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ABSTRACT

Motivation: Several authors have studied expression in gene sets

with specific goals: overrepresentation of interesting genes in

functional groups, predictive power for class membership and

searches for groups where the constituent genes show coordinated

changes in expression under the experimental conditions. The

purpose of this article is to follow the third direction. One important

aspect is that the gene sets under analysis are known a priori and are

not determined from the experimental data at hand. Our goal is to

provide a methodology that helps to identify the relevant structural

constituents (phenotypical, experimental design, biological compo-

nent) that determine gene expression in a group.

Results: Gene-wise linear models are used to formalize the

structural aspects of a study. The full model is contrasted with

a reduced model that lacks the relevant design component.

A comparison with respect to goodness of fit is made and quantified.

An asymptotic test and a permutation test are derived to test the null

hypothesis that the reduced model sufficiently explains the observed

expression within the gene group of interest. Graphical tools are

available to illustrate and interpret the results of the analysis.

Examples demonstrate the wide range of application.

Availability: The R-package GlobalAncova (http://www.biocon

ductor.org) offers data and functions as well as a vignette to guide

the user through specific analysis steps.

Contact: hummel@ibe.med.uni-muenchen.de

1 INTRODUCTION

The concept of a gene group is quite vague but often used.

It emphasizes the conceptual and biological importance of

the expression profile of a group of genes versus the multiple

analysis of individual gene expression. So far, there are two

major strategies to perform group tests: (1) prove that a group is

outstanding in its expression compared to other groups or

all remaining genes, (2) prove that expression in a given group

is altered between different conditions of interest. Goeman

and Bühlman (2007) call the null hypotheses related to

(1) competitive and related to (2) self-contained. In order to

assess (2), some authors apply (1) by assuming that there

is no differential expression between the experimental condi-

tions for all genes not contained in the gene group of interest.

From a statistical point of view, this is not an optimal way to

proceed. This article offers a strategy to handle problems that

can be formulated in terms of self-contained null hypotheses.
A famous example for a competitive null hypothesis was given

by Lamb et al. (2003). They looked at the set of target genes of

the cyclin D1 gene and study the target set expression profile

within different tumours. They showed that the group’s overall

expression level is significantly elevated compared to the expres-

sion level of a randomly chosen group of genes of the same size.
Gene signatures are specific gene groups that constitute a

classifier to discriminate between conditions (e.g. phenotypes).

A first validation step for a signature on new data consists in an

evaluation of its predictive ability between conditions and to

summarize the visual impression of a heat map in an

informative statistical measure. The validation consists in

testing a self-contained null hypothesis.
In general, the functional interpretation of a gene signature is

not straightforward. The direct involvement of its single compo-

nents in biological processes needs careful analysis. The signa-

ture’s functional annotation may start by assessing coexpression

of signature genes with genes of relevant functional groups.

Again, one must consider self-contained null hypotheses.
Molecular studies have been largely focused on individual

candidate genes, contrasting with the molecular complexity of

disease. The concept of a pathway tries to grasp this complexity

and to open the view for a more appropriate biological under-

standing. However, the dependencies and dynamics of interest

are not easily formalized. Pathways can be conceptualized as

gene sets enriched with structure (implied by networks and/or

dynamics). Therefore, the analysis of gene groups offers a crude

approach to pathway analysis. Groene et al. (2006) have

correlated tumour stages of colorectal cancer samples with gene

activity in nine well defined cancer-related pathways. They

identified pathways where the transcription pattern between

both stages showed a clear distinction (self-contained null

hypotheses). But, they did not ask the competitive question: is

there a pathway whose transcriptional differences between

samples of both stages is outstanding compared to those of the

other pathways?*To whom correspondence should be addressed.
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Strategies to test competitive null hypotheses have been

developed by several authors. Typically genes are scored

according to a rule. Gene set enrichment strategies use the

observed or absolute value of the gene-wise test statistics.

Strategies based on the hypergeometric distribution score

genes by 0 or 1, respectively, if the P-value of the gene-wise

test is above or below a fixed cutoff value. The score value

distribution is compared between gene sets.

Gentleman and Falcon (2007) define a set of categories

as merely a grouping of genes (entities). The groups do not

need to be exhaustive or disjoint. The mapping from a set of

entities (genes) to a set of categories can be represented as a

bipartite graph, whereby one set of nodes are the genes and

the other are the categories. The category approach answers

questions such as whether the observed test statistic is unusual

for a given category or whether any of the observed category

statistics are unusually large or small with respect to the entire

reference distribution. Therefore, the category approach can

be used to study both self-contained and competitive null

hypotheses.

Goeman et al. (2004) introduced the concept of a global test.

A global null hypothesis is the aggregation of many individual

null hypotheses. The global null hypothesis related to a gene

group is a statement that applies to all individual genes con-

tained in the group: no gene in the group exhibits differential

expression between the conditions of interest. Goeman et al.

(2004) evaluated the influence of an expression profile on a

phenotype. Their approach is motivated by the validation

problem for gene signatures: does the knowledge of a profile

help to improve the prediction of the phenotype (group, quan-

titative trait, survival)? Their approach is related to prediction,

and this introduces logical constraints on the situations where

global test can be used.
Global tests for the specific situation of a group comparison

without adjustment for covariates were developed by Kong

et al. (2006). They use Hotelling’s T2 test, the multidimensional

analog of the univariate two-sample t-test, that accounts for

correlation between genes. The dimension problem in the case

of having a larger number of genes in the gene set compared to

the number of samples is addressed by the use of a principal

component approach.
It is the purpose of this article to offer a general methodology

to study how the expression structure within a group of genes

is influenced by design aspects of the study (experiment).

Therefore, the article studies self-contained null hypotheses

and demonstrates the need to develop more general approaches

beyond the category approach and the global test. Gene-wise

linear models are used to formalize the relationship of gene

expression with phenotypic or genomic covariates. An

ANOVA-based sum of squares summarizes the individual

gene-wise linear models to a group statement. This provides the

name of our procedure: GlobalANCOVA. A permutation test

and an asymptotic distribution of the test statistics under the

null hypothesis are available to calculate P-values. This work

extends a former version of GlobalANCOVA (Mansmann and

Meister, 2005), which was confined to two-group comparisons.

It considers a broader range of designs by exploiting the full

scope of linear model theory.

Linear models have been successfully used to analyse

gene expression experiments. They were introduced by Kerr

et al. (2000) to simultaneously normalize and analyse gene

expression data. Smyth (2005) used linear models and ANOVA

when they developed limma. GlobalANCOVA extends limma

in two directions: First, the use of multiple comparisons

between many RNA targets is replaced by a simultaneous

global assessment for the entire group of genes. Second, a tool

based on linear models is proposed with a wider range of

applications beyond designed experiments.
The following section introduces the model in a formal way. A

simulation study is performed to assess the statistical properties

of GlobalANCOVA. Graphical tools are shown to visualize the

results of a GlobalANCOVA analysis. Examples that cover a

wide range of novel applications will be presented. The dis-

cussion offers a broader view on the potential of group testing.

2 METHODS

2.1 The basic concept

The general framework looks as follows: p genes are measured in n

independent samples (not necessarily n55p). Additionally d pheno-

typic covariates are documented for each sample. To illustrate the basic

aspects of the formalism, we introduce a toy example from oncology.

Table 1 shows the covariate information (d¼ 3) of samples from eight

patients who belong to two groups (0—good prognosis, 1—bad

prognosis) with additional phenotypic information on sex and

localization of the probe material.

A gene-specific linear model quantifies the systematic part, ~mðiÞ and

the noise component, ~�ðiÞ of the expression measurements for gene i over

the n samples, ~xðiÞ ¼ ðxi1; . . . ; x
i
nÞ

t. The model for gene i is described

by the gene-specific (dþ 1) dimensional regression coefficient ~�i and the

design matrix C that is independent of gene i:

~xðiÞ ¼ ~mðiÞ þ ~�ðiÞ ¼

1 c11 � � � c1d

..

. ..
. ..

.

1 cn1 � � � cnd

0
BB@

1
CCA �

�i0

..

.

�id

0
BB@

1
CCAþ

�i1

..

.

�in

0
BB@

1
CCA

¼ C � ~�ti þ
~�ðiÞ ð1Þ

The phenotypic covariate vector for sample k is ~ck ¼ ðck1; . . . ; ckdÞ. The

value 1 in the first column of the design matrix C defines a gene-specific

mean expression that is quantified by �i0. The other parts of the

regression coefficient ~�i quantify the mean influence of the specific

covariates on the expression of the gene. The noise component for

gene i ~�ðiÞ has a mean of zero and an unspecified diagonal covariance

matrix Cov½ ~�ðiÞ� ¼ �2
i ��n, where �n is the n dimensional unity diagonal

matrix.

The toy example helps to illustrate the formalism that the four

components of ~�i have the following interpretation: the first component

quantifies the overall gene-specific mean expression adjusted for all

Table 1. Design matrix for a simple two-group setting with adjustment

for sex (1—male; 0—female) and location (1—colon; 0—rectum)

Samples S1 S2 S3 S4 S5 S6 S7 S8

Gene (i) specific mean 1 1 1 1 1 1 1 1

Group 0 0 0 0 1 1 1 1

Sex 1 1 0 0 0 0 1 1

Localization 1 0 1 0 1 0 1 0

GlobalANCOVA
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covariate effects. The second component quantifies the corrected

(for sex and location effects) mean differential gene expression between

patients with good and bad prognoses. The third and fourth com-

ponents describe mean differences in gene expression between male and

female patients and mean differences in gene expression between

samples taken from rectum or colon. The design matrix C is given by

transposing the rows of Table 1 to columns.

The aim of GlobalANCOVA is to prove the relevance of certain

covariates in explaining the observed gene expression, called covariates

of interest. Therefore, two models are compared: the full model, which

contains all covariates (FM) and the reduced model (RM), which does

not have the covariates of interest. Formally, the design matrix C and

the regression coefficient ~�i are divided into the corresponding parts.

The submatrix C0 contains the covariates of interest, the submatrix C1

contains the remaining covariates used for adjustment. For gene i, the

prediction of expression under the full or reduced model are:

Eð ~x
ðiÞ
FMÞ ¼ ½C0;C1�ð ~�i;0; ~�i;1Þ

t
ð2Þ

and Eð ~x
ðiÞ
RMÞ ¼ C1

~�ti;1

For the toy example the matrix C0 is simply the column vector

containing the group information, and C1 is the 8�3 matrix with the

columns defined by the constant vector for the gene-specific mean, the

information on sex and the localization.

The residual sum of squares (RSS) quantifies how well a prediction

fits the observed data and quantifies the ability of a model to explain

the observed data. It is necessary to assemble the single gene

information in a global linear model. Model comparison in linear

model theory proceeds by defining suitable measures to compare two

residual sums of squares and to offer appropriate statistical tests for the

null hypothesis that both models explain the data equally well (Draper

and Smith 1998). The relevance of certain covariates in explaining

the observed gene expression is proven if the full model explains the

observation better than the reduced model.

The gene-wise information is assembled in a global linear model:

~X ¼

~xð1Þ

..

.

~xðpÞ

0
B@

1
CA ¼

C 0 0

0 . .
.

0
0 0 C

0
@

1
A �

~�t1
..
.

~�tp

0
B@

1
CAþ

~�ð1Þ

..

.

~�ðpÞ

0
B@

1
CA ¼ ~C � ~�þ�; ð3Þ

where ~X is an np column vector, ~C is an (np)�[(dþ 1)p] block diagonal

matrix and ~� is a (dþ 1)p column vector that contains all gene-specific

information. The full and the reduced model can both be written this

way. Although the model is multivariate, computation is quite feasible,

because the blocks of ~C are all identical design matrices for each gene-

wise model. The noise component has a mean of 0 and an unspecified

positive definite covariance matrix Cov½�� ¼ ~�. Based on the global

linear model, it is possible to estimate the residuals ~R and the residual

sum of squares (RSS) based on the hat matrix ~H:

~R ¼ ð�np � ~Cð ~Ct ~CÞ�1 ~CtÞ ~X ¼ ð�np � ~HÞ ~X ð4Þ

and RSS ¼ ~Rt � ~R ¼ ~Xtð�np � ~HÞ ~X:

Here �np is the np dimensional identity matrix. The global RSS can be

computed easily as the sum of gene-wise residual sums of squares. The

extra sum-of-squares principle is used to study the difference between

the full model and the reduced model (Draper and Smith 1998). It

allows the construction and computation of a multivariate test statistic:

FGA ¼
RSSRM �RSSFM

RSSFM
�
n� q

f
; ð5Þ

where n is the number of samples, f is the number of columns in C0

(namely, the number of parameters in the full model minus the number

of parameters in the reduced model) and q is the number of columns in

[C0, C1] (number of parameters in the full model).

Under the assumption of independent homoscedastic gene expres-

sions � �N(0, �2�np) the null hypothesis that there is no group

influence on global gene expression H0 : ~�0 ¼ 0 can be tested using

a classical F-test. The test statistic FGA is Fpf,p(n� q) distributed under

H0. In general, the simple assumption of independent homoscedastic

genes does not hold.

Table 2 specifies the full and reduced model for six specific and often

used scenarios.

2.2 Permutation distribution of FGA under the reduced

model

The implementation of a permutation-based approximation for the

distribution of FGA under the null hypothesis is straightforward. One

permutes the rows of C0 B times, which corresponds to subject

sampling. Because rows of C1 are not permuted the covariate structure

is preserved. To reduce the computational burden, we take the residuals

of the reduced model from the original data as fixed and fit these

residuals to the permuted design matrix ½Cb
0;C1� in order to calculate

the residuals for the full model. Therefore, the RSSRM is constant for

each permutation. Only RSSFM varies and comes up with the resampled

value of the statistic Fb
GA. An empirical P-value is given by the fraction

of statistics Fb
GA ðb ¼ 1; . . . ;BÞ that are larger than the actual FGA.

2.3 Asymptotic distribution of FGA under the reduced

model

The expressions for the p genes in a sample are assumed to be normally

distributed with an unspecified covariance matrix ~�genes. The null

hypothesis states that the mean of the gene expression is determined by

the reduced model. Basic algebra proves that the difference between

both RSSes is distributed as a mixture of �2 distributions:

RSSeffect ¼ RSSRM �RSSFM ¼
Xnp

i¼1

�i � �
2
1;i: ð6Þ

Kotz et al. (1967) describe an algorithm to approximate the distribution

of the weighted sum of �2-distributed variables by a (possibly infinite)

mixture of �2 distributions.
The calculation of the np weights needs two inputs: the n eigenvalues

�1, . . . , �n (possibly the same numeric value with a corresponding

multiplicity) of the difference of the hat matrices (HFM � HRM) and

the p eigenvalues �1, . . . , �p of the gene covariance matrix ~�genes. While

the �’s can be calculated by standard methods, the calculation of the �’s

is not straightforward. A regularized estimate of ~�genes is needed in case

the number of genes is larger than the number of samples. This implies

an empirical covariance matrix not of full rank. Ledoit and Wolf (2004)

Table 2. Six specific and often used scenarios in model notation of the S

language

Design Full model [C0,C1] Reduced model [C1]

Groups � group þ cov � cov

Dose- response � dose þ cov � cov

Group by dose

interaction

� group * dose þ cov � group þ dose þ cov

Time trends

in groups

� group * time þ cov � group þ time þ cov

Gene gene

interaction

(GGI)

� gene þ cov � cov

Differential GGI � group * gene þ cov � group þ gene þ cov

M.Hummel et al.
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propose an estimate �’¼ ’ � T þ (1� ’) � U with shrinkage factor ’,

shrinkage target T and unrestricted estimate U. The optimal shrinkage

factor ’ can be explicitly computed from the data for a given full rank

positive definite shrinkage target T. If few genes are correlated, the

shrinkage target may be the diagonal matrix with unequal variances.

For this target the optimal ’ is

’* ¼

P
i 6¼j

VarðsijÞ

P
i 6¼j

sij
ð7Þ

where sij is an unbiased estimate of the covariance between gene i and

gene j. The calculation can be performed by the function cov.shrink

of the R-package corpcor (Schaefer et al. 2006).

The np weights � are:

� ¼ f�i � �j; i ¼ 1; . . . ; p; j ¼ 1; . . . ; ng:

3 SIMULATION STUDY

The simulation study assesses the quality of the permutation-
basedP-value and the asymptoticP-value. The calculation of the

asymptotic P-value involves two crucial approximation steps: a
shrinkage approach to estimate the high-dimensional covariance

matrix and a finite approximation to the series expansion of the
distribution function for the weighted �2 distribution. Both steps

may influence the performance of the test.
The permutation P-value will be compared with the

asymptotic P-value. In the case of independent genes, the
statistical theory provides a theoretical P-value derived from an

F-distribution. Under the null hypothesis, the P-value should
be uniformly distributed on [0,1]. The simulation setup can also

be used to study the power of the test.
Four scenarios will be studied following a common scheme:

one thousand permutations are used to calculate the permuta-
tion P-value, and one thousand independent repeats of the

experiment are performed.
The first scenario (S1) studies independent genes with no

differential expression between two groups of samples: 30 (200)
independent N(0,1) distributed genes with 20 samples taken in

each group.
The second scenario (S2) looks at 30 (200) dependent N(0,1)

distributed genes with 20 samples taken in each group.
Dependence is defined by compound symmetry: an equally

positive correlation between two genes (�¼ 0.2). This scenario
is a challenge to the shrinkage target used in the algorithm. The

default shrinkage target is the diagonal matrix while the ideal
shrinkage target for S2 would be a matrix with a common

covariance. This dependence structure represents regulatory
networks with genes ordered in a chain and partial correlation

between two neighbouring genes.
The third scenario (S3) is based on the second scenario.

Additionally 6 (20) genes are randomly chosen to be differ-
entially expressed with a mean difference of 0.5 between the

groups.
The fourth scenario (S4) looks at networks that consist of

short chains of interacting genes. This can be represented by
small blocks of compound symmetry within the large covariance

matrix of the gene group. For simulation purposes we chose
blocks of size 10. We look at the null hypothesis and at the

alternative as described in S3.

The results of the simulation study are summarized in

Table 3. The simulation for the permutation P-values shows a

behaviour according to the uniform distribution on [0,1] in the

four settings of S1 and S2. S3 is under the alternative and

a strong deviation from the uniform distribution is expected.

The accurateness of the permutation P-values is in the expected

range around the theoretical P-value (10%, 90% Quantile

�2%) and can be improved by increasing the number of

permutations.
The simulation for the asymptotic P-values shows an anti-

conservative behaviour that produces more false positive

signals than expected by the level of the test. The observed

levels for the nominal 5% are 6% (S1–30genes), 7%

(S1–200genes), 6% (S2–30genes) and 10% (S2–200genes).

The anti-conservative behaviour has an impact on the power

of the asymptotic test. Under S3, the asymptotic (permutation)

test on level 5% shows a power of 28% (20%) for 30 genes and

23% (12%) for 200 genes.
The asymptotic test improves under S4. Its distribution is as

expected similar to the uniform. The observed levels for the

nominal 5% are 7% (S1–30genes) and 7% (S1–200genes).

Under S4, and the alternative described in S3 the asymptotic

(permutation) test on level 5% shows a power of 43% (37%)

for 30 genes and 73% (65%) for 200 genes.
We conclude that the permutation P-value works sufficiently

accurately but is extremely computationally demanding when

exploring low P-values in a multiple testing setting. The asymp-

totic P-value can replace the permutation approach in situations

of complex multiple testing. In general, it is slightly anti-

conservative when the shrinkage target is chosen appropriately.

A misspecification of the shrinkage target (for instance,

choosing the diagonal matrix when compound symmetry is

present) may amplify the anti-conservative tendency and result

in an uncontrolled rate of false significant findings.

4 GRAPHICAL DISPLAY OF TEST RESULTS

As mentioned above, the GlobalANCOVA procedure is

based on the extra-sum-of-squares principle (Draper and

Table 3. False positive fraction (top) and power (bottom) at �¼ 5%

Scenario Level permutation Level asymptotic

S1-30genes 0.055 0.062

S1-200genes 0.046 0.069

S2-30genes 0.046 0.059

S2-200genes 0.057 0.101

S4-30genes 0.049 0.073

S4-200genes 0.049 0.070

Scenario Power permutation Power asymptotic

S3-30genes 0.204 0.283

S3-200genes 0.121 0.225

S4-30genes 0.366 0.425

S4-200genes 0.647 0.732

GlobalANCOVA
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Smith, 1998). Therefore, the decomposition of the total sum of

squares with respect to model components can be studied in

two ways: as the sum of contributions per gene or as the sum

over the subject contributions. This allows a gene-wise and a

subject-wise view and visualizes which genes or which samples

are most affected in their gene expression by the structure under

study. We have adapted these views into two graphical displays

of the results.

The function Plot.genes displays the gene-wise reduction

of the sum of squares

RSSgenei ¼
Xn
j¼1

�̂2RM;ij � �̂2FM;ij

divided by the difference in degrees of freedom between the full

and the reduced models. Gene-wise values are shown as bars.

A reference line corresponds to the gene-wise residual mean-

square of the full model. This plot can be regarded as a

representation of gene-wise F-tests of the single-gene hypoth-

eses. It shows the genes that contribute most to the structural

differences in expression looked for.

In addition, a subject-wise view is provided by the function

Plot.subjects. It represents a comparison of the fit

between the full and the reduced models for each sample:

RSSsample j ¼
Xp

i¼1

�̂2RM;ij � �̂2FM;ij

The sum over all gene-wise contributions per sample indicates

the improvement in fit per sample over all genes. The values

need not be positive. Small or negative values indicate that

the fit for a given sample is not improved by including the

structural terms of interest.
Both plots can be coloured with respect to a design variable

of interest. The meaning of colouring is straightforward in the

subjects plot because each subject has a unique value for the

variable under consideration. The colouring of the gene plot is

driven by the mean value of gene expression in the subgroups

defined by the values of the variables of interest. A gene is

coloured with respect to the subgroup where its mean gene

expression is highest. Examples of both plotting types are given

in the example section.

5 EXAMPLES

5.1 Two groups with differential gene signatures

Groene et al. (2006) studied the p53 pathway, in order to

differentiate colorectal carcinoma (CRC) patients in UICC

stage II (good prognosis) versus UICC stage III (bad

prognosis). While UICC II CRC has a 5-year recurrence rate

of 20–25%, UICC stage III tumours are more dynamic with a

5-year recurrence rate over 40% after radical resection (Obrand

and Gordon 1997).
Tumour samples of 18 patients with UICC stage II CRC

and 18 patients with UICC stage III CRC were hybridized

on U133A Affymetrix GeneChips. Forty-five probesets of

the U133A Affymetrix GeneChip were associated with

the p53-signalling pathway. A simple initial analysis may

consist in studying the unadjusted influence of group

(UICC II/UICC III) on the gene expression for the ensemble

of the 45 probesets of interest. In this case, the full and the

reduced models are defined by

Cunadjusted
FM ¼

1 g1

..

. ..
.

1 g36

0
B@

1
CA and Cunadjusted

RM ¼

1
..
.

1

0
@

1
A

where gi¼ 0 if sample i is from a UICC II patient, gi¼ 1 if

sample i is from a UICC III patient. The value of the test

statistic FGA is 2.2469. The permutation P-value derived from

10 000 resamples is pperm¼ 0.011.
Colorectal carcinomas are located in two parts of the gut, the

colon and the rectum. A carcinoma of the rectum has slightly

different biological properties than the carcinoma of the colon.

Thus, it may be reasonable to consider the location of the

tumour when modelling its gene expression. Unlike breast

cancer, which is rarely found in men, CRC is present in both

sexes. Sex also influences gene expression and one should

adjust for it when both groups are not homogeneous with

respect to sex. We perform a gene-wise adjustment to both

covariates (location: li ¼ 0 if the CRC of patient i is located in

the colon, li ¼ 1 else; sex: si ¼ 1 if patient i is male, si ¼ 0 else).

In the adjusted case, the full and the reduced model are

defined by

Cadj
FM ¼

1 g1 l1 s1

..

. ..
. ..

. ..
.

1 g36 l36 s36

0
BB@

1
CCA and Cadj

RM ¼

1 l1 s1

..

. ..
. ..

.

1 l36 s36

0
B@

1
CA

where gi is defined as above. The value of the test statistic FGA is

2.8099. The permutation P-value derived from 10 000 resamples

is pperm¼ 0.002.
The asymptotic distribution of FGA under the null hypothesis

that grouping has no influence on the gene signature of a gene

group can now be derived for the unadjusted case

(RSSeffect¼ 14.724) and the adjusted case (RSSeffect¼ 18.079)

[see formula (6)]. The eigenvalues {�i}i¼ 1, . . . ,45 of the covar-

iance matrix for the multivariate distribution of the gene

expression can be calculated using the algorithms provided by

Schaefer et al. (2006). The 36 eigenvalues of the 36 by 36 matrix

HFM � HRM in the unadjusted and the adjusted situation are

1 and 35 times 0. The resulting mixture of �2 distributions

consists of 45 components with weights {�i}i¼ 1,. . .,45. The

algorithm described above gives the asymptotic P-values of

0.0102 (unadjusted) and 0.0018 (adjusted) that agree quite well

with the permutation P-values.
The gene plot (Fig. 1, top) shows two strong grey signals for

probesets that are upregulated in the group of patients with

advanced cancer (UICC III). The two related genes, CDKN2A

and CDKN1C, are two cyclin-dependent kinase inhibitors,

whose association with colorectal carcinogenesis has been

previously shown (Li et al., 2003; Maeda et al., 2003). The

sample plot (Fig. 1, bottom) shows only a few black bars into

the negative direction: the full model fits the gene expression

of patients in the good prognostic group (UICC II, black bars)

better. The gene expression of the p53 pathway is less

predictable in the group of patients with advanced cancer

(UICC III, grey bars).
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5.2 Differential time course

Xiang et al. (2007) compared gene regulation over time in a

group of mice infected by prion ME7 compared to a group of

mice with mock-infected brains (inoculated with normal brain

homogenate). Three mice were sacrificed in each group at each

of three time points (90/120/150 days after infection). The genes

of interest to study were those that are differentially regulated

over time between both groups. Time was modelled as an

ordered factor in a linear model and polynomial contrasts were

used. The main interest of the experiment was the relevance of

the time by group interaction to explain the observed data

(implying a differential time course between the groups).
The probesets of the moe430a GeneChip were mapped to the

Gene Ontology (Gene Ontology 2000). For each node in the

biological process (BP) ontology, a GlobalANCOVA was

performed to compare the full model (� group * time) with

the reduced model (� group þ time). Mining all GO nodes of

the BP ontology may detect gene groups that might play an

important role in the differentiation of gene expression over

time between the two experimental groups. The term with the

smallest P-value (p¼ 0.00003) is quinone cofactor metabolic

process. The time course and gene plot are shown in Figure 2.
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Fig. 1. Gene (top, labels¼ probeset ID) and subject (bottom, labels¼

patient ID) plot for the p53 example.
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Fig. 2. Top: time course of expression for genes in biological process

GO category ’quinone cofactor metabolic process’, which was found to

be interesting with respect to different temporal development in

expression between the two treatment groups. Each gene is coloured

uniquely. The two lines for each gene correspond to normalized mean

expression values in the prion-infected and mock-infected groups at

each time point. Genes with visible interaction between treatment group

and time are shown with thick lines. Bottom: contribution of single

genes in the biological process GO category ‘quinone cofactor

metabolic process’ to the GlobalANCOVA test statistic.
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Genes showing a clear differential time course of expression in

the upper figure are also detected by the gene plot to have the

most influence on the GlobalANCOVA test statistic.
Some adjustment for multiple testing is needed because

several thousands of GO categories are tested. The Bonferroni–

Holm correction on a global level of �¼ 0.1 does not return any

node as significant. The focus level procedure of Goeman and

Mansmann (2007) offers a more efficient alternative for

multiple testing on the GO graph (strong control of the

family-wise error rate). It combines the strengths of closed

testing with Bonferroni–Holm and starts the search for relevant

nodes in a middle section of the GO graph. The method is

available in the Bioconductor (http://www.bioconductor.org)

packages globaltest and GlobalAncova. The focus level

procedure determines a subgraph of the GO with a controlled

number of falsely rejected null hypotheses (no gene in the

specific BP subgroup shows differential time course). For the

data at hand, the procedure returns the Figure 3 on a global

significance level of �¼ 0.1. The graph contains 3 of the 5 BP

groups that are detected by the FDR controlling procedure of

Benjamini–Hochberg on a level of 10%. The two additional

nodes are telomere organization and biogenesis (GO:0032200)

and telomere maintenance (GO:0032200). Because the experi-
ment only involved 18 animals, the global level of testing was
set to be more liberal on �¼ 0.1.

6 DISCUSSION

GlobalANCOVA is a general methodology for analysing gene

expression data in terms of predefined gene sets, pathways or
complexes. Its constructive idea is to use gene-wise linear

models and to aggregate their information in a multivariate test
procedure. GlobalANCOVA exploits the strength of the
classical linear model theory, especially ideas related to

goodness of fit tests. In this article, we extend the
GlobalANCOVA proposed by Mansmann and Meister (2005)
to a general framework that makes full use of the refined theory

for linear models. In the previous version merely the typical
question about two-class differential expression could be
addressed, whereas now the approach is broadened to a wide

field of applications. Basically, it allows for testing whether a
specific aspect of the study design such as group membership,
time course, group by time course interaction, dosage, group by

dose interaction, etc. is necessary to explain the observed gene
expression. Another important methodological advancement
makes asymptotic P-values available that helps to speed up the

calculation.
The usefulness of linear models for the analysis of high-

dimensional experiments is widely acknowledged and exploited.
GlobalANCOVA generalizes approaches as used in limma
(Smyth, 2005) from experimental design to observational

studies by allowing the inclusion of covariates that may correct
for unbalanced situations. GlobalANCOVA uses the full
strength of linear model theory: model building techniques,

strategies for model diagnostics and model selection. Other
proposals for global tests (Goeman et al., 2004; Kong et al.,
2006; Tomfohr et al., 2005) restrict their applicability to specific

designs (groups, main effects).
Goeman and Bühlman (2007) differentiate competitive

versus self-contained tests for gene groups. A competitive test

compares differential expression of the gene set to a standard
defined by the complement of that gene set. A self-contained
test, in contrast, compares the gene set to a fixed standard that

does not depend on the measurements of genes outside the gene
set. Goeman and Bühlman (2007) give a thorough discussion
on the pros and cons of both concepts. GlobalANCOVA is a

self-contained test for gene groups.
The self-contained test can be performed from two perspec-

tives: prediction and structure. The global test proposed by
Goeman et al. (2004) assesses the predictive power within gene
expression data X for a certain phenotype Y. Here, phenotypic

covariates C and gene expression are on the same footing. Its
null hypothesis is that the knowledge of gene expression does
not improve the prediction for Y: P[Y |X,C]¼P[Y |C].

GlobalANCOVA studies the effect of a design on gene
expression patterns: P[X |Y,C]¼P[X |C]. Does the time
course (Y represents the variables that encode the time by

group interaction) of gene expression depend on group
membership (C encodes the main factors time and group)?
The differential time course design could not be treated by

globaltest.
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Fig. 3. Focus level graph for the BP ontology showing gene groups with

a differential time course in gene regulation between mock-infected and

scrapie-infected mice. Strong FWER is controlled on level �¼ 0.1. Gene

sets within the chosen focus level are coloured grey.
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Global tests are designed to reject a very general null
hypothesis: no gene in a group of genes shows a reaction of
interest. This null hypothesis offers an umbrella for two
extreme cases: there are few strongly reacting genes or there

are many weakly reacting genes. Furthermore, global tests
provide a first step for a more refined analysis. They offer a
proof of concept before searching the specific aspects of a

cellular mechanism. The global test of Goeman et al. (2004) can
be seen as a first check before undertaking the complex task of
building a classification rule. Global tests can be used to

validate statements regarding gene sets.
In spite of their quite general view, global tests can be used to

build refined pictures on a phenomenon under study. The

specification of a question can be represented by a hierarchy of
null hypotheses. Statistical strategies for multiple testing can be
used to control the error when the question of interest is framed
by a global test. Goeman and Mansmann (2007) describe the

focus-level method as a tool to locate substructures in a GO
graph where gene expression is related to a specific biological
occurrence. The specification of a question may be encoded in

the most specific nodes of the detected GO substructure. Using
global tests helps to control the family wise error rate of the
derived statement. Meinshausen (2007) developed an alter-

native procedure to derive sound statements from tree-
structured hierarchies of null hypotheses. Methodologies to
control hierarchical false discovery rates are proposed by
Yekutieli (2007).

The category approach by Gentleman and Falcon (2007) is
similar in spirit to GlobalANCOVA. The gene-wise application
of the full model returns a set of regression coefficients and the

summary statistic is their mean. The summary statistic should
be approximately normally distributed under the null hypoth-
esis (given by the reduced model) with mean zero. The category

package provides visual tools to check this assumption for one
or a few groups. A permutation procedure similar to the pro-
cedure described in subsection 2.2 can be used to derive the

distribution of the summary statistic under the null hypothesis
and to compare it with the observed value. There is no proposal
to derive an approximate P-value, as is necessary when looking
for minuscule P-values or when performing multiple testing on

the GO.
In summary, global tests offer an essential tool within

strategies to mine high-dimensional data based on structured

biological knowledge. The usefulness of group testing in terms
of stable and reproducible findings on gene expression has also
been confirmed by other groups (Manoli et al., 2006).

From a purely statistical point of view, GlobalANCOVA is
just a replacement for the general multivariate linear model
analysis in very high dimensions. Its strength for the applica-
tion in gene expression analysis lies in its flexibility to

incorporate substantial biological information via measured
covariates and in its ability to model complex phenotype-
related effects.
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Goeman,J.J. and Bühlmann,P. (2007) Methodological issues in gene set testing

based on microarray data. Bioinformatics, 23, 980–987.

Goeman,J.J. and Mansmann,U. (2007) Multiple testing on the directed acyclic

graph of gene ontology. Technical report. http://www.msbi.nl/dnn/People/

Goeman/Publications/tabid/202/Default.aspx.

Groene,J. et al. (2006) Transcriptional census of 36 microdissected colorectal

cancers yields a gene signature to distinguish UICC II and III. Int. J. Cancer,

119, 1829–1836.

Kerr,M.K. et al. (2000) Analysis of variance for gene expression microarray data.

J. Comput. Biol., 7, 819–837.

Kong,S.W. et al. (2006) A multivariate approach for integrating

genome-wide expression data and biological knowledge. Bioinformatics, 22,

2373–2380.

Kotz,S. et al. (1967) Series representations of distributions of quadratic forms in

normal variables. I. Central case. Ann. Math. Stat., 38, 823–837.

Lamb,J. et al. (2003) A mechanism of cyclin D1 action encoded in the patterns of

gene expression in human cancer. Cell, 114, 323–334.

Ledoit,O. and Wolf,M. (2004) A well-conditioned estimator for large-

dimensional covariance matrices. J. Multiv. Anal., 88, 365–411.

Li,J.Q. et al. (2003) Loss of p57KIP2 is associated with colorectal carcinogenesis.

Int. J. Oncol., 23, 1537–1543.

Maeda,K. et al. (2003) Hypermethylation of the CDKN2A gene in colorectal

cancer is associated with shorter survival. Oncol. Rep., 10, 935–938.

Manoli,T. et al. (2006) Group testing for pathway analysis improves

comparability of different microarray data sets. Bioinformatics, 22,

2500–2506.

Mansmann,U. and Meister,R. (2005) Testing differential gene expression in

functional groups. Methods Inf. Med., 44, 449–453.

Meinshausen,N. (2007) Hierarchical testing of variable importance. Technical

report. http://www.stats.ox.ac.uk/�meinshau/hierarchical.pdf.

Obrand,D.I. and Gordon,P.H. (1997) Incidence and patterns of recurrence

following curative resection for colorectal carcinoma. Dis. Colon Rectum, 40,

15–24.

Schaefer,J. et al. (2006) corpcor: Efficient Estimation of Covariance and (Partial)

Correlation. R package version 1.4.4. http://www.strimmerlab.org/software/

corpcor/.

Smyth,G.K. (2005) Limma: linear models for microarray data. In Gentleman,R.

et al. (eds.), Bioinformatics and Computational Biology Solutions using R and

Bioconductor. Springer, New York, pp. 397–420.

Tomfohr,J. et al. (2005) Pathway level analysis of gene expression using singular

value decomposition. BMC Bioinformatics, 6, 225.

Xiang,W. et al. (2007) Transcriptome analysis reveals altered cholesterol

metabolism during the neurodegeneration in mouse scrapie model.

J. Neurochem, 102, 834–847.

Yekutieli,D. (2007) Hierarchical False Discovery Rate controlling methodology.

Accepted by the Journal of the American Statistical Association.

GlobalANCOVA

85

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/1/78/205159 by guest on 23 April 2024

http://www.msbi.nl/dnn/People/
http://www.stats.ox.ac.uk/
http://www.strimmerlab.org/software/

