
BIOINFORMATICS APPLICATIONS NOTE Vol. 24 no. 18 2008, pages 2096–2097
doi:10.1093/bioinformatics/btn397

Sequence analysis

BioJava: an open-source framework for bioinformatics
R. C. G. Holland1, T. A. Down2, M. Pocock3, A. Prlić4,∗, D. Huen5, K. James4, S. Foisy6,
A. Dräger7, A. Yates1, M. Heuer8 and M. J. Schreiber9
1European Bioinformatics Institute (EMBL-EBI), Genome Campus, Hinxton, Cambridgeshire CB10 1SD, 2Gurdon
Institute and Department of Genetics, Cambridge CB2 1QN, 3University Newcaste Upon Tyne, Newcastle Upon
Tyne, NE1 7RU, 4Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire CB10 1SA,
5Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK, 6Laboratory in Genetics and Genomic
Medicine of Inflammation, Montreal Heart Institute, Montreal, Canada H1T 1C8, 7Eberhard Karls University Tübingen,
Center for Bioinformatics (ZBIT), Tübingen, Germany, 8Harbinger Partners, Inc. St. Paul, MN, USA and 9Novartis
Institute for Tropical Diseases, 10 Biopolis Road, Chromos #05-01, Singapore 138670

Received on May 23, 2008; revised on June 30, 2008; accepted on July 25, 2008

Advance Access publication August 8, 2008

Associate Editor: Anna Tromontano

ABSTRACT

Summary: BioJava is a mature open-source project that provides
a framework for processing of biological data. BioJava contains
powerful analysis and statistical routines, tools for parsing common
file formats and packages for manipulating sequences and 3D
structures. It enables rapid bioinformatics application development
in the Java programming language.
Availability: BioJava is an open-source project distributed under the
Lesser GPL (LGPL). BioJava can be downloaded from the BioJava
website (http://www.biojava.org). BioJava requires Java 1.5 or higher.
Contact: andreas.prlic@gmail.com. All queries should be
directed to the BioJava mailing lists. Details are available at
http://biojava.org/wiki/BioJava:MailingLists.

1 INTRODUCTION
BioJava was conceived in 1999 by Thomas Down and Matthew
Pocock as an Application Programming Interface (API) to simplify
bioinformatics software development using Java (Pocock, 2003;
Pocock et al., 2000). It has since then evolved to become a fully
featured framework with modules for performing many common
bioinformatics tasks. The goal of BioJava is to facilitate code reuse
and to provide standard implementations that are easy to link to
external scripts and applications.

BioJava is an open-source project that is developed by volunteers
and coordinated by the Open Bioinformatics Foundation (OBF).
It is one of several Bio* toolkits (Mangalam, 2002). All code is
distributed under the LGPL license and can be freely used and reused
in any form.

BioJava is a mature project and has been employed in a number
of real-world applications and over 50 published studies. A list of
these can be found on the BioJava website. According to the project
tracking web site Ohloh (http://www.ohloh.net/projects/biojava), the
BioJava code-base represents an estimated 47 person-years worth of
effort.

∗To whom correspondence should be addressed.

2 FEATURES
BioJava contains a number of mature APIs. The 10 most frequently
used are: (1) nucleotide and amino acid alphabets, (2) BLAST
parser, (3) sequence I/O, (4) dynamic programming, (5) structure
I/O and manipulation, (6) sequence manipulation, (7) genetic
algorithms, (8) statistical distributions, (9) graphical user interfaces
and (10) serialization to databases. Below follows a short discussion
of some of these modules.

At the core of BioJava is a symbolic alphabetAPI which represents
sequences as a list of references to singleton symbol objects that are
derived from an alphabet. Lists of symbols are stored whenever
possible in a compressed form of up to four symbols per byte of
memory.

In addition to the fundamental symbols of a given alphabet (A,
C, G and T in the case of DNA), all BioJava alphabets implicitly
contain extra symbol objects representing all possible combinations
of the fundamental symbols.

The symbol approach allows the construction of higher
order alphabets and symbols that represent the multiplication
of one or more alphabets. An example is the codon ‘alphabet’
which is the cubed product of the DNA alphabet, each codon
‘symbol’ comprising three DNA symbols. Such an alphabet
allows construction of views over sequences without modifying
the underlying sequence which is useful for tasks such as
translation. Other complex alphabets which can be described
include conditional alphabets for the construction of conditional
probability distributions, and heterogeneous alphabets such as
the combination of the codon and protein alphabets for use with
a DNA–protein aligning hidden Markov model (HMM). Other
interesting applications of the alphabet API include chromosomes
for genetic algorithms using, but not limited to, integer or binary
symbol lists, and the representation of Phred quality scores (Ewing
et al., 1998) as a multiplication of the DNA and integer alphabets.

The typical user would most likely start out by using the sequence
input/outputAPI and the sequence/feature object model. These allow
sequences to be loaded from a number of common file formats such
as FASTA, GenBank and EMBL, optionally manipulated in memory,

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/18/2096/192730 by guest on 20 M
arch 2024

http://www.biojava.org
http://biojava.org/wiki/BioJava:MailingLists
http://www.ohloh.net/projects/biojava
http://creativecommons.org/licenses/by-nc/2.0/uk/


BioJava

BufferedReader input = 

new BufferedReader( 

new FileReader("mygenbank.file")); 

RichSequenceIterator seqsIn = 

RichSequence.IOTools.readGenbankDNA(

input, 

RichObjectFactory.getDefaultNamespace());

RichSequence.IOTools.writeFasta( 

System.out, seqsIn, 

RichObjectFactory.getDefaultNamespace());

Fig. 1. Loading a GenBank file with BioJava and writing it out as FASTA.
The example demonstrates the use of several convenience methods that hide
the bulk of the implementation. If the developer desires a more flexible parser
it is possible to make use of the interfaces hidden behind the convenience
methods to expose a fully customizable, multi-component, event-based
parsing model.

then saved again or converted into a different format. The simplicity
of this process is demonstrated in Figure 1.

Another useful API is the feature/annotation object model
which associates sequences with located features and unlocated
annotations. Features can be found either by keyword or by defining
a location query from which all overlapping or contained features
are returned, while annotations can be retrieved by keyword.
The location model handles circular and stranded locations, split
locations and multi-sequence locations allowing features to span
complex sets of coordinates.

The protein structure API contains tools for parsing and
manipulating PDB files (Berman et al., 2000). It contains
utility methods to perform linear algebra calculations on atomic
coordinates and can calculate 3D structure alignments. A simple
interface to the 3D visualization library Jmol (http://www.jmol.org)
is contained as well. An add-on allows the serialization of
the content of a PDB file to a database using Hibernate
(http://www.hibernate.org).

Other APIs include those for working with chromatograms,
sequence alignments, proteomics and ontologies. Parsers are
provided for reading, amongst others, Blast reports (Altschul et al.,
1997), ABI chromatograms and NCBI taxonomy definitions.

Recently the BioJavaX module was added which provides more
detailed parsing of the common file formats and improved storing of
sequence data into BioSQL databases (http://www.biosql.org). This
allows to incorporate BioJava into existing data processing pipelines
which use alternative OBF toolkits such as BioPerl (Stajich et al.,
2002).

The BioJava web site provides detailed manuals on how to use the
different components. In particular, the ‘CookBook’section provides
a quick introduction into solving many problems by demonstrating
solutions with documented source code. There is also a section
to demonstrate the performance of a few selected tasks via Java
WebStart examples. To mention just one: the FASTA-formatted
release 4 Drosophila genome sequence can be parsed in <20 s on a
1.80 GHz Core Duo processor.

3 FUTURE DEVELOPMENT
BioJava aims to provide an API that is of use to anyone using Java to
develop bioinformatics software, regardless of which specialization
they may work in. Genomic features currently must be manipulated
with reference to the underlying genomic sequence, which can make
working with post-genomic datasets, such as microarray results,
overly complex. Phylogenetics tools are already in development
which will allow users to work with NEXUS tree files (Maddison
et al., 1997).

Although the Blast parsing API is widely used, it does not support
all of the existing blast-family output formats. We will continue
the ongoing effort to add parsers for PSI-Blast and other currently
unsupported formats.

Users are welcome to identify further areas of need and their
suggestions will be incorporated into future developments.

BioJava is written entirely in the Java programming language, and
will run on any platform for which a Java 1.5 run-time environment
is available. Java 5 and 6 provide advanced language features, and
we shall be taking advantage of these in the next major release, both
to aid in maintenance of the library and to make it even easier for
novice Java developers to make use of the BioJava APIs.

4 CONCLUSIONS
BioJava is one of the largest open-source APIs for bioinformatics
software development. It is a mature project with a large user and
support community. It offers a wide range of tools for common
bioinformatics tasks. The BioJava homepage provides access to the
source code and detailed documentation.

ACKNOWLEDGEMENTS
We want to thank everybody who made code or documentation
contribution during the project’s life. Each of these contribution
is appreciated, though the total list of contributors is too long
to be reproduced here. BioJava is not formally funded by any
grants. Through the OBF we have received sponsorship from
Sun Microsystems, Apple Computers and NESCent. The initial
development of the phylogenetics module was undertaken as
a Google Summer of Code 2007 project in collaboration with
NESCent.

Funding: Funding for open access charge: Wellcome Trust.

Conflict of Interest: none declared.

REFERENCES
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242.
Pocock,M. (2003) Computational analysis of genomes. PhD thesis, University of

Cambridge, Cambridge, UK.
Pocock,M. et al. (2000) BioJava: open source components for bioinformatics. ACM

SIGBIO Newsl., 20, 10–12.
Ewing,B. et al. (1998) Base-calling of automated sequencer traces using phred. Genome

Res., 8, 175–185.
Maddison,D.R. et al. (1997) NEXUS: an extensible file format for systematic

information. Syst. Biol., 46, 590–621.
Mangalam,H. (2002) The Bio* toolkits – a brief overview. Brief. Bioinform., 3, 396–302.
Stajich,J.E. et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome

Res., 12, 1611–1618.

2097

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/18/2096/192730 by guest on 20 M
arch 2024

http://www.jmol.org
http://www.hibernate.org
http://www.biosql.org

