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ABSTRACT

Motivation: Current methods that annotate conserved transcription

factor binding sites in an alignment of two regulatory regions perform

the alignment and annotation step separately and combine the results

in the end. If the site descriptions are weak or the sequence similarity

is low, the local gap structure of the alignment poses a problem in

detecting the conserved sites. It is therefore desirable to have an

approach that is able to simultaneously consider the alignment as

well as possibly matching site locations.

Results:WithSimAnnwehavedevelopeda tool that servesexactly this

purpose.By combining the annotation step and the alignment of the two

sequences into one algorithm, it detects conserved sites more clearly.

It has the additional advantage that all parameters are calculated

based on statistical considerations. This allows for its successful appli-

cation with any binding site model of interest. We present the algorithm

and the approach for parameter selection and compare its performance

with that of other, non-simultaneous methods on both simulated and

real data.

Availability: A command-line based C++ implementation of SimAnn

is available from the authors upon request. In addition, we provide

Perl scripts for calculating the input parameters based on statistical

considerations.

Contact: bais@molgen.mpg.de

1 INTRODUCTION

Using cross-species comparisons for annotating cis-regulatory
regions is a well-established approach in computational genomics.

It is based on the rationale that functionally relevant sequence fea-

tures evolve slower than non-functional ones. A method implement-

ing this should be able to align orthologous promoter or enhancer

sequences and simultaneously predict conserved transcription factor

binding sites (TFBSs). Although many methods have been proposed

that provide a combination of conservation and TFBS annotation

(for reviews see Ureta-Vidal et al., 2003; Wasserman et al., 2004),
to our knowledge none of them achieves this simultaneously.

In general, existing methods solve the problem in two main steps.

In one step, conserved regions between two orthologous sequences

are extracted using a method-specific alignment algorithm and a

conservation criterion. In a separate step, log-likelihood based

models called position-specific scoring matrices (PSSMs) are used

to scan individual sequences for putative TFBSs. Finally, the align-

ment and annotation results are combined to predict conservedTFBSs.

Representative examples include ConSite (Sandelin et al., 2004) and
CisOrtho (Bigelow et al., 2004). Some methods extend this general

strategy by incorporating additional information. This can either be

gene expression data like in oPossum (Ho Sui et al., 2005), clustering

of TFBSs in conserved regions as in rVista (Loots et al., 2004) or
relative positional preferences, Footer (Corcoran et al., 2005).
Another class of methods uses prior knowledge of TFBSs to

construct the alignments. Putative TFBS hits on the single

sequences are paired and used as anchors for producing either global

(Berezikov et al., 2004) or local alignments (Michael et al., 2005).
While ConReal focuses on generating an ordered chain of conserved

TFBSs, thus not aligning regions that do not contain them, Siteblast

is a BLAST-like heuristic where the TFBS hits are used as seeds.

The method of Hallikas et al. (2006) also falls in this category. Here,
the sequence of hit pairs is aligned using a scoring scheme that

considers clustering of sites, binding affinity and conservation,

though the underlying sequences themselves are not aligned.

Other approaches like Monkey (Moses et al., 2004) explicitly

take into account evolutionary properties of the TFBSs, but still

perform the alignment independent of the annotation step. Recently,

ab initio methods have also been developed which use an available

alignment and evolutionary constraints on the binding sites (Sinha

et al., 2004; Siddharthan et al., 2005).
In summary, most of the methods depend on a predetermined

optimal alignment for deciding whether a hit pair is predicted as

conserved or not. If the optimal alignment fails in detecting such a

conserved hit pair, slight local modifications in the alignment might

suffice to remedy this situation. Hence it is desirable to have a

method that suitably combines the alignment and annotation steps

to allow for this flexibility. We propose an extended pairwise align-

ment algorithm that provides this direct combination of the two

steps. It introduces the possibility of annotating parts of an align-

ment as paired profiles and extends the scoring scheme appropri-

ately. Since we have a statistically motivated approach to determine

the additional scoring parameters, the calculation of the optimal

alignment in this extended model allows for local rearrangements

in the alignment to make conserved TFBSs stick out. The algorithm

is implemented as the SimAnn program and is available on request.

The rest of the article is organized as follows. In Section 2 we

describe in detail our extended alignment model with the necessary

algorithmic modifications. Our theory for deriving profile related

scoring parameters follows. At the end of the section we describe

the strategy for a systematic validation of our approach. The results

of this validation are given at the beginning of Section 3. Finally, we

present a case study analyzing the Drosophila even-skipped stripe

2 enhancer region. We discuss the applicability and potential of our

method at the end of the article.

2 METHODS

2.1 Extended Alignments

The aim of our method is to combine a locally optimal alignment of two

sequences with an annotation with evolutionarily conserved pairs of profiles.�To whom correspondence should be addressed.
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We therefore add the possibility of assigning parts of the alignment directly

to such perfectly aligned pair-profiles. This extension in the alignment

scheme is introduced to allow for a different scoring of these pair-profiles

as follows.

Assume that we wish to search for conserved instances of a profile P of

length l. A stretch of l consecutive gaplessly aligned positions can be scored

in the extended alignment model in two possible ways: either by scoring each

aligned pair with the standard substitution scoring matrix s, or by using a

profile scoring array (PSA) and subtracting a profile penalty p. The PSA

assigns a score to every pair of strings of length l and reflects how well the

gapless alignment of this pair fits to the motif described by P. The profile

penalty is a tuning parameter meant to maintain the balance between the two

alternatives.

Figure 1 illustrates the extended alignment approach through an example

of two sequences x and y. In Figure 1(a) a possible standard alignment is

depicted wherein the putative hit of a profile (here simply the TATA-box) is

not predicted as a conserved hit. In Figure 1(b) the situation changes, since

now the alignment can shift gaps to bring forth a putative conserved hit.

The Smith–Waterman algorithm for the determination of optimal local

alignments is modified in a straightforward way to incorporate the additional

pair-profile states. In the case of linear gap penalties and a single profile, the

modified recursion rule is

M ði‚ jÞ ¼ max

0 ‚

M ði � 1‚ j � 1Þ þ s ðxi‚yjÞ‚
M ði � 1‚ jÞ � g‚
M ði‚ j � 1Þ � g‚
M ði � lþ 1‚ j � lþ 1Þ � p
þ PSAððxi�lþ1 � � � xiÞ‚ðyj�lþ1 � � � yjÞÞ

8>>>>>><
>>>>>>:

where g is the gap penalty. Extensions to multiple profiles and affine-linear

gap case is equally straightforward.

2.1.1 Calculation of scoring parameters We now describe our

derivation of the profile related scoring parameters PSA and p in more detail.

We assume that the substitution scoring matrix s is given in the form of a

log-likelihood ratio of a distribution q for evolutionarily related letter pairs

with respect to an independent sampling of two letters from a background

distribution p. In the same manner, the profile scoring array PSA is defined

as the log-likelihood ratio of a distribution on pairs (u, v) of strings of length l

with respect to the same background distribution p. Here, the distribution on

the string pairs should reflect the properties of the profile. Hence, we start

with the position-specific letter distribution P¼ (P1, . . . , Pl) of the profile and

consider two strings u and v to be sampled independently from P. In the

corresponding background distribution all letters occurring in the strings are

sampled independently from p. More formally, this leads to

PSAðu‚vÞ :¼
Xl
i¼1

log
PiðuiÞPiðviÞ
pðuiÞpðviÞ

� �

¼
Xl
i¼1

log
PiðuiÞ
pðuiÞ

� �
þ

Xl
i¼1

log
PiðviÞ
pðviÞ

� �

¼: PSSMðuÞ þ PSSMðvÞ‚

ð1Þ

where PSSM denotes the position-specific scoring matrix.

The additive form comes from the fact that we sampled the two strings

independently in the pair model chosen. Other approaches, for example

considering a pair of evolutionarily related samples from P, can also be

used but are not studied in this article.

Recall that the profile penalty p has been introduced for a fine-tuning of

the balance between the two gapless scoring alternatives of the two strings u

and v. Whenever PSAðu‚vÞ � p >
Pl

i¼1 sðui‚viÞ, the corresponding

stretch in the alignment is assigned to the profile rather than to l successive

substitutions. After rewriting, we see that this is equivalent to

LLRP2‚ql ðu‚vÞ :¼ log
PðuÞPðvÞQl
i¼1 qðui‚viÞ

> p: ð2Þ

Since the calculation of all scores involved is based on the same background

model p it cancels out here. The penalty p can be interpreted as a cutoff in a

log-likelihood ratio test. Now the log-likelihood ratio directly compares the

pair profile measure P2 and the measure ql which arises from independently

sampling l evolutionarily related letter pairs from q.
Techniques similar to the ones described in Rahmann et al. (2003) allow

us now to calculate the exact distribution of LLRP2‚ql ðu‚vÞ under the two

measures P2 and ql and therefore to make a statistically justified choice of p.
In the following, we use three natural choices. First, we choose p

such that for a pre-specified level a the type-I error probability

Pql ðLLRP2‚ql ðu‚vÞ > pÞ is smaller than a. We call this the level a type-I

error penalty. Second, we choose p such that the corresponding type-II error
probability PP2 ðLLRP2‚ql ðu‚vÞ < pÞ is smaller than a pre-specified level b.

We call this the level b type-II error penalty. Finally, we choose p such that

the two error probabilities are equal, in which case we speak of the balanced

penalty. We refer the reader again to the work of Rahmann et al, (2003) for
details on the justification of these choices and the algorithmic techniques

needed to calculate the exact error probabilities.

2.1.2 Implementation SimAnn is a command-line based C++ imple-

mentation of the extended alignment algorithm. It can handle multiple pro-

files and affine-linear gap-penalties and is available from the authors upon

request. It comes with a set of Perl scripts providing functionality for the

calculation of the profile related scoring parameters.

2.2 Simulation setting

We give an initial validation of our approach in the following simulation

setting. We generate a large set of evolutionarily related sequence pairs into

each of which we implant a pair of motifs sampled from a fixed profileP. The

correct alignments and positions of the implanted motifs are stored for later

evaluation. The raw sequence pairs are analyzed with SimAnn and two

multi-step approaches to detect conserved binding sites. All methods are

provided with the profile P from which the implanted motifs have been

sampled. For each method there is a single parameter which balances its

sensitivity and specificity. We vary this parameter in order to determine the

respective receiver operator characteristics (ROC). For SimAnn this parame-

ter is the profile penalty p. Hence, we can also use the ROC curves to assess

the quality of our theoretically determined profile penalty choices. This

analysis is carried out for different values of sequence relatedness and

different quality of the implanted profiles.

2.2.1 Construction of simulated data For a fixed evolutionary dis-

tance and a fixed profile we adopt the following strategy to generate a set of

sequence pairs.

We use the software program Rose version 1.3 (Stoye et al., 1998) to

simulate sequence pairs at specified evolutionary distance (called relatedness

in Rose) together with their true alignments. The sequences are specified to

be at the leaves of a simple depth one binary tree with branch lengths

proportional to the distance. We set the indel threshold to 0.002 for a better

balance between substitutions and insertions/deletions than with the default

value. All other parameters are set to the default DNA settings. The final set

consists of 50 sampled sequence pairs of an average length of 500.

The profile, given as a position-specific count matrix, is first converted to a

regularized position-specific probability matrix (PSPM) as in Rahmann et al.
(2003). For each sequence pair two motifs are sampled independently from

this PSPM. The true alignment of the sequence pair is cut at a random

position and one of the sampled profiles is inserted into each sequence.

We repeat this construction for relatedness values ranging from 10 to 50 at

steps of 10 and for three profiles of differing quality, resulting in a total of 15

different datasets. As a measure of profile quality we use the balanced quality

as described in Rahmann et al. (2003) where the type-I and type-II errors are
equal. The matrices, taken from the TRANSFAC (Matys et al., 2003) data-

base, are M00395 (poor quality, 0.199), M00690 (medium quality, 0.622)

and M00360 (good quality, 0.967).
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2.2.2 Multi-step approaches We have implemented two multi-step

approaches to detect conserved binding sites. Both methods first align the

two sequences using the standard Smith–Waterman algorithm (Smith et al.,

1981) with affine gap penalties. For each profile specified, both sequences

are scanned for putative hits using the scheme described by Rahmann et al.

(2003). Here, the choice of the score cutoff influences the number of

accepted hits and can be used as a parameter to control the final balance

between sensitivity and specificity. The hits are then mapped onto the align-

ment as a basis for filtering out the conserved hit pairs. The two approaches

differ only with respect to this filtering. We distinguish between a Relaxed

and a Strict filtering.

Relaxed filter. A hit pair is marked as conserved if the mapped hit on

the first sequence overlaps positively with that on the second sequence in

the alignment, irrespective of the number of gaps in the mapped regions of

the alignment.

Strict filter. A pair is marked as conserved only if the mapped hits contain

no gaps, and the hit on the first sequence is perfectly aligned with that on the

second sequence.

By considering both the Relaxed and the Strict filters, we cover two

extremes of the spectrum.While the Relaxed filter provides an over-estimate

by allowing unlimited number of gaps in the aligned hits, the Strict filter

provides a lower estimate with no leniency for alignment errors.

2.2.3 Parameter choice We can use the same parameters for the

standard alignment part of SimAnn and the Smith–Waterman alignment

algorithm underlying the two multi-step approaches. This ensures that the

differences observed in the comparison of the three approaches can directly

be attributed to those aspects of the methods which are added onto the basic

alignment part. In the case of SimAnn this is the introduction of the pair

profile states into the alignment algorithm and their special scoring.

To get the correct standard alignment parameters first the substitution

matrix that fits to the chosen evolutionary distance is determined. This

derivation is straightforward because Rose uses a Jukes–Cantor substitution

model and a uniform background letter distribution. To find the appropriate

affine gap penalty scheme, we first restrict ourselves to the set where the gap

extension penalty is 1/10 of the gap open penalty. A set of sequence pairs at

the fixed evolutionary distance is generated with Rose as described above.

All generated sequence pairs are realigned under different gap open penalties

and the proportion of gaps in the true and the recomputed alignments is

compared to determine the optimal gap open penalty.

3 RESULTS

3.1 Simulated data

We analyze each of the generated sequence sets with SimAnn

and the multi-step approaches in terms of ROC curves. These

are obtained by varying the profile penalty in SimAnn and the

PSSM score cutoff in the multi-step approaches over a wide

range. True and false positive rates (TPR and FPR) are calculated

as follows. If the implanted motif is detected as a conserved hit it is

counted as a true positive. So there can be at most one true positive

in each of the 50 sequence pairs. Since, in contrast to SimAnn, the

multi-step approaches can predict overlapping conserved hits, we

define the false positive rate as the relative amount of non-profile

sequence covered by predicted conserved profile pairs.

The advantage of varying the profile penalty over a wide range is

that we can additionally use the ROC curves to validate the per-

formance of our theoretically calculated profile penalties. These

penalties corresponding to the three proposed values (level 0.05

type-I error, level 0.05 type-II error and balanced) are highlighted

in color on the ROC curves for SimAnn. Results for two evolution-

ary distances (10 and 40) and the three profiles of different quality

are shown in Figure 2.

With increasing evolutionary distance and decreasing profile

quality it gets more difficult to detect the implanted motifs, and

all the three methods reflect this. Moreover, since both multi-step

approaches are based on the same alignment and annotation results,

the Relaxed filter (blue) performs much better than the Strict filter

(green), as can be seen from the ROC curves.

It is striking that the true positive rate for SimAnn (black)

decreases at extremely low profile penalties. This is understandable

since SimAnn cannot predict overlapping instances of conserved

pairs as opposed to the multi-step approaches. At low penalties,

SimAnn tries to fill the alignment with as many non-overlapping

instances of pair profiles as possible, and thereby looses the anno-

tations that it correctly predicted at higher penalties. This underlines

the importance of a correct choice of the profile penalty.

As can be seen from the cutoffs highlighted in Figure 2, the

balanced profile penalty (red cross) and the type-II error penalty

at level 0.05 (magenta cross) both fall into a region where true and

false positive rates show reasonable combinations. Thus, a balanced

profile penalty can be chosen when high sensitivity is required while

the type-II error penalty at level 0.05 can be chosen for needs of high

specificity. We therefore have shown that a good choice for all

necessary parameters in SimAnn can be made based on theoretical

considerations. This avoids the need for ad hoc decisions or exten-
sive simulation studies for every incoming profile. It also enables us

to use SimAnn such that we achieve the highest performance.

In comparison with the multi-step methods, SimAnn performs

comparably well in all situations and has a clear advantage as

evolutionary distance increases or profile quality worsens.

It should be stressed here that even though the Relaxed multi-step

performs as well as SimAnn, the predicted conserved pairs are not

necessarily perfectly aligned in the optimal alignment. They can be

interrupted by any number of gaps making them difficult to stand

out as a conserved binding site. Contrarily, the predictions from

SimAnn are perfectly aligned, gapless pairs of profiles and the

conserved binding site is clearly identifiable.

3.2 Extracting conserved binding sites: a case study

As an example we consider the even-skipped stripe 2 region in

Drosophila melanogaster and Drosophila pseudoobscura. This is

a well-characterized cis-regulatory module (Stanojevic et al., 1991;

Fig. 1. Two possible alignments of sequences x and y. In the standard alignment model the optimal alignment might look as in (a), where S, D and I represent

substitutions, deletions and insertions respectively. The additional annotation options in the extended alignment model can shift the gaps locally to better

highlight the conserved cis-regulatory elements as in (b).
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Ludwig et al., 1998, 2005) containing multiple binding sites for

at least four transcription factors: Bicoid, Hunchback, Giant and

Krüppel. There are a total of 17 experimentally verified sites for

these factors in this region and the corresponding count matrices are

available (Rajewsky et al., 2002). We retrieved the orthologous

enhancer sequences using the Genbank identifiers provided in

Ludwig et al. (2005). The lengths of the individual sequences

amount to 799 in D.melanogaster and 1028 in D.pseudoobscura.

We compared SimAnn with the multi-step approaches and a third

tool called ConSite available online (Sandelin et al., 2004). We

consider ConSite because it is also a multi-step approach where

first alignments are generated and conserved regions extracted.

Then, sequences are scanned for putative hits using a score cutoff

which does not consider the background letter distribution. Finally,

only those hits that are situated in conserved regions and lie at

equivalent positions in the alignment are output as conserved pairs.
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Fig. 2. Performance comparison of SimAnn and the twomulti-step approaches at two evolutionary distances and for three profiles of different quality. The ROC

curves illustrate the interplay of false and true positive rates on the simulated test sets at varying penalty/cutoff parameters. Color code of the ROC curves: green,

multi-step approach/Strict filter; blue, multi-step approach/Relaxed filter; black, SimAnn. On the SimAnn ROC curve the statistically motivated profile penalty

choices are highlighted. Color code: orange, type-I error penalty at level 0.05; red, balanced penalty; magenta, type-II error penalty at level 0.05.
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Both SimAnn and our multi-step approaches are run with the

standard HOXD70 substitution scoring matrix with gap open

cost of 400 and extension cost of 30. The count matrices describing

the relevant factors are preprocessed as described in Section 2.1.1 to

calculate the profile related parameters for SimAnn. For sequence

scanning within the multi-step approaches, count matrices are

converted into scoring matrices and score cutoffs are determined

along the lines of Rahmann et al. (2003). For ConSite, we use two
main parameter settings, the default and with conservation and

matrix score cutoff of 70%. Count matrices are same as above.

In all methods we count a prediction correct if it overlaps with

the known binding site by more than quarter of the length of

the PSSM. Overlapping predictions of the same PSSM are counted

only once.

Out of the 17 sites, the Relaxed multi-step approach predicts 10

while the Strict predicts 9 sites correctly, with no false positives.

The one site that is missed out by the Strict filter owing to gaps in the

alignment is the Krüppel 4 site. With ConSite, the default settings

yield much fewer predictions, namely 5 out of 17. When the matrix

score cutoff is lowered to 70%, this number increases to 10, at the

cost of predicting additional 10 false positives.

When SimAnn is run with all four profiles together it predicts

9 sites correctly. We also run SimAnn supplying each profile indi-

vidually to check whether overlapping binding sites pose a problem

and this raised the number of true positives to 11. In both cases we

obtained four false positives.

Overall, our multi-step approaches and SimAnn perform very

similarly, which is expected since they are based on the same pre-

mises algorithmically and parametrically. But ConSite has a slightly

poorer performance since the gain in sensitivity by lowering cutoffs

results in a drastic increase in the number of false positives, too.

It is worth looking in more detail at the Krüppel 4 site mentioned

above because it is the only site which resides in a region of

ambiguous alignment. The results of all methods are shown in

Figure 3. The Strict multi-step approach and ConSite fail to predict

the site because of gaps in the underlying alignment. ConSite pre-

dicts it, but only after the matrix score cutoff and the conservation

cutoff are reduced to 60% and 40%, respectively. The Relaxed

multi-step approach and SimAnn successfully predict the site. How-

ever, with SimAnn the nice feature is that the binding site stands out

more clearly. Through the UCSC alignment of the site, also shown

in Figure 3, one can see that there is no clear correct alignment—the

UCSC alignment differs considerably from the rest.

4 CONCLUSIONS

In this article we have introduced a novel integrated approach

SimAnn to detect conserved transcription factor binding sites. In

SimAnn the alignment and annotation steps are combined in one

extended alignment model. This enables the method to locally shift

gaps in the alignment to make the conserved hits stick out more

clearly. An extended alignment method as SimAnn stands and falls

with the choice of the parameters needed in the model. With a

statistically founded strategy for parameter selection we have solved

this problem in SimAnn and thus can handle any profile of interest.

We demonstrated the applicability of SimAnn via a systematic

comparison with other multi-step approaches on simulated data. We

showed how SimAnn can predict perfectly aligned conserved hit

pairs even in conditions of higher evolutionary distance or poorer

profile quality. By analyzing the well-known even-skipped stripe

2 enhancer region in two Drosophila species we illustrated the

potential of SimAnn in a biological setting.

SimAnn is best suited for detailed analysis of a regulatory region

known to be conserved between two species with available infor-

mation of certain essential transcription factors. Especially when

conservation is weak and it is difficult to identify conserved binding

sites, SimAnn can assist a lot in understanding the potential regu-

latory mechanisms in the region. However, for analyzing arbitrarily

big conserved regions with a large number of profiles, SimAnn is

not particularly suited. The resulting multiple testing problems and

the increased complexity of the extended alignment model could

hinder performance and well-established multi-step approaches

should be preferred.

We are extending the SimAnn approach in various directions.

Work is in progress to enable detection of suboptimal alignments

along the lines of theWaterman–Eggert algorithm (Waterman et al.,
1987). Applicability on more real examples is also being evaluated.

Our current construction of the profile scoring array, which is based

on two independent samples of the profile, is not the only possible

approach. A possible alternative would be to introduce evolution-

arily related profile samples. With minor changes, the statistical

calculations of the profile penalties should work in this case, too.

SimAnn

Consite

SW

UCSC

dmel GGACTATAATCGCACAACGAGACC-------GGGTTGCGAAGTCAGGG
dpse GGAAGACGGCGGACCCTTGCGACCAAGGGTTGTCTCCTGGCCTCAGGA

*** * * * * **** * * * *****

dmel GGACTATAATCGCACAACGAGACC--GGGTTG-----CGAAGTCAGGG
|||XX|XXXXX|XX|XXX|X|||| |||||| X|XXX|||||X

dpse GGAAGACGGCGGACCCTTGCGACCAAGGGTTGTCTCCTGGCCTCAGGA

dmel GGACTATAATCGCACAACGAGACCGGGTTG-----CGAAGTCAGGG
|||| |XXXX|||PPPPPPPPP| X|XXX|||||X

dpse GGAC--------CCTTGCGACCAAGGGTTGTCTCCTGGCCTCAGGA
Kr *********

dmel ataatcgcacaacgagaccgggttg-----cgaagt
dpse gcgacca--------a---gggttgtctcctggcct

Fig. 3. Alignment region of the Krüppel 4 site. Red indicates the true location, while blue depicts predictions made by the respective methods. SW stands for the

Smith–Waterman alignment used for the multi-step approaches.
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As a further extension, SimAnn would even be able to use profile

scoring arrays that combine binding site descriptions that differ to

some extent in the two species aligned. Once available, knowledge

about co-evolution of transcription factors and their DNA binding

sites could thus be incorporated.
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