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ABSTRACT

Residue coevolution has recently emerged as an important concept,

especially in the context of protein structures. While a multitude of

different functions for quantifying it have been proposed, not much is

known about their relative strengths and weaknesses. Also, subtle

algorithmic details have discouraged implementing and comparing

them. We addressed this issue by developing an integrated online

system that enables comparative analyses with a comprehensive set

of commonly used scoring functions, including Statistical Coupling

Analysis (SCA), Explicit Likelihood of Subset Variation (ELSC), mutual

information and correlation-based methods. A set of data prepro-

cessing options are provided for improving the sensitivity and

specificity of coevolution signal detection, including sequence

weighting, residue grouping and the filtering of sequences, sites

and site pairs. A total of more than 100 scoring variations are

available. The system also provides facilities for studying the

relationship between coevolution scores and inter-residue distances

from a crystal structure if provided, which may help in understanding

protein structures.

Availability: The system is available at http://coevolution.gersteinlab.

org. The source code and JavaDoc API can also be downloaded from

the web site.

Contact: mark.gerstein@yale.edu

Supplementary information: Additional materials can be found at

http://coevolution.gersteinlab.org/coevolution/supp.jsp

1 INTRODUCTION

Coevolution (covariation/correlated mutation) is the change of

a biological object triggered by the change of a related object.

For example, the coding genes of some interacting proteins are

preserved or eliminated together in new species (Pellegrini et al.,

1999), or have similar phylogenetic trees (Goh et al., 2000). At

the amino acid level, some residues under physical or functional

constraints exhibit correlated mutations (Gloor et al., 2005;

Socolich et al., 2005; Suel et al., 2003). Coevolving residues in a

protein are detected in a two-step process: (1) the multiple

sequence alignment (MSA) of the protein and its homologs is

constructed or obtained; (2) a coevolution score is calculated

for each pair of sites in the MSA. There are two main

difficulties in this process. First, a large number of scoring

functions have been proposed in the literature (Halperin et al.,

2006). It can be difficult to choose from them, as they exhibit

subtle yet significant differences, and it is likely that different

applications would require different functions. Second, coevo-

lution analyses could be confounded by uneven sequence

representations, insufficient evolutionary divergence and the

presence of gaps in the MSA. A successful coevolution study

has to take all these details into account.
To address this need, we have developed an integrated system

that provides a simple interface for preprocessing data,

computing coevolution scores and analyzing the results. It

offers a great variety of scoring variations (over 100) for

studying different types of proteins and testing different

hypotheses. The workflow of the system is shown in Figure 1.

More details on the scoring functions, preprocessing options

and result analysis are provided below.

2 SCORING FUNCTIONS

2.1 Correlation-based functions

For a pair of sites i and j in an MSA, the correlation score

(Gobel et al., 1994; Halperin et al., 2006) is computed as

follows:

Corði, jÞ ¼
2

NðN� 1Þ

P
k5l wkl sikl � sið Þ sjkl � sj

� �

�i�j

where sikl is the score for substituting the i-th residue of

sequence k by that of sequence l, si and �i are the mean and SD

of substitution scores at site i, N is the number of sequences in

the MSA and wkl is the weight for the sequence pair k, l. If the

two sites are coevolving in that radical substitutions at the first

site are accompanied by radical substitutions at the second site,

the correlation will be high. Our system provides the classical

McLachlan matrix (McLachlan, 1971) that scores substitutions

based on the physiochemical properties of the residues, as well

as matrices based on residue volume, pI and hydropathy index,
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for studying the properties individually. Two variations are

provided for each of them: the ‘absolute value version’

considers only the magnitude, while the ‘raw version’ also

considers the direction of change, for detecting compensatory

mutations. The correlation can be computed from raw values

(Pearson correlation) or from value ranks (Spearman correla-

tion, Pazos et al., 1997). Several schemes are provided for the

weights wkl, preventing false coevolution signals due to uneven

sequence representation or site conservation.

2.2 Perturbation-based functions

The idea of perturbation-based functions is to perform a

‘perturbation’ at a first site, and observe its effect on a second

site. The Statistical Coupling Analysis (SCA) method (Lockless

and Ranganathan, 1999) defines a statistical energy term for

a site, and computes the energy change at a second site when

the first site is perturbed by retaining only the sequences with a

certain residue.1 The Explicit Likelihood of Subset Variation

(ELSC) method (Dekker et al., 2004) is based on the same idea,

but has the energy computations replaced by probabilities

according to hypergeometric distributions. The mutual infor-

mation (MI) method (Gloor et al., 2005) can be viewed as a

generalized perturbation method that considers the subsetting

of all twenty kinds of residues, and combines them by a

weighted average according to their frequencies. To deal with

finite sample size effects and phylogenetic influence, the

normalization options in Martin et al. (2005) are also provided.

2.3 Independence tests

The chi-square test (c.f. the OMES method, Larson et al., 2000)

and the quartets method (Galitsky, 2003) both identify site

pairs that are unlikely to be independent. The former computes

the P-value under the null hypothesis of independent sites. The

latter counts the number of quartets in the 2D histogram of

residue frequencies that deviate considerably from the

expectation.

3 PREPROCESSING OPTIONS

To improve the sensitivity and specificity of the functions,
options are provided for preprocessing sequences, sites and site

pairs.

3.1 Sequence filtering and weighting

Sequences that contain too many gapped positions or are too

similar to others in the MSA (that might cause sites to appear

coevolving) can be removed by specifying the gap and similarity

thresholds respectively. A minimum number of sequences can

also be specified to avoid small sample size effects.
A sequence weighting scheme based on the topology of the

phylogenetic tree (Gerstein et al., 1994) and one based on

Markov random walk are provided. Both schemes down-weigh

sequences that are very similar to others in the MSA.

3.2 Site filtering

After sequence filtering, sites that contain too many gaps or are

too conserved can be discarded. The former is likely non-

informative, while the latter may artificially inflate some

coevolution scores.

3.3 Site pair filtering

Sites that are close in the primary sequence may produce trivial

coevolution signals that hide other more unexpected coevolu-

tion events. Such site pairs can be filtered by specifying the
minimum sequence separation. It has also been observed that

insertions/deletions of multiple residues may create artificial

coevolution signals (Patel et al., unpublished data). An option

is provided for filtering site pairs that participate in the same

gaps in too many sequences.

3.4 Other options

Grouping similar residues into a smaller alphabet may increase

the sensitivity (Pollock et al., 1999). Our system provides two
residue groupings proposed in the literature (Elcock and

McCammon, 2001; Guharoy and Chakrabarti, 2005). It has

also been observed that gaps might give important coevolution

signals (Patel et al., unpublished data). An option is provided

for treating gaps as noise or as the 21st residue when computing

coevolution scores.

4 SCORES ANALYSIS

In some proteins coevolving residues tend to be close to

each other in the 3D structure (Dekker et al., 2004;
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Fig. 1. The workflow of the system (a larger version can be found at the

supplementary web site).

1Our implementation provides an asymmetric SCA score matrix,
as well as extra summarizing statistics. Details can be found at the
supplementary web site.
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Gloor et al., 2005). This suggests that the instability created by

the mutation of a residue may be (partially) compensated for by

a corresponding mutation of a close residue. Coevolution

signals may thus convey some information about the protein

structure. For instance it is interesting to study how well the

coevolution scores predict the residue contact map (Halperin et

al., 2006). Our system provides functions for plotting and

analyzing the coevolution scores against inter-residue distances

and standard machine-learning techniques (e.g. ROC curve) for

evaluating the effectiveness of the various coevolution functions

in predicting interacting residues. A shuffling scheme for

evaluating the significance of the scores is also provided in

the program package for running locally.

5 EXAMPLE

We provide a worked example of our system in operation on

the web site that illustrates coevolution in the transmembrane

protein bacteriorhodopsin due to physically constrained

residues not adjacent in the primary sequence. The example

can be easily loaded by clicking the corresponding link on the

main page. Running the example will compute the coevolution

scores between site pairs separated by at least 3 residues. The

scatterplot for coevolution scores against inter-residue dis-

tances generated using a known PDB structure (Fig. 1) shows

that residue pairs receiving high scores do tend to be closer in

the crystal structure.

Due to the intensive computation involved in the score

calculations, currently only one scoring function is allowed to

be used each time. Anyone interested in performing large-scale

comparisons can download the Java programs from the web

site and run locally on most platforms (Windows, Macintosh,

Linux, UNIX, etc.). Detailed installation instructions are

provided on the web site.

6 DISCUSSION

Although the scatterplot in Figure 1, and other studies in the

literature, have suggested some relationships between coevolu-

tion and physical constraints, to what extent could coevolution

scores help understand physical structures remains unclear. We

hope the current application could serve as a neutral tool for

further exploration in this area.
The current system focuses on functions that do not assume

any mutation models. Other functions, such as the likelihood

method in Pollock et al. (1999) and the Bayesian mutational

mapping method (Dimmic et al., 2005) may be added in a later

version.
Coevolution signals have been used in recent studies to

predict sequence regions involved in protein–protein interac-

tions with different levels of success (Halperin et al., 2006;

Pazos and Valencia, 2002). We plan on extending the system to

include inter-protein residue coevolution in the next phase of

development.
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