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ABSTRACT

Motivation: The numbers of finished and ongoing genome projects

are increasing at a rapid rate, and providing the catalog of genes for

these new genomes is a key challenge. Obtaining a set of well-

characterized genes is a basic requirement in the initial steps of any

genome annotation process. An accurate set of genes is needed in

order to learn about species-specific properties, to train gene-finding

programs, and to validate automatic predictions. Unfortunately,

many new genome projects lack comprehensive experimental data

to derive a reliable initial set of genes.

Results: In this study, we report a computational method, CEGMA

(Core Eukaryotic Genes Mapping Approach), for building a highly

reliable set of gene annotations in the absence of experimental

data. We define a set of conserved protein families that occur in a

wide range of eukaryotes, and present a mapping procedure

that accurately identifies their exon–intron structures in a novel

genomic sequence. CEGMA includes the use of profile-hidden

Markov models to ensure the reliability of the gene structures.

Our procedure allows one to build an initial set of reliable gene

annotations in potentially any eukaryotic genome, even those in draft

stages.

Availability: Software and data sets are available online at http://

korflab.ucdavis.edu/Datasets.

Contact: ifkorf@ucdavis.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The pace of genome sequencing continues to increase and

these new genomes contain a wealth of information that will

be studied for years to come. The first question asked of a

newly sequenced genome is usually ‘how many genes does it

contain’? This is generally followed by ‘how many genes are

unique to the organism’? Unfortunately, accurately annotating

genes in eukaryotic genomes is a difficult task. Even in the best-

case scenario where a genome project has a large body of

experimental data and employs dedicated expert biologists to

annotate gene structures, gene catalogs are still unfinished and

under constant curation. The recent EGASP experiment

(Harrow et al., 2006) shows that (1) computational methods

are still less accurate than experts, and (2) even where

experimental data is plentiful, some novel genes can still be

predicted and verified. The situation is much worse for

emerging genome projects, because there may be little or no

experimental data. Only with the help of computational

methods can we try to accomplish the challenging task of

annotating all of the genomes that are going to be sequenced.

So far, there is no affordable experimental system to provide

annotations for new genomes. We have to rely on computa-

tional tools to generate, at least, the initial set of annotations.

The rapid release of completed genome sequences has led to

significant developments in genome annotation and gene

finding tools.
Computational gene finding methods can be loosely categor-

ized as being alignment-based, composition-based or a combi-

nation of both. Alignment-based methods can be used when

trying to predict a gene that encodes a protein for which a

closely related homolog exists. The DNA sequence of the gene

is aligned to the protein or cDNA sequence of the homolog;

gaps in the resulting alignment are presumed to correspond to

potential introns in the gene (as long as they are compatible

with known splicing signals). This is the approach in GeneWise

(Birney et al., 2004) and PROCRUSTES (Gelfand et al., 1996).

Composition-based algorithms (also known as ab initio gene-

finding methods) contain a probabilistic model of gene

structure based on biological signals (splice sites and transla-

tional start/stop sites) and compositional properties of func-

tional sequences (coding, intron and intergenic). Unlike

alignment-based methods, these algorithms rely only on the

intrinsic properties of genes in order to build predicted gene

structures. Genscan (Burge and Karlin, 1997) and geneid (Parra

et al., 2000) are the two examples of this approach and they can

find both known genes and novel genes as long as the genes fit

the underlying probabilistic model. Combinations of both gene-

finding methods have been developed where the results of

searching a query sequence against a database of known coding

sequences are then incorporated into the scoring schema of an

ab initio gene-prediction method. The GenomeScan (Yeh et al.,

2001) program is an example of this strategy as it incorporates

protein to DNA alignments generated by the similarity search

program BLASTX (Altschul et al., 1990) into gene predictions

made by the Genscan program.*To whom correspondence should be addressed.
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Recent developments that further exploit sequence similarity
come from comparative gene prediction programs. Instead
of comparing an anonymous genomic sequence to known

coding sequences, a genomic sequence is compared to
anonymous genomic sequences from different species. This
approach assumes that matching regions of conserved sequence

will tend to correspond to coding exons. The SGP2 (Parra
et al., 2003) and TWINSCAN (Korf et al., 2001) programs are
examples of this strategy (see Brent, 2005 for a review).
Ensembl (Curwen et al., 2004) and other genome annotation

pipelines attempt to take all sources of information into
account. Their goal is to replicate expert biologists at genome
centers. While these pipelines are largely evidence-based,

ab initio gene prediction plays a major role in minimizing the
search space and/or providing gene structures in the absence of
evidence. Ab initio gene finders must be trained prior to their

use in a particular genome. Training sets are usually derived
from full-length cDNAs, but as previously mentioned, emerg-
ing genome projects may not have any experimental transcript

data. Obtaining this set of cDNAs can be tedious and
expensive. As a consequence, many new genome projects use
a gene finder trained for some other genome. This is

unfortunate because gene prediction is sensitive to genome-
specific parameters, and one must train gene finders for
individual genomes for optimal accuracy (Korf, 2004). With

the amount of genome projects that are underway, there is a
pressing need for an automated way of producing a reliable
set of genes for each genome.

The availability of many complete genome sequences allows
for the construction of evolutionary relationships between the
genes that they encode. Orthologous genes are most likely to

have maintained sequence conservation over evolutionary time,
reflecting their conserved function. Classifying genes based on
orthologous relationships appears to be a natural framework

for comparative genomics and should facilitate the functional
annotation of genomes. Thus, when comparing genes from two
different genomes, the orthologs are likely to be those pairs of

genes whose proteins exhibit the greatest sequence similarity.
The Cluster of Orthologous Groups (COGs or KOGs for
eukaryotic genomes) database (Tatusov et al., 2003) follows

this approach and contains protein families (orthologs) of
genes from a set of diverse species. Some of these genes are
involved in fundamental biological pathways, and therefore,

the degree of conservation they exhibit is higher than other less
constrained proteins.
In this article, we introduce a computational method to

obtain a set of reliable gene structures in any eukaryotic
genome. Our goal is not to provide the complete catalog of
genes in a genome, but to generate a highly accurate set of

genes for those genomes without experimental data. The
strategy relies on a simple fact: some highly conserved proteins
are encoded in essentially all eukaryotic genomes. We use the

KOGs database to build a set of these highly conserved,
ubiquitous proteins. We call these protein families core proteins
and the genes that encode them core genes. We define a set of

458 core proteins and present an accurate mapping protocol
that maps the likely ortholog of each gene in a genomic
sequence and then predicts the exon–intron structure. We show

that our procedure does not need any previous knowledge of

the target genome, that it is highly accurate, and that it can be

used even for those genomes in draft stages.
An approach based on similar principles has already been

described in (Natale et al., 2000) to find undetected proteins in

prokaryotic genomes using the COGs database. Due to the lack

of introns in prokaryotic genes this approach is more simplistic,

relying chiefly on BLAST searches. The more complex gene

structures of eukaryotes limits the use of this approach in non-

prokaryotic genomes. Our approach overcomes these limita-

tions by combining BLAST searches, GeneWise and geneid to

accurately detect complex eukaryotic gene structures. A key

feature of the system is that it includes the use of protein

profile-hidden Markov models to ensure the reliability of the

predicted gene structures. To check the quality of the final

annotations, predicted proteins are aligned against a profile

derived from the corresponding core protein family. Only

predictions that match the profile of the gene family are

selected. This filtering protocol ensures a high accuracy of the

mapping process.

2 METHODS

2.1 A set of eukaryotic core proteins

The eukaryotic orthologous groups (KOGs) database (Tatusov et al.,

2003) was used to produce a set of core genes. The KOGs database

contains groups of genes from the following species: Homo sapiens,

Drosophila melanogaster, Arabidopsis thaliana, Caenorhabditis elegans,

Saccharomyces cerevisiae and Schizosaccharomyces pombe. From the

complete set of 4852 groups (also called KOGs) we selected 1788 that

had at least one protein from each of the six species. A global multiple

protein alignment was produced for each KOG using T-coffee

(Notredame et al., 2000). As some of the KOGs contained more than

one protein for each species, the information given by the T-coffee

alignment was used to select the protein of each organism most similar

to the global alignment. After that, the selected protein sequences of

each species were aligned again with T-coffee to generate the final

multiple alignments. We surveyed the alignments and found that many

contained extended gaps and misaligned regions. Some possible

explanations could be the partial or incomplete annotations of the

proteins, the misclassification of paralogous genes instead of the real

ortholog, or the presence of proteins which are more evolutionary

divergent in certain species. The following criteria were used to remove

dubious alignments: (1) all proteins must cover at least 75% of the

length of the global alignment, (2) no more than five internal gaps

longer than 10 amino acids for each aligned protein were allowed and

(3) the average percent identity over all rows in the alignment must be

410%. Use of these criteria reduced the data set to 458KOGs. Figure 1

shows the flowchart of this process.

2.2 Genomes

The versions of the genome sequences that were used are as follows:

A.gambiae Feb 2003, A.thaliana R5v01212004, C.elegans WS140,

C.reinhardtii v.3.0, C.intestinalis 1.95, D.melanogaster 4.1, H.sapiens

NCBI35 Ensembl build Nov 2004, S.cerevisiae July 06 2005, S.pombe

July 04 2005, and T.gondii Tg10x 31-Draft3.

2.3 Sequence analysis

The measures of gene prediction accuracy that we used have been

previously described (Burset and Guigo, 1996), and we first measured

accuracy at the levels of nucleotides, signals (donor, acceptor, initiation
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and termination sites) and internal exons. We define sensitivity as the

percentage of actual coding nucleotides/signals/exons that have been

correctly predicted, and specificity as the proportion of the predicted

coding nucleotides/signals/exons that are actually coding. To compute

these measures at the exon level, we will only score an exon as correctly

predicted when both its boundaries have been correctly predicted. At

the exon level, we also compute statistics for the percentage of missed

exons and wrong exons. Missed exons are real exons that do not overlap

any predicted exons, and wrong exons are predicted exons that do not

overlap any real exons. Finally, we calculate accuracy at the CDS level,

where genes are correctly predicted if all of their exons are correct when

compared to the known gene structure. Note that only a single accuracy

value is provided for initiation/termination signals and CDSs as only

one start, stop and CDS is predicted for each putative ortholog. The

software used for the calculations is the fathom program distributed

with the SNAP package (Korf, 2004).

2.4 Mapping protocol

We have developed a procedure, CEGMA (Core Eukaryotic Genes

Mapping Approach) to find orthologs of core proteins in new genomes

and to determine their exon–intron structures. A local version of

CEGMA can be installed on UNIX platforms and it requires pre-

installation of PERL, WU-BLAST (http://blast.wustl.edu), HMMER

(http://hmmer.janelia.org), GeneWise (Birney et al., 2004) and geneid

(Parra et al., 2003). The procedure uses information from the core genes

of six model organisms by first using TBLASTN to identify candidate

regions in a new genome. It then proposes and refines gene structures

using a combination of GeneWise, HMMER and geneid. The system

includes the use of a profile for each core protein family to ensure the

reliability of the gene structures. Ultimately, in any new genome we

attempt to predict gene structures for the orthologs of each of the 458

core proteins. The general schema of CEGMA is illustrated in Figure 2.

Before testing the protocol on new genome sequences, we first test

on each of the model organisms from which the core genes are derived.

In doing so, no information is used from the species being tested, i.e.

we use information from only five species to predict genes in the sixth.

The following sections describe each step in detail.

2.5 Finding the location of core protein orthologs

For each core protein family, the alignment program TBLASTN is used

to search the six proteins in each family against a new genome sequence.

To speed up the process the word size parameter is set to 5 (W¼ 5) and

the neighborhood word threshold score is set to 25 (T¼ 25). This step

produces a number of candidate regions that might contain the

ortholog of the core protein, though only the five best candidate regions

are considered further (B¼ 5 and V¼ 5). For the human genome, the

sequence was split in fragments of 1Mb with 100Kb of overlapping

sequence. To build the initial candidate regions, high scoring pairs

(HSPs) closer than 5Kb are clustered into a single candidate region.

For each of the top five candidate regions, 2Kb of flanking sequence is

also extracted; the sequence is reverse complemented if the BLAST

alignment shows similarity to the reverse strand. For the human

genome the permitted distance between HSPs was increased to 40Kb

and the length of extracted flanking sequences was extended to 5Kb.

2.6 Protein profile alignment

The candidate regions produced by TBLASTN are processed by

GeneWise using a profile hidden Markov model that is built for each

KOG multiple alignment [using the hmmbuild program (Eddy, 1998)].

Use of GeneWise increases sensitivity and specificity when compared to

only using BLAST alone. For C.elegans, it is able to predict 96.6% of

the coding regions compared to 89.5% from the translated BLAST

approach (Table 1). GeneWise is a powerful tool for aligning protein

profiles on to a genome, but as it lacks an inherent model of gene

structure it is inappropriate for predicting complete gene structures. For

instance, GeneWise does not have a model for the initial transcription

site, and does not force the prediction to finish with a stop codon. The

accuracy of the initiation and termination translational sites predicted

Fig. 2. Flowchart of CEGMA. The initial sources of information are

the raw genomic sequence and the multiple alignment of the set of core

proteins.

Fig. 1. Flow chart of the KOGs filtering protocol showing steps that

filter the original set of KOG proteins to produce the final set of 458

core set of proteins.
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by GeneWise is very low (26% and 56%, respectively). Furthermore,

when aligning proteins or profiles from distantly related species,

GeneWise can erroneously extend some of the alignments producing

artefactual exons. This effect is depicted by the low specificity at exon

level (70.1%) and the high percentage of wrong exons (13.8%, Table 1).

2.7 Refining the predicted gene structures

In order to improve the accuracy of the predicted gene structures, we

produced a more complex gene-building strategy. This refined strategy

attempts to extend homology results and remove spurious alignments

so that even partially correct alignments can produce accurate gene

structures. The geneid program is a gene finder that predicts and scores

all potential exons within a specified sequence. Scores of exons are

computed as log-likelihood ratios, which are a function of the splice

sites defining the exon and of the compositional coding bias in the exon

sequences [as measured by a Markov Model (Borodovsky and

McIninch, 1993)]. From the set of predicted exons, geneid assembles

a final gene structure, maximizing the sum of the scores of the

assembled exons, using a dynamic programming chaining algorithm.

This strategy has already been successfully used to integrate homology

information in the SGP2 framework (Parra et al., 2003). In our

approach, geneid uses GeneWise alignments (instead of TBLASTX) to

improve the scores of the ab initio predicted exons. The GeneWise

alignment is converted to General Feature Format (GFF) for use by

geneid. A detailed description of how such external information is

integrated on geneid can be found at (Parra et al., 2003).

For the initial geneid predictions, no coding model was used and

geneid predicted exons using only the information from available start,

stop and splice sites (weight matrices for splice sites and start sites were

averaged from a mixture of all six species). The resulting gene structures

were, therefore, largely driven by GeneWise predictions. We con-

strained geneid to predict a single, positive-strand gene by using options

F and W. The combined use of geneid and GeneWise in this way

produces more accurate predictions in C.elegans than when using

GeneWise alone (Table 1). The accuracy at internal exon level increases

by 10% and the amount of wrong exons decreases by 8%. More

strikingly, there is a dramatic increase in the accuracy at initiation and

termination sites (71.9% and 91%, respectively).

2.8 Verifying candidate proteins

After the initial round of geneid predictions, a filter was applied to the

resulting gene structures to determine if they were similar enough to the

rest of the KOG group to be considered orthologs. This step requires

use of pre-calculated ‘intra-KOG-similarity’ scores. For each KOG,

we align each component protein sequence to a profile generated from

the remaining five sequences [using hmmsearch (Eddy, 1998)]. From

this, we obtain six scores which are then averaged to produce an

approximate indicator of similarity between the proteins in each KOG.

We then take the protein sequences of the orthologs predicted by geneid

and align to the KOG profiles. The geneid prediction is retained if the

score of this match is greater than half of the intra-KOG-similarity

score, otherwise the prediction is rejected. As up to five candidate

genomic regions are considered for each ortholog, it is possible for more

than one predicted protein to have a score above the cutoff. In these

cases the protein with the highest scoring alignment to the profile is

selected as the ‘true’ ortholog, and the remainder are considered as

putative paralogs.

2.9 Self-training and final set of annotations

Whilst the results from using GeneWise and geneid are promising, we

attempted to further improve the accuracy of the resulting gene

predictions. As previously mentioned, geneid does not use a coding

model to make its initial set of predictions. Accuracy can be improved if

geneid is allowed to build a coding model by training from this initial

set of predictions. We, therefore, take the gene predictions made by

geneid and then train from them to produce species-specific coding

(Markov chain of order 5) and splice site models (position weight

matrices). With these species-specific coding models we then use geneid

(again in combination with GeneWise) to re-predict the set of genes.

This step includes re-predicting gene structures that previously were

below the intra-KOG-similarity threshold. The final gene structures

predicted through this self-training approach show further increases in

accuracy. Although there is no improvement at the nucleotide level,

accuracy is increased by 3% for internal exons level and by more than

10% for complete CDS predictions (last row, Table 1). This method

(GeneWise plus geneid with self-training) was the chosen strategy for

subsequent testing.

3 RESULTS

3.1 Identifying core proteins

We have collected a set of 458 core proteins that exist in a wide

range of organisms from plants, to fungi, to mammals.

An example of a typical core protein is shown in Figure 3.

Most core proteins appear to encode house-keeping genes, with

a wide range of different functions (Supplementary #1).

Gene finding is generally a hard problem, but core proteins

Table 1. Accuracy of the different steps of the CEGMA pipeline

Mapping step Nucleotide Internal

exons

Donor

sites

Acceptor

sites

Missed

exons

Wrong

exons

Start

sites

Stop

sites

CDS

BLAST 89.5/84.7 – – – 15.1 30.3 – – –

GeneWise 96.6/93.4 82.4/70.1 88.2/77.2 90.0/78.8 4.6 13.8 26.0 56.1 12.9

GeneWiseþ geneid 97.5/97.6 88.6/86.7 91.4/89.9 93.4/92.0 4.1 5.9 71.9 91.0 57.5

GeneWiseþ geneidþ self-training 98.3/96.3 91.6/90.0 93.4/91.4 95.1/93.1 3.2 5.3 78.1 92.8 64.5

CEGMA was run on the C.elegans genome using the core proteins of A.thaliana, D.melanogaster,H.sapiens, S.cerevisiae and S.pombe. No C.elegans information was used

in any of the steps. BLAST refers to use of TBLASTN searches with the proteins of the five previously mentioned species. GeneWise corresponds to the accuracy of the

profile of the orthologous proteins in the candidate regions. GeneWiseþ geneid corresponds to the initial geneid predictions based on consensus splice signals and

GeneWise alignments. GeneWiseþ geneidþ self-training refers to the second geneid predictions using species-specific coding statistics and gene signals estimated from the

first set of annotations plus GeneWise alignments. The accuracy is measured from the final set of 442 mapped C.elegans genes (2204 exons). Values shown refer to

sensitivity and specificity (Sn/Sp), all numbers are percentages.
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are so highly conserved that they can be found with sequence

alignment programs like BLAST. Determining the exact exon-

intron structure for the core proteins is still a difficult problem

(see subsequently), but unlike typical gene finding, there is a

control: we know that ultimately the encoded protein should

resemble the rest of the family.

3.2 Mapping core proteins into the test genomes

To determine how well the mapping protocol performed,

we first mapped core proteins in the genomes of A.thaliana,

C.elegans, D.melanogaster,H.sapiens, S.cerevisiae and S.pombe.

For these experiments, we left out the core proteins for the

genome under investigation. That is, when evaluating the

procedure on A.thaliana, for example, we did not include any

A.thaliana proteins or profile-hidden Markov models in the

mapping procedure. This allowed us to determine the accuracy

of the mapping procedure in A.thaliana as if it was a new

genome. We find that the mapping procedure finds virtually all

orthologs and discriminates coding from non-coding nucleo-

tides with497% accuracy (Table 2, also see Supplement #2).

It also finds490% of the acceptor, donor and stop sites. The

N-terminal regions of core proteins tend to be less highly

conserved, and this may be why the procedure is slightly less

accurate for start sites. The most accurate results were achieved

for the S.cerevisiae genome, reflecting the lack of introns in

most yeast genes.

An investigation of the core genes that were not mapped

showed that there are several reasons why some genes were

missed. The most common reason is when an ortholog of a core

protein does get mapped to the correct region, but the resulting

gene prediction omits one or more exons. When exons are

skipped in this way, the mapped protein becomes too dissimilar

when compared to the rest of the family, and is discarded. Exon

skipping can happen when some exons (typically shorter ones)

are less conserved than the rest of the gene and are therefore not

always detected by BLAST.

3.3 Mapping core proteins to recently

sequenced genomes

To determine how well the complete mapping and training

procedure performs, we evaluated the mapping procedure on

the recently sequenced genomes of Ciona intestinalis (Dehal

et al., 2002), Toxoplasma gondii (Kissinger et al., 2003),

Anopheles gambiae (Holt et al., 2002) and Chlamydomonas

reinhardtii (Grossman et al., 2003). These genomes were

sequenced using the Whole Genome Shotgun (WGS) strategy

and are therefore expected to be less complete than the six

model organism genomes that were mostly sequenced in a

hierarchical ‘clone-by-clone’ fashion. Despite variations in

the completeness of these WGS genomes, the results of the

mapping procedure were comparable to the results from the

initial set of six genomes and orthologs of most of the 458 core

Fig. 3. Multiple alignment of a typical core protein family. This family corresponds to the SAR1 GTPase involved in vesicle transport.

Table 2. Accuracy of the CEGMA pipeline

Genome Mapped (exons) Nucleotide Internal Donor Acceptor Missed Wrong Start Stop CDS

A.thaliana 440 (2333) 97.2/98.2 90.0/93.0 93.1/94.9 94.0/95.9 3.6 1.9 76.7 91.9 58.5

C.elegans 442 (2204) 98.3/96.3 91.6/90.0 93.4/91.4 95.1/93.1 3.2 5.3 78.1 92.8 64.5

D.melanogaster 456 (1543) 99.0/98.3 90.6/88.1 92.6/91.1 94.6/93.2 4.4 5.3 79.7 96.3 72.7

H.sapiens 451 (4354) 96.2/96.5 92.0/90.3 93.0/91.4 94.7/93.0 4.0 5.5 62.0 82.5 35.5

S.cerevisiae 427 (469) 99.8/99.6 – 91.3/72.4 91.3/72.4 0.8 3.3 91.5 100 91.0

S.pombe 449 (966) 99.6/98.5 82.4/88.8 88.8/93.5 88.0/92.7 3.4 2.3 96.9 96.9 80.4

The number of core genes found by the mapping procedure (Mapped) is out of a maximum of 458. The number of exons is showed in parentheses. The accuracy measures

are computed using the genomic annotations as reference. Values shown refer to sensitivity and specificity (Sn/Sp), all numbers are percentages.
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genes were mapped (Table 3). The worst mapping results

occurred for T.gondii where 303 core genes were found. This

species is a parasitic protozoan in the phylum Apicomplexa that

diverged from metazoan/fungi/plantae around 1600Mya.

Closer inspection of the T.gondii genome revealed that some

potential orthologs were missed by our protocol due to the high

degree of sequence divergence (data not shown).

To assess the accuracy of the genes that were mapped, we

utilized a set of complete gene structures that are supported by

experimental data. Many of these were collected by Lomsadze

et al. (2005) but others were added from a more recent release

of GenBank (release 156). To use these genes as a test set,

we first identified which of these genes corresponded to the

core genes that were mapped. The overlap between the two

sets produces a small subset of genes (20 A.gambiae, 25

C.intestinalis, 31 C.reinhardtii and 45 T.gondii) with experi-

mental data that were used to measure the accuracy of

predicted orthologs. In all four species, the predicted orthologs

have highly accurate gene structures with495% of all coding

nucleotides correctly predicted (Table 3). Overall, these results

indicate that the mapping procedure should be applicable to

a wide range of genomes. Even for a species with very highly

divergent genes (T.gondii), we still reliably map 66% of the

set of core genes and predict gene structures with an accuracy

as high as for the other species.

3.4 Mapping core proteins into draft genomic

sequences in different stages

To assess the utility of the mapping protocol in genomes in

draft stages, we also analyzed the number of core genes that

CEGMA was able to map in WGS genomes at different levels

of sequence coverage. For this purpose we used the different

versions of the T.gondii genome available from the ToxoDB

database (http://www.toxodb.org). This allowed us to compare

six different genome assemblies with levels of sequence cover-

age ranging from 0.7� to 10�. The number of mapped genes

increases with the increasing coverage of each genome

assembly. At 2� coverage we map a third of the final number

of mapped genes rising to two-thirds in the 4� assembly

(Fig. 4). At higher levels of sequence coverage (6� and 10�)

there is no great difference in the number of genes that we map,

which might suggest that most of the genome sequence is

represented in the 6� assembly.

4 DISCUSSION

In this study, we define a set of 458 core proteins that are highly

conserved in a wide range of eukaryotes and we present a

procedure, CEGMA, which allows one to map the exon–intron

structures of these core proteins to a new genomic sequence.

The average accuracy achieved by CEGMA is 98% at

nucleotide level and 90% at internal exon level in the six

model organism genomes. CEGMA also produces similar

accuracy in the four recently sequenced genomes (for the

subset of predictions supported by complete cDNAs). An

important advantage of our method is that we do not need

to have any knowledge of the target genome other than the

genome sequence itself. Our goal is not to annotate an entire

genome using this protocol but instead to generate a highly

reliable set of genes for the initial steps of annotation in new

genomes. Our method is fast (1 day for the human genome

using a Macintosh Quad-core G5 2.5GHz) and accurately

predicts hundreds of gene structures in any eukaryotic genome.

We show that it can additionally be used in draft genomes, and

even in a very diverged genome (T.gondii) CEGMA mapped

234 core proteins in a low coverage (4�) genome assembly. This

is important because there is an increasing number of genome

projects which are only being sequenced at low levels of

sequence coverage (such as a range of 2� genomes in the

Ensembl database).

Table 3. Accuracy of CEGMA pipeline in recently sequenced genomes

Genome Mapped (exons) Genes cDNA Nucleotide Internal Donor Acceptor Start Stop CDS

A.gambiae 453 (1539) 20 (69) 98.9/98.0 99.6/82.9 99.6/89.1 98.0/87.3 75.0 85.0 60.0

C.intestinalis 433 (3062) 25 (138) 97.4/98.9 94.4/97.7 93.8/96.4 95.6/98.2 72.0 98.5 72.0

C.reinhardtii 407 (3551) 31 (244) 95.0/97.1 91.4/94.9 91.1/94.2 93.4/96.6 74.2 93.5 61.3

T.gondii 303 (1946) 45 (235) 96.4/97.3 93.3/92.7 96.8/96.3 93.7/93.2 84.4 84.4 66.7

The number of core genes mapped in each genome. The number of exons is showed in parentheses. Gene with cDNA corresponds to the number of mapped genes for

which we found a complete cDNA. The accuracy measures are computed only in the subset of genes with cDNA. Values shown refer to sensitivity and specificity (Sn/Sp),

all numbers are percentages.
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Fig. 4. Numbers of core eukaryotic genes mapped by CEGMA in

T.gondii genome assemblies of different sequence coverage. Numbers of

mapped genes are from a set of 458 core genes.
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Having shown that we can reliably find the orthologs of
core genes in a new genome, we can consider whether
these genes are suitable to train gene finders or to derive
parameters for semi-automatic annotation pipelines. We

find that within each genome, the compositions of the start,
stop and splice sites are nearly identical between core
genes and an equal-sized set of randomly selected genes

(Supplement #3). While core genes tend to have slightly shorter
exons and introns, these features exhibit a high degree of
variability (Supplement #4). It might be expected that highly

conserved genes are likely to be highly expressed, and therefore
to have biased codon usage (Akashi and Eyre-Walker,
1998) and this does appear to be the case (Supplement #5).

However, any method of gene training that is based on
ESTs or cDNAs would also be biased towards genes that
are highly expressed. We are currently working on methods to
train gene finders from biased training sets (manuscript in

preparation).
There are other methods for annotating genomes that have

no experimental data including the bootstrapping method

(Korf, 2004) and a self-training method (Lomsadze et al., 2005).
In the bootstrapping method, the initial training set is
determined by a gene finder trained on one or several other

‘well known’ genomes. The self-training method is based on
GeneMark (Borodovsky and McIninch, 1993). In this method,
the unsupervised training progresses through several iterations
till a point of convergence is reached where all the predictions

are the same as that in the previous iteration. The performance
of unsupervised models can be influenced by the presence of
transposable elements that frequently carry genes required for

their mobility. Furthermore, the accuracy of this method can
vary substantially from genome to genome. Our method has the
advantage that we always know what the final set of gene

predictions should look like. Another advantage of core genes
is that their structures are very likely to be correct. Therefore,
in addition to their use as a training set, they can also be

employed as a test set. The unsupervised methods described
earlier have the problem that after the training iterations have
finished, there is no way to assess how accurate the final
predictions are. Our method would allow the core genes to be

used to measure the accuracy of these automatic annotation
methods.
The CEGMA pipeline can also be used to find core genes

that are missing in the initial annotations of a new genome
assembly. For instance, for the four recently sequenced
genomes used in this study we have found some core genes

that are not present in the existing annotations. For the
genomes of A.gambiae, C.reinhardtii and T.gondii, we found no
more than 10 core genes that were missing. However, in the
Ensembl annotations of C.intestinalis we find 67 core genes that

are not present (Supplement #6). This is surprising given the
highly conserved nature of these genes. Whilst Ensembl does
show cDNA sequences aligned to the correct regions for most

of these missing genes, it’s inability to predict the genes
themselves is indicative of the limitations in many annotation
pipelines in use today. A final advantage of our approach is

that in addition to their use as gene prediction training and test
sets, core genes can be used to gauge the completeness of
a genome assembly (manuscript in preparation). A rough

estimate can be computed as the fraction of the total set of 458
core genes that can be mapped.
The starting point for this work was the conserved groups of

proteins in the KOGs database. This database is being
expanded to include proteins from eight more eukaryotes

(http://www.ncbi.nlm.nih.gov/COG) and this would enable us
to build a more accurate set of core genes and even to build sets

of core genes for specific phyla. The utility of the system for
both of these purposes should increase progressively with the

inclusion of new genomes, particularly those of early-branching
eukaryotes. Using profiles for specific branches on the
evolutionary tree could improve the accuracy of the method.
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