusion

kernel decreases as the noise level increases, which is also provided

in Supplementary results.

3.2 Prioritization of complex phenotypes

Since genes interweave as a network, the observed phenotype in

general is the functional consequence of the expression values of a

set of genes, rather than any given single gene. A phenotype can in

theory be modeled as a combination of the expression levels of

several genes. For simplicity, we assume that the phenotype is a

linear combination of the expression values of two genes. In par-

ticular, for genes f and g, where f 2 F and g 2 G, the phenotype is

simulated as w¼ f + g, where f and g are also used to represent their

expression levels (Again, no noise is introduced to avoid complex-

ity). Our objective is to rank genes with function F or G on the top

after prioritizing genes with respect to w. The P-values are sum-

marized and the performance (Equation 6) is displayed in Figure 5.

We first study the scenario where F ¼ G [to avoid double counting,

our statistics are on different combinations of triplets (f, g,F)]. This

case corresponds to the basic assumptions that disease associated

genes tend to be in the same pathway in recent studies (Franke et al.,
2006; Aerts et al., 2006). As can be seen from Figure 5 (left panel),

when the two target genes are from the same functional category,

the prioritizing result by CGI-3 is much better than that by expres-

sion data alone. One interesting observation is that in this case both

Fig. 4. The performance of CGI-1, CGI-2 and CGI-3 by different neighbor-

hood systems. MCC (open bars): prioritizing genes with expression data

only; PPI (purple bars): prioritizing genes with protein-interaction data only;

SP: shortest path neighborhood system; DN: direct neighborhood system;

DIF: diffusion kernel neighborhood system. GR: GeneRank algorithm. The

optimal empirical l̂ and t̂ values are used.

Fig. 5. Performance of CGI-3 with diffusion kernel for complex phenotypes.

SR: stress response, CC: cell cycle, KO: knock out. Left panel: the target

genes have the same function; Right panel: the target genes have different

functions.

CGI: prioritizing genes by expression and PPI data
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prioritizing methods (by expression data only and by CGI-3) have

potential improvement (Fig. 5 left panel) relative to simple pheno-

types. This suggests that there is more chance to discover the genes

related to a given phenotype if the phenotype is determined by

several genes with similar functions rather than by only one of

them individually. However, it should be noted that in reality the

phenotypes are much more complicated than our ‘complex pheno-

types’, both in terms of the number of causal genes and in terms of

the dependency between causal genes.

We then study the scenario that F 6¼ G are distinct GO nodes far

away from each other (�9 in the GO annotation hierarchy). In

Figure 5 right panel, it can also be seen that prioritizing result

by CGI-3 is much better than using expression data only. However,

in this case the overall performance is slightly worse than that for

phenotypes caused by genes of similar function (Fig. 5, left panel),

suggesting that the prioritizing task is harder when the phenotype is

caused by functionally unrelated genes.

3.3 Application to Alzheimer’s disease data

We applied our approach to the data on Alzheimer’s disease by

Blalock et al. (2004). In this data set, the gene expression levels are

measured on 31 subjects. Also, a reliable clinical phenotype, Mini-

Mental Status Examination (MMSE), and a neurofibrillary tangle

(NFT) score across these 31 subjects are provided. The human

protein interaction pairs are available from database HPRD (Peri

et al., 2003). A total of 4703 genes appear in both Blalock et al.
(2004) and HPRD. Four genes (APP, APOE, PSEN1 and PSEN2)

are known to be associated with Alzheimer’s disease (Krauthammer

et al., 2004). sixty additional expert selected genes are provided in

Krauthammer et al. (A total of 34 such genes are included in the

4,703 genes). We first ranked the genes according to the association

score between the gene expression profiles and the phenotype

MMSE (our approach does not result in significant improvement

for phenotype NFT, data not shown). We also ranked the genes

according to the updated association score by Equation (5). It turns

out that the four known genes are ranked significantly higher when

the updated association score by CGI-3 with diffusion kernel is used

(Table 3, one-sided Wilcox rank sum test P-value changed from

0.52 to 0.06). If we pool the expert selected candidate genes

together, the P-value of the one-sided Wilcox rank sum test for

the 34 genes changed from 0.097 for using expression data to 0.0051

by CGI-3. However, we also found that most of the 34 candidate

genes are highly connected in the protein interaction network (Wil-

cox rank sum test P-value <10�4). Thus, it suggests that the disease

related genes are the ‘important genes’ which are highly connected

with other genes. On the other hand, it is also possible that the known

candidate genes are biased to the highly connected genes since they

tend to be more well-studied. To overcome the potential biases, large-

scale unbiased protein interactions from Y2H (Stelzl et al., 2005;

Rual et al., 2005; Lim et al., 2006) may be used. Unfortunately, this

data set does not include the four known Alzheimer’s disease genes.

Therefore our method can not be evaluated with it.

In the top 50 genes ranked by Equation (5), we found 17 mito-

chondrial genes and additional 6 ATP-related genes. The enrich-

ment (hypergeometric P-value <10�15) of 108 mitochondrial genes

in the top 50 genes agrees with the observation that Alzheimer’s

disease might be related with mitochondrial function (Castellani

et al., 2002). On the contrary, there are only two mitochondrial

genes and six ATP-related genes in the top 50 genes ranked by

expression data only, which is no longer significant. In addition, the

connectivity of mitochondrial genes in the protein interaction net-

work is significantly less than the non-mitochondrial genes (Wilcox

rank sum test P-value <2 · 10�6). Although the connectivity of the

17 top-ranked mitochondrial genes is higher than that of other

mitochondrial genes, their connectivity is still similar to non-

mitochondrial genes (Wilcox rank sum test P-value ¼ 0.98).

4 DISCUSSION

Genome-wide expression profiling and protein interaction mapping

studies allow researchers to discover disease genes systematically.

Clustering analysis is the most widely used data exploration

method. Although there are many studies on clustering algorithms

and similarity metrics, efforts to integrate gene expression with

other information such as protein interactions for prioritizing

genes are limited, to our best knowledge. In this paper, we studied

several approaches for prioritizing genes related to a phenotype by

integrating gene expression profiles and protein interactions.

We studied the effect of neighborhood systems and different data

integration approaches, in particular CGI-1, CGI-2 and CGI-3. It is

found that CGI-3 together with the diffusion kernel is the best

approach for prioritizing genes with respect to a phenotype. We

also studied the robustness of our approach in terms of noise in the

protein interaction data using DIP core, Uetz’s and Ito’s interaction

data. The performance of our approach increases as the reliability of

the protein interaction data set increases. Since a phenotype in

general is the functional consequence of many genes, we also inves-

tigate the prioritizing performance of our approach by simulating

‘complex phenotypes’. The result shows that our approach performs

even better when the contributing genes of the phenotype are from

the same functional category. In the case where the phenotype

results from genes of different functional categories, our study

suggests that the prioritizing result is only slightly worse than

the case of ‘simple’ phenotypes.

With the experience on yeast, we applied our approach to the data

from human Alzheimer’s disease. It turns out that the four known

genes as well as the 30 expert-selected genes related to Alzheimer’s

disease are ranked significantly higher by our approach. We also

found that the mitochondrial genes are significantly enriched in the

top 50 genes by our approach, which deserves more attention.

The CGI-3 developed in this paper should be able to find genes

positively associated with the phenotype. To find negatively asso-

ciated genes, CGI-3 should be changed to

R̂Ri ¼
Oi � l

P
k:k 6¼i Sik jOk j

1 þ l
P

k:k 6¼i Sik
‚ i ¼ 1‚2‚ � � � ‚n: ð7Þ

and we choose the genes ranked at the bottom.

Table 3. Rank of the known genes of Alzheimer’s disease (smaller means

better)

Gene name Expression data only CGI-3

APOE 3203 1568

PSEN1 2558 1345

PSEN2 2732 1313

APP 1379 1010

X.Ma et al.

220

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/215/204848 by guest on 20 M
arch 2024



In this paper we treat the interaction between proteins as a binary

variable. However, it is quite possible that in some circumstances

there is only a value describing the confidence of the existence of

interaction between proteins. How to efficiently utilize this kind of

information is a topic of future research.

Due to space limitation, we did not study the possibility of

prioritizing genes within a subset of all the collected conditions

(Getz et al., 2000) by integrating protein interaction data, which

is clearly of much interest when the experiment is specially

designed, e.g., for some developmental studies. We will pursue

these issues in the future.
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