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ABSTRACT

Motivation: Next generation sequencing technologies open exciting
new possibilities for genome and transcriptome sequencing. While
reads produced by these technologies are relatively short and
error prone compared to the Sanger method their throughput is
several magnitudes higher. To utilize such reads for transcriptome
sequencing and gene structure identification, one needs to be able
to accurately align the sequence reads over intron boundaries.
This represents a significant challenge given their short length and
inherent high error rate.
Results: We present a novel approach, called QPALMA, for
computing accurate spliced alignments which takes advantage
of the read’s quality information as well as computational splice
site predictions. Our method uses a training set of spliced reads
with quality information and known alignments. It uses a large
margin approach similar to support vector machines to estimate
its parameters to maximize alignment accuracy. In computational
experiments, we illustrate that the quality information as well as the
splice site predictions help to improve the alignment quality. Finally, to
facilitate mapping of massive amounts of sequencing data typically
generated by the new technologies, we have combined our method
with a fast mapping pipeline based on enhanced suffix arrays. Our
algorithms were optimized and tested using reads produced with the
Illumina Genome Analyzer for the model plant Arabidopsis thaliana.
Availability: Datasets for training and evaluation, additional results
and a stand-alone alignment tool implemented in C++ and python
are available at http://www.fml.mpg.de/raetsch/projects/qpalma.
Contact: Gunnar.Raetsch@tuebingen.mpg.de

1 INTRODUCTION
Next generation (NG) sequencing technologies are able to generate
huge amounts of DNA sequence reads at a fraction of the cost
of Sanger sequencing. While the human genome project cost
several hundred million US dollars, new sequencing technologies
like Roche/454’s FLX Genome Sequencer are able to sequence
a human genome with no more than 1 million US dollars.
Recently introduced sequencing technologies like Illumina’s Solexa
sequencing technology or ABI’s SOLiD are able to generate the
same amount of sequences with an order of magnitude lower costs.
However, these technologies also come with certain limitations in
particular concerning the read length and the rate of sequencing
errors. These characteristics make their use for genome and
transcriptome sequencing considerably more challenging. So far,
most efforts were spent in developing methods for analysing
sequence reads from genomic DNA, for instance efficient alignments
of reads to reference genomes for genome resequencing and also
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de novo genome assembly (e.g. Hillier et al., 2008; Sundquist et al.,
2007; Wold and Myers, 2008; Zerbino and Birney, 2008). While
the latter techniques seem in principle be useful for transcriptome
analysis, they typically do not use the genomic sequence for guiding
the assembly and are additionally faced with alternative transcripts
which can result in assembly errors.

For EST and cDNA sequences one therefore resorts to a different
strategy: instead of assembling the sequences before aligning them to
the genome, one first aligns the single reads to the genome and then
merges the alignments to infer gene structures. Many methods have
been developed to solve the so-called spliced alignment problem of
aligning spliced RNA sequences to the genome (Florea et al., 1998;
Gelfand et al., 1996; Kent, 2002; Schulze et al., 2007; Slater and
Birney, 2005; Usuka et al., 2000; Zhang and Gish, 2006). These
methods are efficient and accurate if the sequence blocks (exons)
are sufficiently long and are highly similar to the genomic sequence.
Reads from NG sequencing techniques typically do not have either
of the two properties. For instance, if a single read of length 30 nt
spans over two exons, it is not very unlikely that the shorter part
covering one exon is not longer than just 5 nt (>16%). Moreover,
assuming a substitution error rate of 5% it is very likely that there is
at least one mismatch within these 5 nt. This represents a substantial
challenge to alignment algorithms such as blat for correctly aligning
such reads.

In this work we aim to develop a method exploiting all available
information to accurately align as many as possible spliced sequence
reads to the genome. As information sources there is not only
the DNA sequence of the read and the genome, but also quality
information associated with the read and predictions about potential
splice sites within the genome. In our previous work we already
proposed a method taking advantage of splice site predictions
(Schulze et al., 2007). In this work we extend this method to also
benefit from the read’s quality scores. This information can help to
decide at which positions one can expect to observe mismatches and
subsequently contribute to the identification of the correct alignment.

Rather accurate methods for relating the quality score to the error
probability which can then be used in some probabilistic model
have been proposed for Sanger sequencing (Li et al., 2004; Mott,
1998). However, such measures are less well developed and accurate
for NG sequencing techniques. We therefore propose an alternative
method for taking quality scores of a sequence into account. The
idea is to learn, in a supervised manner, how to score quality
information, splice site predictions and sequence identity based
on a representative set of sequence reads with known alignments.
The algorithm is based on extensions of the well-known Smith-
Waterman algorithm using more sophisticated parametrized scoring
functions. The idea is to tune the parameters of the scoring functions
such that the true alignment does not only achieve a large score (to be
‘most likely’), but also that all other alignments score considerably
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lower than the true alignment (to obtain a ‘large margin between the
alignments’). Similar ideas are used in other large margin algorithms
such as Support Vector Machines (SVMs) (Müller et al., 2001;
Schölkopf and Smola, 2002; Vapnik, 1995) and Boosting (Freund
and Schapire, 1997; Meir and Rätsch, 2003). The resulting scoring
function can then be used to obtain the best scoring alignment via
the extended Smith–Waterman algorithm.

To train and evaluate our method we need a set of representative
sequences for which we know the true alignment. The most
representative set of sequences would be obtained by sequencing
short reads from the transcriptome. However, in this case we would
not necessarily know the correct alignment: Only in the simplest
cases we could come up with an accurate alignment based on
standard alignment techniques. This set of sequences would not be
suitable for evaluating a method aimed to be more accurate than a
standard alignment technique, since one would not be sure which
method made a mistake. We therefore chose to use short genomic
sequence reads produced with the Illumina Genome Analyzer for
generating in silico spliced sequence reads based on the genome
annotation. The idea is to consider all genomic sequence reads
overlapping with two consecutive exon boundaries (according to
the annotation). If a read covers the end of the first exon, it can be
combined with a read covering the start of the other exon. Using
this merge operation, we can generate reads that basically look like
transcriptome reads produced on the same platform particularly with
regard to read error probability and per base quality, for which we
exactly know the correct spliced alignment.

In a typical application scenario one needs to align millions
of short sequence reads against the genome. In this case the
direct application of the extended Smith–Waterman algorithm for
alignment against the whole genome is not feasible. We therefore
propose to combine our method with a fast suffix array-based
approach to identify a seed for the alignment. A read will in the
great majority of the cases span over one or two exons. Hence, the
longer part of the read is going to be long enough to be found quite
unambiguously in the genome if allowing for a small number of
substitutions or indels. For each such seed we can use QPALMA to
align the read to the genomic regions surrounding the seed position
to identify the other part of the match. In some cases there will
be several seeds. Then QPALMA’s scoring function can be used to
decide which seed leads to the correct alignment. This combined
strategy will allow us to efficiently align even very large numbers
of reads identifying their spliced alignments.

The article is structured as follows: In Section 2 we first describe
the different parts of QPALMA, describe the generation of in silico
spliced reads derived from a Illumina Genome Analyzer and finally
describe the pipeline for efficient alignment of large sequence
sets. In Section 3 we will show the power of our approach while
illustrating that each information source leads to additional increases
in performance. Finally we show first results using the proposed
alignment pipeline and conclude this work with a discussion in
Section 4.

2 METHODS
In the following sections we will describe our method, called QPALMA,
consisting of three independent parts: the splice site prediction model, the
dynamic programming algorithm and the optimization of the scoring function

Fig. 1. Work-flow for training QPALMA: Confirmed donor and acceptor
sites are used to train a SVM-based splice site predictor (Sonnenburg et al.,
2007). Short sequence reads (36 nt) obtained from an Illumina 1G sequencing
machine and the A.thaliana genome annotation (TAIR 7) were used to derive
a training and evaluation set. QPALMA generalizes the Smith–Waterman
algorithm by including sequence quality information and an intron model
considering splice site predictions as well as intron length information to
learn how to produce optimally spliced alignments.

thereby solving the so-called inverse alignment problem (e.g. Kececioglu
and Kim, 2006). Additionally, we will outline the in silico generation of
spliced reads for training based from genomic reads and propose a pipeline
combining enhanced suffix arrays, based on vmatch (Abouelhoda et al., 2002)
and QPALMA to align millions of short transcriptome reads as for instance
generated by NG sequencing techniques.

2.1 Splice site predictions
For predicting splice sites, one first needs a dataset of known acceptor and
donor splice sites as well as suitable decoy sequences. Such sequences can be
obtained by aligning EST and cDNA sequences using a standard alignment
program suitable for long sequence reads and spliced alignments [e.g. blat
(Kent, 2002) or PALMA (Schulze et al., 2007)]. High quality alignments
can be used to confirm acceptor as well as donor splice sites and aligned
genomic regions can be used for sampling decoy site by considering all sites
with consensus AG and GT/C. For each site we consider a sequence window
of 141 nt around the splice site, which is used for classification into splice site
versus decoy (separately for acceptor and donor sites). To learn a classifier
one may use SVMs with the so-called ‘weighted degree’ kernel (Rätsch
et al., 2006; Sonnenburg et al., 2002). This kernel computes the similarity
between two sequences s and s′ by considering substrings occurring in both
strings up to length d. In Sonnenburg et al. (2007) we have done these
steps and also provided genome-wide predictions for several organisms
at ftp://ftp.tuebingen.mpg.de/fml/behr/splicing. In this
work we use these predictions for Arabidopsis thaliana.

2.2 Extensions of the Smith–Waterman algorithm
In this section we will discuss three extensions of the well-known Smith–
Waterman algorithm (Smith and Waterman, 1981) for local sequence
alignments which can be used in combination with the parameter estimation
algorithm outlined in the next section.

2.2.1 The classical algorithm The classical deterministic and exact
alignment algorithm is the Smith–Waterman algorithm and is based on
dynamic programming. Its running time is O(m ·n), where m is the length
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of the short read SE , and n is the length of the DNA sequence SD. It builds
up a m ·n matrix and hence has the same space complexity.

The main idea of the algorithm is to compute a local alignment by
determining the maximum over all alignments of all prefixes SE (1 : i) :=
(SE (1),...,SE (i)) and SD(1 : j) := (SD(1),...,SD(j)) of the two sequences SE

and SD, while allowing for unaligned starts of the sequences (details below).
An alignment is given by a sequence of pairs (ar ,br ), r =1,...,R, where
R≤m+n depends on the alignment and ar ,br ∈� :={A,C,G,T ,N,−}.
A pair consists either of the two corresponding letters of the two sequences
or a single letter in one sequence paired with a gap in the other sequence.
The alignment is scored using a substitution matrix M, which we interpret as
a function M :�×�→R. Then the score for the alignment A={(ar ,br )}r

is simply
∑

r M(ar ,br ).
We define V (i2, j2) to be the score of the best alignment of prefixes

SE (i1 : i2) and SD(j1 : j2) for the best choice of starting positions i1 and j1 on
sequences E and D, respectively. The best local alignment can be obtained
by finding the maximal entry in the matrix V determining i2 and j2 as the
ends of the alignment. The matrix V can be computed using the following
recurrence formula (for all i=1,...,m and j=1,...,n):

V (i,j)=max




0

V (i−1,j−1)+M(SE (i),SD(j))

V (i−1,j)+M(SE (i),′−′)
V (i,j−1)+M(′−′,SD(j))

(1)

The recurrence is initialized with V (0,0) :=0, V (i,0) :=0 and V (0,j) :=0
for all i=1... m and j=1... n. There are four possibilities: (a) SE (1 : i) and
SD(1 : j) are unaligned; (b) SE (i) and SD(j) are aligned to each other (possibly
a mismatch); (c) SE (i) is aligned to a gap in the DNA sequence and (d) SD(j)
is aligned to a gap in the short sequence. In the original algorithm there are
only these four possibilities and one can straightforwardly fill the matrix
from left to right and top to bottom to finally compute the maximum over all
elements in V . The optimal alignment can then be obtained by backtracking
(Durbin et al., 1998).

2.2.2 Extension 1: Quality Scores In a first step we extend the scoring
system algorithm to take quality information of the short sequence read into
account [a similar idea was proposed in a simpler form in (Mott, 1998)].
The idea is relatively straightforward: So far M :�×�→R only scored an
alignment based on matches, mismatches or indels. Here, we define M to be
a function of the two aligned letters as well as the quality score of the read
at the corresponding position, i.e. M :�×R×�→R.1 Note that we only
have quality information available for positions not corresponding to a gap
on the short read. Hence, the functions M(′−′,·,b) (b∈�) can be considered
as a constant. Given this scoring function we can now extend the recurrence
formula (for all i=1,...,m and j=1,...,n):

V (i,j)=max




0

V (i−1,j−1)+M(SE (i),QE (i),SD(j))

V (i−1,j)+M(SE (i),QE (i),′−′)
V (i,j−1)+M(′−′,·,SD(j))

, (2)

where QE (i) is the quality score of the short read at position i.
Please note that this algorithm has the same computational complexity

as the original Smith–Waterman algorithm (O(mn)). However, it uses a
more complex scoring that may depend on the sequencing technology used.
We chose to represent the scoring function as a set of one dimensional
functions—one for every match-pair. Hence, we require 6x6 such functions
(Ma,b(q) :=M(a,q,b), a,b∈�), out of which 6 are constant (corresponding
to a gap on the short read).

1It is straightforward to extend this to the case where quality information is
available for both sequences.

2.2.3 Extension 2: Splice Sites The Smith–Waterman algorithm aligns
two sequences based on single base pairs and does not distinguish between
exons and introns. In Schulze et al. (2007) we therefore proposed to extend
the Smith–Waterman algorithm to better model introns. The previously
proposed algorithm required considerably more computing time: O(mnL)
operations, where L is the maximal length of the intron. Given the large
number of reads to be aligned, it is highly desirable to keep the required
computing time low. Hence, we propose an alternative formulation that does
model splice sites but only scores the intron length by an affine function
while only requiring O(mn) operations. The idea is to maintain an additional
recurrence matrix W used to keep track of the intron boundaries. We use the
following recurrence formulas:

V (i,j)=max




0

V (i−1,j−1)+M(SE (i),QE (i),SD(j))

V (i−1,j)+M(SE (i),QE (i),′−′)
V (i,j−1)+M(′−′,·,SD(j))

W (i,j−1)+ f̂acc(j−1)

(3)

and

W (i,j)=max

{
V (i,j)+go + f̂don(i+1)

W (i,j−1)+ge
, (4)

where go and ge are the intron opening and extension scores. The gdon(i)
and gacc(i) are scoring functions for splice sites at position i in the sequence,
which take the form f̂acc(i) := facc(gacc(i)) and f̂don(i) := fdon(gdon(i)). Here
gacc(i) and gdon(i) are the splice site score precomputed by the splice
site SVMs (cf. Section 2.1) and facc,fdon :R→R are scoring function
appropriately transforming the SVM outputs.2

It can easily be verified that for each identified intron between positions
k and j, the above recurrences add a score depending on its length j−k and
the splice site strengths given as follows:

fI (k,j)=go +ge(j−k−1)+fdon(gk)+ facc(gj).

2.2.4 Extension 3: Non-affine Intron Length Model If we would like to
score the intron length with an arbitrary function fL :N+ →R, i.e.

fI (k,j)= fL(j−k)+fdon(gk)+facc(gj),

the recurrence can be implemented as follows:

V (i,j)=max




0

V (i−1,j−1)+M(SE (i),QE (i),SD(j))

V (i−1,j)+M(SE (i),QE (i),′−′)
V (i,j−1)+M(′−′,·,SD(j))

max
j−Lmax≤k≤ j−1

(V (i,k)+ fI (k,j))

, (5)

where Lmax is the maximal intron length. This recurrence has been proposed
in Schulze et al. (2007) in a similar form and is considerably more
computationally expensive than the previous one: every step involves finding
the optimal intron start (O(Lmax)), leading to the complexity of the dynamic
programming algorithm of O(mnLmax). For long introns this approach seem
computationally infeasible.

For completeness we need to extend our notation for alignments with
introns. We use again alignment pairs A={(ar ,br )}r , but extend the alphabet
for ar to �∪{+} (‘intron sequence missing’) and for br to �∪{∗} (‘intron
sequence’). Note that br should only contain strings of length greater than one
if ar =′+′. Then the score f (A) for an alignment A with intron is computed
as before, i.e.

∑
r M(ar ,br ), except when ar =+: In this case the intron score

function fI (·,·) is used to score the corresponding intron.

2When there is no donor consensus at position i, then we define
fdon(gdon(i)) :=−∞ (analogously for facc(gacc(i))).
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2.3 Solving the inverse alignment problem
In the previous section we assumed that the functions facc, fdon and fL as
well as the 36 scoring functions for the quality as represented by M were
given. We now describe an algorithm to determine these parameters based on
the training set of sequences (with quality scores) and their true alignments.
This algorithm has been proposed before in Schulze et al. (2007) based
on the original ideas in Altun et al. (2003) for slightly the simpler case
without quality information. We therefore only outline the basic idea of the
algorithm—more details are found in Schulze et al. (2007).

2.3.1 Parametrization Each of the functions to be determined is one
dimensional. It therefore suffices to use a simple piecewise linear model:
let s be the number of supporting points, xi (satisfying xi <xi+1) and yi their
values, then the piecewise linear function is defined by

f (x)=




y1 x≤x1
yi(xi+1−x)+yi+1(x−xi)

xi+1−xi
xi ≤x≤xi+1

ys x≥xs

. (6)

After having appropriately chosen supporting points on the x-axis we only
need to optimize the corresponding y-values.

Note that given the support points and their corresponding y-values, the
alignment function f (A) for an alignment A is fully specified. Moreover,
by design the scoring function is linear in all parameters, i.e. the y-values.
Hence, it can be written as f (A)=�(A)	θ for an appropriately defined �,
where θ is the vector of parameters corresponding to the y-values at the
support points of all functions.

2.3.2 Optimization For training we are given a set of N true alignments
A+

i , i=1,...,N . The goal is to find the parameters θ of the alignment scoring
function f such that the difference of scores fθ (A+

i )−fθ (A−) is large for all
wrong alignments A− 
=A+

i . This can be done by solving the following
convex optimization problem:

min
ξ≥0,θ

1

N

N∑
i=1

ξi +CP(θ ) (7)

s.t. fθ (A+
i )−fθ (A−)≥1−ξi ∀i and A− 
=A+

i .

Here we introduced so-called slack-variables ξi to implement a soft-margin
(Cortes and Vapnik, 1995), i.e. to allow for a few misaligned examples.
Additionally, we use a regularization term P(θ ) to avoid over-fitting by
preferring smooth piece-wise linear functions [see Schulze et al. (2007)
for details]. The parameter C controls the trade-off between smoothness
and fit to the training data. Note that the above optimization problem has
too many constraints to be solved directly. In Schulze et al. (2007) we
give a detailed description of an algorithm based on column generation
for iteratively solving such optimization problems. This algorithm requires
computing best-scoring alignments for suboptimal parameter settings. This
can be done by using the corresponding version of the Smith–Waterman
algorithm.

2.4 In silico generation of spliced reads
We sequenced the A. thaliana reference genome using the Illumina Genome
Analyzer producing reads of length 36.3 From the 80 344 405 reads that
passed initial quality filtering, 71 580 097 reads (89%) could be aligned
against the A. thaliana reference sequence using vmatch [Abouelhoda et al.
(2002), available at http://www.vmatch.de] resulting in an average
coverage of 16. For each read only the best matches (measured by E-value)
were considered allowing up to four mismatches or three gaps. More than
67% of the reads align without error, 92% with less than three mismatches.

3Data were provided by Detlef Weigel, Richard Clark and Christa Lanz,
personal communication.

Based on the TAIR 7 genome annotation (available at http://www.
arabidopsis.org), we identified pairs of reads that can be combined to a 36 nt
sequence read spanning over an annotated intron.4 We additionally require
that the quality scores around the junction are similar—otherwise the method
might identify the junction by judging the differences in quality scores which
we would like to avoid. All possible pairs around a junction were considered,
but each read was used at most once in a merged pair. We also generated a
list of reads completely contained within annotated exons as unspliced reads.
This lead to 246 586 merged (‘spliced’) and 2 339 584 original (‘unspliced’)
reads aligned to the forward strands of chromosome 1.

2.5 An alignment pipeline against whole genomes
Computation of optimal alignments is quite time consuming given the large
number of reads produced by NG sequencing approaches. We therefore
designed a multi-step approach combining a fast matching algorithm based
on enhanced suffix arrays (vmatch, Abouelhoda et al., 2002) for initial read
mapping and the proposed optimal alignment algorithm based on dynamic
programming (QPALMA) for high quality detection of splice sites. An
overview of this pipeline is given in Figure 2.

In a first step we use vmatch to find global alignments of all reads (with
at most two mismatches) against the genome to identify the large fraction
of unspliced reads. The set of successfully aligned reads presumably still
contains a small fraction of spliced reads where the intron is near the read
boundary. To identify such reads we used QPALMA’s scoring function to
develop a filter that can quickly decide whether the read is spliced or not.5

The idea is to compute the scoring function of the alignment returned by
vmatch and compare it with the scores of possible spliced alignments:

• all combinations of putative donor splice sites within the read and
acceptor splice sites ≤2000 nt downstream of the read, and

• all combinations of putative acceptor splice sites within the read and
donor splice sites ≤2000 nt upstream of the read.

If there exists a combination with larger score than the unspliced alignment,
then the filter predicts the read to be spliced and unspliced otherwise.

Reads that cannot be aligned in the first vmatch round fall into two
categories: low quality reads or spliced reads. In the second step these
left-over reads as well as reads that were predicted to be spliced by the
QPALMA filter are aligned with about half the read’s length using vmatch to
produce seeds for further alignment steps. We use a reasonably sized window
(2000 nt) around each ‘hit’ to align using QPALMA. If a seed exists at several
genomic locations, then it is crucial that we report the correct alignment
position. This is done by comparing QPALMA’s alignments scores for each
seed and selecting the seed with the highest score.

The error rate of the above pipeline is determined by three factors: (1) Can
the QPALMA filter correctly decide whether a read is unspliced or spliced,
even if there exists reasonable full-length unspliced alignment? (2) Can
QPALMA correctly identify the correct vmatch seed? (3) Can QPALMA
identify the correct exon boundaries?

As shown in Figure 3, the error rates will be highest for reads were the
intron is very near the read boundary. These errors are due to the resulting
very short exons leading to ambiguities that result in either falsely unspliced
alignments [important for (1)] or spliced alignments with a wrong placement
of the shorter exon [important for (3)]. While the first case is rather difficult to
identify, the second one is easily identifiable by the predicted intron position.
Hence, a possible strategy to reduce the number of alignment errors would
be to ignore all spliced alignments that are too close to the read boundaries.

Alternatively, we propose to align all reads against the flanking sequences
of each predicted intron (unspliced global alignment). Ideally we will find
several other alignments of reads confirming the putative intron. The total
number of reads confirming the intron without mismatches near the intron

4If a gene has several annotated transcripts, we only considered the first one.
5In the filter, we only consider a small set of possible alignments. This can
be computed many times faster than the dynamic program.
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Fig. 2. Proposed alignment pipeline for using QPALMA: Short sequence
reads are first aligned with vmatch to identify unspliced reads. Unmapped or
potentially spliced reads are aligned again to identify reads of at least half of
the read length to find seeds for use with QPALMA. For each seed position
QPALMA aligns the read and returns a score. The best scoring alignment is
returned as the spliced alignment of the read, if the intron can be confirmed
at least two times by another read.

boundary can be used as a confidence measure for the intron, which we call
the remapping score. We expect that the error drops drastically if one requires
high remapping scores for introns. Hence, if the transcriptome coverage is
high enough, one can significantly improve upon the single read alignment
accuracy.

3 EXPERIMENTS

3.1 Comparison of Smith–Waterman extensions
In this section we compare the different extensions of the Smith–
Waterman algorithm (Section 2.2) in combination with the learning
algorithm outlined in Section 2.3. We trained the algorithm
using 10 000 sequences with known alignments (as described in
Section 2.4) in eight different combinations resulting from switching
on and off the three different scorings: quality information, splice
site predictions6 and intron length.

We test our algorithm on 30 000 sequences different from the
training set for an unbiased estimation of QPALMA’s accuracy on
unspliced reads. We compute the fraction of reads that have been
accurately aligned at all four boundaries (start and end of first and
second exon). The results are given in Table 1. We can observe
that the algorithm without using any additional information has
the largest error rate of about 14.19%. If we include quality score
information, then the error rate reduces by 0.7% to 13.49%—a
moderate improvement showing that the quality information can
indeed help to identify the correct alignment. If we additionally
include the splice site predictions, then the error rate drastically
reduces by 10.68% to 2.81%. This shows that it is not sufficient to
just consider the splice site consensus to achieve a good alignment:
an accurate splice site detector can significantly decrease the error
rate. Finally, we also include the intron length into the model. It leads
to an additional improvement of about 1.03% to 1.78%. We can
therefore conclude that all three components—quality scores, splice

6When we do not use splice site predictions, we still require the presence of
the GT/AG consensus at the intron boundaries.

Table 1. The alignment error rates for different versions of QPALMA
(without the vmatch seeds) trained on 10 000 in silico spliced reads: with
and without read quality information, intron length scoring and splice site
predictions, respectively

Quality information Intron length Splice site pred. Error rate (%)

− − − 14.19
+ − − 13.49
− + − 9.96
+ + − 9.68
− − + 3.16
+ − + 2.81
− + + 1.94
+ + + 1.78

Evaluation was done on 30 000 reads aligned to their genomic origin including 1500 nt
up- and downstream sequence. A read is counted as correctly aligned if the intron
boundaries as well as the alignment ends exactly matched the template. The lowest
error is obtained when using all three sources of information. The error is significantly
lower than for all other models (significance level 95%).

Fig. 3. Error rate versus intron position: on the x-axis is the intron position
(equal to the length of the first exon). On the y-axis is the alignment error rate
for reads with introns at the given position (estimated from 120 000 spliced
reads). We observe that reads leading to very short exons have the largest
error rate and contribute most to the overall error.

site predictions and intron length—help to reduce the alignment
error rate.

In the generation of the spliced sequences we also included many
cases where the smaller part (in one of the exons) is very short. In
Figure 3 we show the error rate separately for every intron position:
If the intron is near the boundary, then one exon is very short. Not
entirely surprising, we observe that most mistakes are made for cases
where the smaller part is 4 nt or smaller, especially since it is known
that there is a drastic increase of errors at the end of reads. If we
exclude such cases from the evaluation, then the total error rate on
the test set reduces from 1.78% to about 0.51%. It therefore seems
to be a reasonable strategy not to consider alignments where one of
the exon parts is not longer than 4 nt (in our case about 20% of all
spliced reads).

3.2 Illustration of the learning result
In Figures 4 and 5, we have displayed the parameters that are the
result of our learning algorithm for the case with quality information,
splice site predictions and intron length. Shown are the piece-wise
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Fig. 4. Learned piece-wise linear functions to score acceptor and donor
splice sites: High probabilities for splice sites contribute strongly to the
alignment score.

Fig. 5. Learned piece-wise linear functions to score matches (4 × green),
mismatches (12 × red), N’s (5 × black) and deletions (5 × blue). Larger
quality scores for matches contribute stronger to the alignment score.
Mismatches with larger quality score receive a lower alignment score than
with medium sized quality scores.

linear functions scoring splice sites (Fig. 4) as well as matches,
mismatches, N’s (on DNA) and deletions (on DNA). We observe
that the quality scoring functions cluster into the four groups. Within
the groups the variation is relatively small indicating that there are
no strong biases in the quality scores for certain error combinations
in our data.

3.3 Results on whole genome alignments
We finally present results on a relatively large dataset using the
pipeline described in Figure 2. The dataset used is a subset of the
71×106 reads mentioned before and contains a total number of
2.98×106 reads from the transcribed part of the positive strand
of chromosomes I–V (as annotated), out of which about 10% are
spliced (285 530 reads). Please note that we omitted the 10 000
spliced reads used for training QPALMA in following analysis.

3.3.1 Data f low In a first step we use vmatch to align all reads
(cf. Fig. 2). The alignment step was parametrized to consider the
whole 36-mer and to allow for two mismatches and no gaps. From
this vmatch run we obtained a set of reads that could be aligned

Fig. 6. Remapping score distribution for correctly and incorrectly aligned
reads. Most correctly aligned reads can be confirmed by at least one other
read, while incorrectly aligned reads are rarely confirmed more than once.

of 2 511 338 and 471 009 reads that could not be aligned with the
given mismatches and read length. Ideally the first set of aligned
reads would only contain unspliced reads. The previously described
QPALMA filter was able to identify 43 148 reads in this set that
are actually spliced (8964 false positives out of 2.51×106). The
471 009 unalignable reads in the first vmatch round are aligned
again using vmatch with at least 18 nt alignment length and at
most one mismatch. In this run, for 12 864 (3428 spliced and 9436
unspliced) reads no alignment could be found on the positive strand
of chromosomes I–V.7 In the next step we used QPALMA to align
the 52 112 reads found by the QPALMA filter together with the
alignable part (458 145) in the second vmatch round: 230 795 reads
were determined to be unspliced and 269 631 reads to be spliced.

3.3.2 Pipeline accuracy Out of the 2 696 817 unspliced reads in
total, 14 566 reads were either without seed on the positive strand of
chromosomes I–V (9566) or aligned to the wrong genomic position
(5000). A total of 18 696 were aligned spliced, leading to a total
error rate of unspliced reads of 1.2%. From the 275 530 spliced
reads, 2556 and 3675 were aligned unspliced by QPALMA filter
and QPALMA, respectively, and 8189 were aligned wrongly, i.e.
with wrong exon boundaries. This leads to an error rate of spliced
reads of 5.2%. Out of the latter 8189 sequences a large fraction
(7129) were aligned wrongly due to a wrong vmatch seed position.
If we exclude such reads, we observe that 7291 spliced reads are
misaligned due to QPALMA, leading to an error rate of 2.6%. This
is only slightly higher than previously observed (cf. Table 1). In total,
51 138 reads out of the 2 982 347 reads where either unaligned or
aligned incorrectly, leading to an error rate of the pipeline of 1.7%.

If we only consider spliced alignments that can be confirmed by
at least two other reads,8 the number of wrongly aligned spliced
reads drops from 8189 to 1990, while one loses about 10% of the
spliced reads (cf. Fig. 6). Out of the 18696 unspliced reads predicted
as spliced, not a single one remained. Hence, the total error rate
reduces to 0.88%.

It can be observed that most errors are induced by wrong or
missing vmatch seed positions (0.7%). Also, often (0.6%) unspliced
reads were predicted as spliced. The latter errors can be reliably
detected by requiring three reads confirming a spliced alignment.

7Note that, we allowed up to four mismatches for the initial vmatch
alignment to derive the in silico dataset. In the pipeline, we only allowed
two mismatches, which leads to a small fraction of reads with no match.
8For each splice site 34 nt 5′ to the donor side and 34 nt 3′ to the acceptor site
have been concatenated and were realigned using all reads with a maximum
of two mismatches (no indels). A splice site has been rejected if not more
than three reads covered the 4 nt around the splice site without mismatches.
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Table 2. CPU times of the different processing steps on a single CPU core

Step Total time Number of reads Reads/sec

Vmatch runs ≈4 h 2586170 179
QPALMA filter ≈17 min 2180858 417
QPALMA prediction ≈8 h 441579 15
Remapping score ≈10 min 249001 733
QPALMA training ≈6 h 10000 0.5

Training is only required once per genome.

3.3.3 Computing time The total time needed for the running the
pipeline on ≈2.5 million reads is given in Table 2 (on a single
CPU core). If scaled to the about 71 million reads from the whole
genome, the alignment using this pipeline would take about 400 h
of computing time. Distributed on 20 CPU nodes it is just about one
day of computing time.

The total computing time is dominated by the QPALMA
prediction step (≈8 h). This can be speedup by either improving
the implementation (e.g. by exploiting special CPU features, as in
SHRiMP) or by using the approximation of the QPALMA filter for
computing the alignment (≈30 times faster). Training of QPALMA
took about 6 h on 10 000 reads. However, this is only required once
per genome and sequencing platform and does not matter for the
application of the pipeline.

4 DISCUSSION
We have presented a novel approach to solve the difficult task
of aligning short sequence reads as generated by NG sequencing
techniques over exon boundaries. We were able to successfully
exploit all available information sources—the read including its
quality information, splice site predictions, the intron length and, of
course, the genome—each significantly contributing to decreasing
the alignment error rate. If we only consider spliced reads that
significantly overlap into the exon (>4 nt), the error rate is as small
as 0.5%. For reads that only overlap 1–2 nt into the next or previous
exon, the error rate can be as high as 12%, which is as expected, as
random matches are quite likely. If the transcriptome coverage is
high enough, the proposed remapping score can be used to find the
doubtful alignments in order to significantly reduce the alignment
error rate.

So far we have only used QPALMA for the Illumina sequencing
platform. The same approach is expected to work reasonably well
also for other NG sequencing platforms, as all parameters are tuned
during training to work well for the considered platform. The only
precondition is that there are genomic reads available that can be
used to generate artificially spliced reads for training. QPALMA also
learns how to score the quality information of the read. It would be
straightforward to extend QPALMA to take other or even multiple
quality scores per nucleotide into account. For instance, for Roche’s
454 sequencing platform, it can also be beneficial to extend the
scoring model to appropriately model homo-polymer errors (e.g. by
introducing additional states in the dynamic program for extending
homo-polymers).

It appears interesting to include the downstream analysis of
deriving the gene structure based on these reads into the pipeline
and to estimate its error as well. This will be particularly interesting
for predicting gene structures with alternative transcripts.
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