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ABSTRACT

Motivation: In silico methods for the prediction of antigenic peptides

binding to MHC class I molecules play an increasingly important role

in the identification of T-cell epitopes. Statistical and machine learn-

ing methods in particular are widely used to score candidate binders

based on their similarity with known binders and non-binders. The

genes coding for the MHC molecules, however, are highly polymor-

phic, and statistical methods have difficulties building models for

alleles with few known binders. In this context, recent work has

demonstrated the utility of leveraging information across alleles

to improve the performance of the prediction.

Results: We design a support vector machine algorithm that is able

to learn peptide–MHC-I binding models for many alleles simulta-

neously, by sharing binding information across alleles. The sharing of

information is controlled by a user-defined measure of similarity

between alleles. We show that this similarity can be defined in terms

of supertypes, or more directly by comparing key residues known

to play a role in the peptide–MHC binding. We illustrate the potential

of this approach on various benchmark experiments where it out-

performs other state-of-the-art methods.

Availability: The method is implemented on a web server: http://

cbio.ensmp.fr/kiss. All data and codes are freely and publicly

available from the authors.

Contact: laurent.jacob@ensmp.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In silico computational methods for vaccine design are crucial

tools to alleviate the cost and time required by the difficult

tasks involved in the development of a vaccine. Recent reviews

(Korber et al., 2006; Davies and Flower, 2007) highlight the

growing importance of these approaches, ranging from epitope

mapping to reverse vaccinology and related problems such as

allergen and adjuvant discovery. Whereas in reverse vaccinol-

ogy whole pathogen genomes are scanned in search of potential

extracellular antigens (that can then be tested as vaccine

subunits), epitope mapping attempts to predict directly which

peptides can trigger an immune response. It can be applied

to B-cell and T-cell epitopes, which both involve the recognition

of peptides from the pathogen by some components of the

immune system. In the case of T-cells with CD8þ receptors

which are potential tools for the development of peptide

vaccines, in particular for AIDS vaccines (McMichael and

Hanke, 2002), and for the diagnosis and treatment of cancer

(Wang, 1999; Sette et al., 2001), the immunogenicity of

a peptide is contingent on its binding to MHC class I molecules.

Not all peptides of a pathogen can bind to MHC-I molecules

to be presented to T-cells: it is estimated that only 1 in 100 or

200 peptides actually binds to a particular MHC-I molecule

(Yewdell and Bennink, 1999). Although binding is not a suffi-

cient condition for a peptide to be an epitope, building a bind-

ing predictor is a good step towards predicting immunogenicity.
Numerous methods have been developed to address this

binding prediction problem, as surveyed in several recent

reviews (Davies and Flower, 2007; Korber et al., 2006). Struc-

tural approaches, on the one hand, try to evaluate how well a

candidate binder fits in the binding groove of a MHC molecule,

by various threading or docking approaches (Bui et al., 2006;

Rosenfeld et al., 1995). In particular, QSAR models try to find

peptides that optimize in silico the interaction between the

peptide and the target molecule (Doytchinova et al., 2005).

Sequence-based approaches, on the other hand, estimate

predictive models for MHC-I binders by analyzing and learning

from sets of known binders and non-binders. Models can be

based on motifs (Rammensee et al., 1995), profiles (Rammensee

et al., 1999) or machine learning methods like artificial neural

networks (Nielsen et al., 2003; Zhang et al., 2005), hidden

Markov models (Mamitsuka, 1998), support vector machines

(Dönnes and Elofsson, 2002; Salomon and Flower, 2006),

boosted metric learning (Hertz and Yanover, 2006) or logistic

regression (Heckerman et al., 2006). Finally, some authors have

recently proposed to combine structural and sequence-based

approaches (Antes et al., 2006; Jojic et al., 2006). Although

comparison is difficult, sequence-based approaches that learn

a model from the analysis of known binders benefit from the

accumulation of experimentally validated binders and will

certainly continue to improve as more data become available.
The binding affinity of a peptide depends on the MHC

molecule’s 3D structure and physicochemical properties, which

in turn vary between MHC alleles. This forces any prediction*To whom correspondence should be addressed.
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method to be allele-specific: indeed, the fact that a peptide can
bind to an allele is neither sufficient nor necessary for it to be
able to bind to another allele. Since MHC genes are highly

polymorphic, some alleles have few if any known binders and
non-binders. For such alleles predictive models for peptide
binding can hardly be estimated with statistical machine learn-

ing approaches, because of the limited size of the training set.
Thus, though achieving good precision in general, classical
statistical and machine learning-based MHC–peptide-binding

prediction methods fail to efficiently predict binding for these
alleles.
Some alleles, however, can share binding properties. In partic-

ular, experimental work (Sette and Sidney, 1998) shows that

different alleles can have overlapping peptide repertoires. This
fact, together with the more recent observation of structural
similarities among the alleles sharing their repertoires allows

the definition of HLA allele supertypes, which are families of
alleles exhibiting the same behavior in terms of peptide binding.
This suggests that, although predictive models should remain

allele-specific, sharing information about known binders across
different but similar alleles has the potential to improve predic-
tive models by increasing the quantity of data used to establish

the model. For example, Zhu et al. (2006) show that simply
pooling together known binders for different alleles of a given
supertype to train a model can improve the accuracy of the

model. Hertz and Yanover (2006) pool together binding data for
all alleles simultaneously to learn a metric between peptides,
which is then used to build predictive models for each allele.

Finally, Heckerman et al. (2006) show that leveraging the
information across MHC alleles and supertypes considerably
improves individual allele prediction accuracy.

In this article, we go one step further in this direction
and propose a new method to predict peptide binding to MHC
class I molecules, even for alleles with few known binders.

Following the idea of Heckerman et al. (2006), our method
estimates different predictive models for different alleles, but
uses training data available for ‘similar’ alleles to tune each

individual model. The notion of allele similarity is user-defined
and should typically include prior biological knowledge about
which allele features are related to their peptide binding speci-

ficities. For example, we propose several measures of allele
similarity based on supertype information, like in the work of
Heckerman et al. (2006), or on which amino-acids are present

in the binding site of the MHC-I molecule.
From a technical point of view, the method is based on the

support vector machine (SVM) algorithm, a state-of-the-art

machine learning algorithm which has already been successfully
applied to the problem of peptide–MHC I binding prediction
for individual alleles (Dönnes and Elofsson, 2002; Salomon and

Flower, 2006). We show how this algorithm can be modified
to allow the estimation of predictive models for all alleles
simultaneously, by sharing binding information across differ-

ent alleles. The modification boils down to adding to the
usual SVM formulation an additional user-defined measure of
similarity between alleles. When the allele similarity is set to

0 between different alleles, then we recover the classical setting
of learning individual models for each allele as in Dönnes and
Elofsson (2002); Salomon and Flower (2006), while a non-zero

similarity measure allows sharing of information across alleles.

Compared to Heckerman et al. (2006), our method allows more

flexibility in the way allele similarity is defined in a computa-

tional efficient framework, and we show that it results in more

accurate predictive models.
We validate our method on several benchmark datasets,

where it outperforms a number of other state-of-the-art

methods. We show that, as expected, the performance improve-

ment is particularly noticeable for alleles with few known

binding peptides. The resulting models are implemented on

a freely and publicly available companion web server available

at http://cbio.ensmp.fr/kiss.

2 METHODS

In this section, we describe our method to share information across

different alleles when training allele-specific models with SVM.

We begin with a non-technical overview of the method, before showing

more formally how it extends naturally the classical framework of

learning with SVM.

2.1 Overview of the method

The aim of our method is to build, for each known MHC class I allele,

a model to predict whether or not candidate peptides can bind to it.

For that purpose we assume that a list of peptides already known to

bind or not to bind some alleles is available. Such a list, which we call

the training set below, can be obtained from various databases dedi-

cated to immunoinformatics. Our method must then learn the binding

predictive models from the training set.

A classical approach to build such models is to consider the different

alleles separately, and to build one model for each allele based on

the binding data available for this allele only. Many machine learning

algorithms can be used in this context, including for example SVM or

artificial neural networks (ANN). In essence, machine learning methods

attempt to find a discriminative rule that separates binding from non-

binding peptides in the training set. In the case of ANN or SVM, this

rule is a linear or non-linear function of a set of features that are chosen

to describe various properties of the peptides, such as which amino-acid

it contains at each position.

While machine learning methods tend to produce very accurate

models when enough training data are available, they can also lead

to very poor models when the training set is too small. In our case, this

means that this approach is not relevant for alleles with few known

binders and non-binders. For example, Dönnes and Elofsson (2002)

noticed that in the case of SVM, the accuracy of the model significantly

decreases when �50 known peptides are used as training set, and they

suggest not even to try building models for alleles with �20 known

peptides. As a result, predictive models for alleles with few or no known

binding peptide are rarely available for methods that follow this

strategy.

The lack of a large amount of known peptides for some alleles can

however be balanced, to some extent, by the fact that the sets of binding

peptides sometimes largely overlap between different alleles. Typically,

if an allele with no or few known binding peptides is structurally very

similar to another one with many known binding peptides, then the

known binding peptides of the second allele are likely also to bind

the first one. Therefore these peptides may also be used as positive

examples to fit the model for the first allele, but should be given less

‘weight’ than the peptides known for sure to bind the first allele. More

generally, the predictive model for an allele could be tuned by fitting its

parameters not only to the data available for this allele, but also from

similar alleles, giving more importance to the data coming from the

alleles that are more similar.
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To transform this line of thoughts into a working algorithm we

follow the approach pioneered by Heckerman et al. (2006) who

proposed a framework to estimate allele-specific models which none-

theless share common properties across alleles. In their work, each

individual allele model decomposes as a sum of three partial models:

one specific to each allele, one shared across all alleles in a supertype

and one shared across all alleles. Typically, the model shared across all

alleles is meant to capture general binding properties of peptides, while

the supertype- or allele-specific models are meant to capture the specific

features that make a peptide able to bind all alleles within a super-

type, or only a particular allele. Interestingly, Heckerman et al. (2006)

show that all models can be estimated simultaneously, using classical

machine learning algorithms. Indeed, they show that if each MHC allele

is represented by a binary vector of features to indicate, in particular,

to which supertype it belongs, then one just needs to represent each

training example of the form ‘peptide p binds (respectively does not

bind) to allele a’ by a vector to represent the peptide/allele pair (p, a),

whose features are products of features of the peptide p and of the allele

a, before applying a machine learning algorithms. By applying this

strategy, the model of a given allele is tuned using only this allele’s data

for the allele-specific partial model, the data corresponding to the alleles

in the same supertype for the supertype-specific partial model, and the

data of all alleles for the non-specific partial models. This amounts to

a form of data sharing across alleles, where binding data for the allele

of interest are given more weight than binding data for different alleles

in the same supertype, which are themselves given more weights than

binding data for alleles in different supertypes.

While extremely appealing, this approach has several limitations,

in particular when we want to extend the notion of allele similarity

beyond the supertype information only:

� It is not easy to figure out systematic strategies to exploit prior

information about alleles in the construction of their descriptors,

needed in this approach. For example, including more prior

knowledge about when two alleles should share more information,

e.g. based on structural similarity between alleles, is not an obvious

task.

� Practically, a training point of the form ‘peptide p binds allele a’

is represented by all possible products of features of p by a feature

of a. If we increase the number of features of a beyond the simple

supertype information, then the dimension of the vectors to be

manipulated becomes large which makes statistical estimation,

storage, manipulation and optimization tasks much harder.

In order to allow the inclusion of richer prior knowledge, such as

sequence or structure similarity, to describe when two alleles are likely

to bind similar peptides, we reformulate below the approach of

Heckerman et al. (2006) in a different but equivalent mathematical

framework. The reformulation is based on the observation that certain

machine learning algorithms, such as SVM, only manipulate data

through pairwise inner products, and that the inner products between

the vectors we consider when we want to share information across

alleles can be decomposed into an inner product between allele features,

on the one hand, and an inner product between peptide features, on the

other hand (Section 2.2). This apparently technical fact has important

practical consequences. First, it means that the choices of peptide

description and allele description can be completely uncoupled, and

that any relevant peptide description can be combined with any relevant

allele description. Second, from a practical point of view, the size of the

data to be stored and of the problems to be solved does not scale as the

product of the peptide and allele dimensions, as in Heckerman et al.

(2006), but is in fact independent of these dimensions as long as the

inner products between alleles and peptides can be easily computed.

This paves the way to the use of rich descriptions of peptides and alleles,

which we discuss in Sections 2.3 and 2.4, respectively.

While this framework is computationally efficient in terms of richness

of representation for peptides and alleles, it should be pointed out,

however, that the resulting algorithm is an SVM, which in its basic

form is known to scale poorly with respect to the number of training

points. This potential issue is however likely to benefit from recent

and future developments of large-scale SVM implementations, which

can already process up to millions of examples in a reasonable time

(Bottou et al., 2007).

2.2 Kernel formulation

In order to learn models for all alleles simultaneously by sharing

binding information across similar alleles, we follow the approach

proposed by Heckerman et al. (2006) which consists in four steps:

(i) represent each peptide p by a vector of descriptors �pep(p);

(ii) represent each allele a by a vector of descriptors �all(a) in such a

way that alleles with similar descriptors are likely to share similar

binding peptides; (iii) for each training example of the form ‘peptide p

binds (respectively does not bind) allele a’, form the joint vector �(p, a)

obtained by taking all products of a descriptor of a by a descriptor

of p and assign it the class ‘bind’ (respectively ‘does not bind’); (iv) tune

a machine learning algorithm on the training set to separate binding

pairs from non-binding pairs.

In mathematical terms, the vector �(p, a) built in step (iii) is called

the tensor product and denoted:

�ðp, aÞ ¼ �pepðpÞ ��allðaÞ:

If the peptide description vector �pep(p) is made of dp descriptors,

and the allele description vector �all(a) is made of da descriptors, then

the vector �(p, a) that describes the pair is made of dp� da descriptors.

This number can be prohibitively large for practical applications: for

example, using as features all co-occurrences of any two amino-acids at

each of the nine positions in a 9mer peptide leads to dp¼ (9� 20)2¼

32 761, and doing the same at 35 key residues in the MHC molecule

results in da¼ (35� 20)2¼ 490 000. In that case the features vector for

a peptide/allele pair would have of the order of 1010 descriptors, making

it intractable for methods like the logistic regression used in Heckerman

et al. (2006).

However, if the machine learning algorithm used in step (iv) is a

SVM, or more generally belongs to the family of algorithms called

kernel methods (Schölkopf and Smola, 2002; Shawe-Taylor and

Cristianini, 2004), then the explicit computation of �(p, a) in step

(iii) is not required. Instead, what is needed is a fast way to compute

the inner product between the vectors �(p, a) and �(p0, a0) for any two

peptide/allele pairs in the training set. If this inner product can

be computed, then there is no need to compute, manipulate or store

the vectors �(p, a), a property often referred to as the kernel trick.

Fortunately, a classical and easy to check property of tensor products

allows to write the inner product between two tensor product vectors

as a product of inner products as follows (where for any two vectors u

and v we denote by u>v their inner product):

�ðp; aÞ>�ðp0; a0Þ ¼ �pepðpÞ ��allðaÞ
� �>

�pepðp
0Þ ��allða

0Þ
� �

¼ �pepðpÞ
>�pepðp

0Þ ��allðaÞ
>�allða

0Þ :

In other words, the inner product between peptide/allele pairs can be

decomposed as a product between the inner product between peptides,

on the one hand, and the inner product between alleles, on the other

hand. This property dramatically reduces the effective dimension of the

problem: instead of manipulating vectors of dimensions dp� da, we can

just manipulate peptide and allele vectors, of respective dimensions

dp and da.

This complexity can even be further reduced when the inner products

between peptides and those between alleles are themselves fast to

compute. This is the case in particular when one uses a particular
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kernel function to define these inner products, benefiting from a variety

of recent work in bioinformatics (Schölkopf et al., 2004). Kernel

functions generalize inner products in the sense that they are pairwise

comparison function between objects, which under some simple condi-

tions (Aronszajn, 1950) are guaranteed to correspond to inner products

between given descriptions of the objects. These descriptions can

be very complex, in high or infinite dimension, but do not need to be

explicited since only the inner product (given by the kernel function)

is needed. Using kernels between peptides and between alleles can be

useful for various reasons, in particular:

� dp and da can be very large, even infinite, yet there may be an

efficient way to compute the inner products.

� One can want to use existing kernels and simply apply them on the

peptides and the(e.g. Schöelkopf et al., 2004). For example, the fact

that non-linear kernels such as Gaussian or polynomial kernels for

peptides give good results for SVMs trained on individual alleles

suggests that they are natural candidates for the peptide part of the

product kernel.

By simply rewriting

Kpepðp, p
0Þ ¼ �pepðpÞ

>�pepðp
0Þ;

Kallða, a
0Þ ¼ �allðaÞ

>�allða
0Þ;

we obtain the inner product between tensor products by:

K ðp; aÞ, ðp0; a0Þð Þ ¼ Kpepðp, p
0Þ � Kallða, a

0Þ; ð1Þ

in which any existing kernel or any fast way to compute inner product

between peptide and allele representation can be plugged.

To summarize, when expressed in these terms, the problem of sharing

training data across the alleles in a systematic and computationally

efficient way boils down to choosing a description (explicit or by a

pairwise similarity kernel) for the peptides, another one for the alleles,

and apply any classical learning machinery such as SVM to peptide-

allele pairs using the product kernel (1). We can now discuss in more

details the choice of the peptide and allele kernels in Sections 2.3

and 2.4, respectively.

2.3 Peptide kernels

We consider in this article peptides made of 9 amino-acids, although

extensions to variable-length peptides poses no difficulty in principle

(Salomon and Flower, 2006). The classical way to represent these 9mers

as fixed length vectors is to encode the letter at each position by

a 20-dimensional binary vector indicating which amino acid is present,

resulting in a 180-dimensional vector representations. In terms of

kernel, the inner product between two peptides in this representation

is simply the number of letters they have in common at the same

positions, which we take as our baseline kernel:

Klinseqðx,x
0Þ ¼

Xl

i¼1

�ðx½i�,x0½i�Þ,

where l is the length of the peptides (9 in our case), x[i] is the i-th residue

in x and �(x[i],x0[i]) is 1 if x[i]¼x0[i], 0 otherwise.

Alternatively, several authors have noted that non-linear variants of

the linear kernel can improve the performance of SVM for epitope

prediction (Bhasin and Raghava, 2004; Dönnes and Elofsson, 2002;

Zhao et al., 2003). In particular, using a polynomial kernel of degree

p over the baseline kernel is equivalent, in terms of feature space,

to encoding p-order interactions between amino-acids at different posi-

tions. In order to assess the relevance of such non-linear extensions we

tested this polynomial kernel,

Kpolyðx,x
0Þ ¼ Klinseqðx, x

0Þ þ 1
� �p

:

The degree p¼ 2 was selected by internal cross validation on the

training data of our first benchmark dataset. We kept this value for the

other benchmarks.

In order to limit the risk of overfitting on the benchmark data we

restrict ourselves to the evaluation of the baseline linear kernel and its

non-linear (polynomial) extension. Designing a specific peptide kernel

for binding prediction, e.g. by weighting differently the positions known

to be critical in the MHC–peptide complex, is however an interesting

research topic that could bring further improvements in the future.

2.4 Allele kernels

Although the question of kernel design for peptides has been raised in

previous studies involving SVM for epitope prediction (Bhasin and

Raghava, 2004; Dönnes and Elofsson, 2002; Salomon and Flower,

2006; Zhao et al., 2003), the question of kernel design for alleles is new

to our knowledge. We tested several approaches:

� The Dirac kernel is:

KDiracða, a
0Þ ¼

1 if a ¼ a0;
0 otherwise:

�

for the Dirac kernel, no information is shared across alleles and the

SVM learns one model for each allele independently from the

others. Therefore this corresponds to the classical setting of

learning binding prediction models independently for each allele

with SVM. This is easily seen if we consider that the decision

function learned by the SVM from n (peptide, allele) pairs

{(p1, a1). . .(pn, an)} has the form:

fðp, aÞ ¼
Xn
i¼1

�iKpepðp, piÞKallða, aiÞ, �i 2 R;

which implies that only pairs with ai¼ a are taken into account to

classify a pair involving allele a (the other terms of the sum are

0 because of the Dirac kernel). From the feature space point of

view, using this Dirac kernel amounts to describing the pairs in a

space such that pairs involving different alleles be in orthogonal

subspaces. Therefore, it is not possible for a pair involving an allele

a to participate in the discriminative hyperplane of allele a0 6¼ a.

� The uniform kernel is:

Kuniformða, a
0Þ ¼ 1 for all a, a0:

With this kernel all alleles are considered the same, and a unique

model is created by pooling together the data available for

all alleles. This is easily seen from the feature space associated to

this kernel being simply an identity mapping, i.e. 8 a, a0, �(x, a)¼

�(x, a0), so discriminating (peptide,allele) pairs in this space

amounts to discriminating pooled peptides.

� The multitask kernel is:

Kmultitaskða; a
0Þ ¼ Kdiracða; a

0Þ þ Kuniformða; a
0Þ :

As explained in the previous section and in Evgeniou et al. (2005)

this is the simplest way to train different but related models.

The SVM learns one model for each allele, using known binders

and non-binders for the allele, but using also known binders and

non-binders for all other alleles with a smaller contribution. The

training peptides are shared uniformly across different alleles.

� The supertype kernel is

Ksupertypeða; a
0Þ ¼ Kmultitask þ �sða; a

0Þ;

where �s(a, a
0) is 1 if a and a0 are in the same supertype, 0 otherwise.

As explained in the previous section this scheme trains a specific

model for each allele using training peptides from different alleles,

but here the training peptides are more shared across alleles within
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a supertype than across alleles in different supertypes. This is used

by Heckerman et al. (2006), without the kernel formulation, to

train a logistic regression model.

Heckerman et al. (2006) show that the supertype kernel generally

improves the performance of logistic regression models compared to the

uniform or Dirac kernel. Intuitively it seems to be an interesting way to

include prior knowledge about alleles. However, one should be careful

since the definition of supertypes is based on the comparison of binders

of different alleles, which suggests that the supertype information might

be based on some information used to assess the performance of the

method in the benchmark experiment. In order to overcome this issue,

and illustrate the possibilities offered by our formulation, we also tested

a kernel between alleles which tries to quantify the similarity of alleles

without using known binders information. For that purpose we

reasoned that alleles with similar residues at the positions involved in

the peptide binding were more likely to have similar binders, and

decided to make a kernel between alleles based on this information.

For each locus we gathered from Doytchinova et al. (2004) the list of

positions involved in the binding site of the peptide (Table 1). Taking

the union of these sets of positions we then represented each allele by

the list of residues at these positions, and used the same polynomial

kernel used for the peptides to compare two sequences of residues

associated to two alleles, i.e.,

Kpolyða, a
0Þ ¼ Klinseqða, a

0Þ þ 1
� �p

:

where we extend Klinseq to the allele space by:

Klinseqða, a
0Þ ¼

X
i2 bsite

�ða½i�a0½i�Þ;

where bsite is the set of residues known to be in the binding site for

one of the three allele groups HLA-A, B, C, a[i] is the i-th residue in

a and �(a[i]a0[i]) is 1 if a[i]¼ a0[i], 0 otherwise. Here again, a degree of

p¼ 7 was selected by internal cross validation on the first benchmark

and kept for the other experiments.

2.5 SVM

We learned binding models with SVM, a state-of-the-art algorithm

for pattern recognition (Schölkopf and Smola, 2002; Schölkopf et al.,

2004; Vapnik, 1998). We used the PyML library (http://pyml.source

forge.org), and its SVM implementation with a custom kernel to

account for the various kernels we tested. All kernels were normalized

to one on the diagonal. Besides the kernel, SVM depends on one

parameter usually called C. For each experiment, we selected the best

C among the values 2i,2 {�15,�14, . . . , 9, 10} by selecting the value

leading to the largest area under the ROC curve estimated by

cross-validation on the training set only. The performance of each

method was then tested on each experiment by evaluating the AUC

over the test data.

3 DATA

In order to evaluate both the performance of our method
and the impact of using various kernels for the peptides or the

alleles, we tested our method on three different benchmark

datasets that were recently compiled. The first two datasets

were used in Heckerman et al. (2006) to evaluate the perfor-

mance of leveraging logistic regression on epitope prediction.

Since this method already improved prediction accuracy with

respect to the best published results, we use these benchmarks

to compare our method with state-of-the-art methods. We note

that the dataset was created with the goal of predicting epitopes

and not MHC-I binding, but our method can be applied with-

out any change in this slightly different context. The third

dataset, on the other hand, was specifically designed as a

reference to compare MHC-I binding prediction methods.
The first dataset, called SYFPEITHIþLANL, combines experi-

mentally confirmed positive epitopes from the SYFPEITHI data-

base (see Rammensee et al., 1999, available at http://www.

syfpeithi.de) and from the Los Alamos HIV database (http://

www.hiv.lanl.gov). Negative example were randomly drawn

from the HLA and amino-acid distribution in the positive

examples, for a total of 3152 data points. Since this dataset

is quite small and was already used as a benchmark, we use it

as a first performance evaluation, and to compare our kernels.
The second dataset of Heckerman et al. (2006) contains

160 085 peptides including those from SYFPEITHIþLANL and

others from the MHCBN data repository (see Bhasin et al.,

2003, available at http://www.imtech.res.in/raghava/mhcbn/

index.html. In the following, it will be referred to as MHCBNþ

SYFPEITHIþLANL. This corresponds to 1585 experimentally vali-
dated epitopes, and 158 500 randomly generated non-binders

(100 for each positive). In the interest of time, we only kept

50 negative for each positive for the training step, but tested on

all the original testing points. We assumed that this would not

deteriorate too much the performance of our algorithm. In the

worst case, it is only a handicap for our methods.

Finally, we assess the performance of our method on the
MHC–peptide binding benchmark recently proposed by Peters

et al. (2006) who gathered quantitative peptide-binding affinity

measurements for various species, MHC class I alleles and

peptide lengths, which makes it an excellent tool to compare

MHC–peptide binding learning methods. We focused on the

9mer peptides for the 35 human alleles and thresholded at

IC50¼ 500, a classical choice to separate binders (IC505 500)

and non-binders (IC50� 500), see Sette et al. (1994). Never-

theless, the application of our method to other species or

peptide lengths would be straightforward, and generalization to

quantitative prediction should not be too problematic either.

The benchmark contains 29 336 9-mers.
Five-fold cross validation was used on the first dataset,

10-fold on the second, except for the HIV (LANL) data which

is split up into folds only for testing, and never for training.

Five-fold cross validation was also used on the third dataset.

We used the same folds as Heckerman et al. (2006), available

Table 1. Residue positions involved in the binding site for the three

loci, according to Doytchinova et al. 2004

Locus Positions

HLA-A 5, 7, 9, 24, 25, 34, 45, 59, 63, 66, 67, 70, 74, 77, 80, 81, 84, 97,

99, 113, 114, 116, 123, 133, 143, 146, 147, 152, 155, 156, 159,

160, 163, 167, 171

HLA-B 5, 7, 8, 9, 24, 45, 59, 62, 63, 65, 66, 67, 70, 73, 74, 76, 77, 80,

81, 84, 95, 97, 99, 114, 116, 123, 143, 146, 147, 152, 155, 156,

159, 160, 163, 167, 171

HLA-C 5, 7, 9, 22, 59, 62, 64, 66, 67, 69, 70, 73, 74, 77, 80, 81, 84,

95, 97, 99, 116, 123, 124, 143, 146, 147, 156, 159, 163, 164,

167, 171
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at ftp://ftp.research.microsoft.com/users/heckerma/recomb06

for the first two datasets and the same folds as Peters

et al. (2006) available at http://mhcbindingpredictions.

immuneepitope.org/ for the third one.
Molecule-based allele kernels require the amino-acid

sequences corresponding to each allele. These sequences are

available in various databases, including http://www.anthony

nolan.org.uk/ and Robinson et al. (2000). We used the peptide-

sequence alignment for HLA-A, HLA-B and HLA-C loci. Each

sequence was restricted to residues at positions involved in the

binding site of one of the three loci, see Table 1. Preliminary

experiments showed that using this restriction instead of whole

sequences did not change the performance significantly, but

indeed speeds up the calculation of the kernel.

We were not able to find the sequence of a few molecules

of the two datasets of Heckerman et al. (2006), so in the

experiments involving these datasets and a molecule-based

allele kernel, we used Kpoly(a, a
0) þ Kmultitask(a, a

0) instead of

simply using Kpoly(a, a
0), with a value of Kpoly(a, a

0)¼ �(a, a0) in
the cases where the sequence was unknown. This is the sum

of two kernels, so still a positive definite kernel and actually

exactly the same thing as Ksupertype but using Kpoly instead of �s.

4 RESULTS

In the following, Kpep�Kall indicates the use of SVM with a

product kernel of Kpep for the peptides and Kall for the alleles.
We first use Klinseq and Kpoly for the peptides and Kuniform

(one SVM for all the alleles), KDirac (one SVM for each allele),

Kmultitask, Ksupertype and Kpoly for the alleles on the small

SYFPEITHIþLANL dataset. Using combinations of molecule-based

and non-molecule-based kernels for Kall did not improve the

prediction, generally the result was as good as or slightly worse

than the result obtained with the best of the two combined

kernels. Results are displayed in Table 2, and ROC curves

for Klinseq�KDirac, Klinseq�Ksupertype, Kpoly�Ksupertype and

Kpoly�Kpoly in Figure 1.
Table 2 demonstrates the benefits of sharing information

across alleles. The Dirac allele kernel being the baseline kernel

corresponding to independent training of SVMs on different

alleles, we observe an improvement of at least 2% when infor-

mation is shared across alleles during training (with the multi-

task, supertype or poly strategies). It should be noted, however,

that the uniform strategies which amount to training a single

model for all alleles perform considerably worse than the

Dirac strategies, justifying the fact that it is still better to build

individual models than a single pooling model for all alleles.

On this benchmark, we did not observe any significant differ-

ence between the three strategies to share information when

using a non-linear kernel for the peptides, yet the use of bio-

logical knowledge like supertype or allele sequence improves

the performance with respect to the naive multitask approach

when using a linear kernel for the peptides. However, one

should keep in mind that there is a risk of bias in the perfor-

mance of the supertype kernel, because some peptides in the

test sets might have contributed to the definition of the allele

supertypes. Since the poly kernel, which shares more informa-

tion between alleles that have similar residues at key positions,

performs equally well, it can be advantageously used to include

biological knowledge in the learning process.

Finally, we observe that for all allele kernels, the non-linear

poly peptide kernel outperforms the baseline linseq kernel,

which confirms that linear models based on position-specific

score matrices might be too restrictive a set of models to predict

accurately MHC–peptide binding.
In terms of performance, all three allele kernels that share

information across alleles combined with the non-linear poly

peptide kernel outperform the leveraged logistic regression

of Heckerman et al. (2006) (AUC¼ 0.906� 0.016 against

0.930� 0.010 for the same supertype kernel associated to a

non-linear peptide kernel) and the boosted distance metric

learning algorithm of Hertz and Yanover (2006) (AUC¼

0.819� 0.055). As the boosted distance metric learning

approach was shown to be superior to a variety of state-

of-the-art methods by Hertz and Yanover (2006), this suggest

that our approach can compete if not overcome the best

methods in terms of accuracy.

From Table 2, we see that two factors are involved in the

improvement over the method of Heckerman et al. (2006):

� The use of an SVM instead of a logistic regression, since

this is the only difference between the leveraged logistic

regression and our SVM with a Klinseq�Ksupertype kernel.

This, however, may not be intrinsic to the algorithms, but

caused by optimization issues for the logistic regression in

high dimension.

Table 2. AUC results for an SVM trained on the SYFPEITHIþLANL with

various kernels and estimated error on the 5 folds

Kall\Kpep Linseq Poly

uniform 0.826� 0.010 0.866� 0.010

Dirac 0.891� 0.014 0.893� 0.017

multitask 0.910� 0.008 0.929� 0.011

supertype 0.924� 0.011 0.930� 0.010

poly 0.920� 0.011 0.930� 0.010

Fig. 1. ROC curves on the 5-folds of the SYFPEITHIþLANL benchmark.
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� The use of a non-linear kernel for the peptide, as we

observe a clear improvement in the case of SVM (this

improvement might therefore also appear if the logistic

regression was replaced by a kernel logistic regression

model with the adequate kernel).

Figure 1 illustrates the improvement underlined by this

experiment: from the individual SVM (Klinseq�KDirac), to

Kpoly�Ksupertype and Kpoly�Kpoly SVM that both give better

performances than Klinseq�KDirac SVM because they use multi-

task strategies and a non-linear kernel to compare the peptides.
These results are confirmed by the MHCBNþSYFPEITHIþLANL

benchmark, for which the results are displayed in Table 3.

Again, the use of SVM with our product kernels improves the

performance with respect to Heckerman et al. (2006) (from

0.906 to 0.938). Moreover, we observe that learning a leveraged

predictor using the data from all the alleles strongly improves

the global performance, hence the important step between

Dirac (0.876) and all the multitask-based methods, including

the simplest multitask kernel (0.938). It is worth reminding that

the multitask kernel is nothing but the sum of the Dirac and

uniform kernels, i.e. that it contains no additional biological

information: the improvement is caused by the mere fact of

using roughly (with a weighting of 0.5) the points of all the

other alleles to learn the predictor of one allele. Figure 4 in

the Supplementary Material shows the ROC curves for SVM

with Kpoly�KDirac, Kpoly�Ksupertype and Kpoly�Kpoly kernels

on this benchmark. Again, we see the clear improvement

between leveraged and non-leveraged strategies. The difference

between the Kpoly�KDirac and the two others is only caused by

leveraging, since in the three case the same non-linear strategy

was used for the peptide part. On the other hand, the figure

illustrates that our three strategies for leveraging across alleles,

combined with non-linear kernels for the peptides, give roughly

the same result on this benchmark.
Finally, Table 4 presents the performance on the IEDB bench-

mark proposed in Peters et al. (2006). The indicated perfor-

mance corresponds, for each method, to the average on the

AUC for each of the 35 alleles, which gives an indication

of the global performances of each methods.

Here again, the quantitative jump between individual and

leveraged strategies is illustrated by the ROC curves of Figure 5

in Supplementary Material that shows the performances of

Kpoly�KDirac, and Kpoly�Kpoly strategies on the benchmark.

The ANN column of Table 4 corresponds to the tool
proposed in Peters et al. (2006) web server with the best results

on the 9mer dataset. This is an artificial neural network
proposed in Nielsen et al. (2003). The ADT field refers to the

adaptive double threading approach recently proposed in Jojic
et al. (2006) and tested on the same benchmark.

These tools were compared to and significantly outperformed
other tools in the comprehensive study of Peters et al. (2006),

specifically Peters and Sette (2005) and Bui et al. (2005), that
are both scoring-matrix-based. Our approach gives slightly

better results in terms of global performances than Nielsen et al.

(2003) (0.903 against 0.898), and therefore outperforms the
other internal methods. To our knowledge, no other method

had reached this performance on this dataset (actually no
external method has been tested on all the alleles).

It is actually difficult to compare precisely our method with
the ANN since the parameters of the latter are adjusted to the

data. During the ANN evaluation procedure, for each fold
various models were trained on the training set and the one that

gave the best results on the testing set was selected, whereas all
the parameters of our model were selected by internal cross

validation on the training set. The fact that the multitask kernel

approach is more accurate even in this setting is a strong
illustration of its good performance with respect to state-of-the-

art methods on this benchmark.
Table 5 presents the performances of the Kpoly�Kpoly

strategy on the 10 alleles with �200 training points, together
with the performances of the best internal tool, the ANN of

Nielsen et al. (2003), and the adaptive double threading model
that gave good prediction performances on the alleles with few

training data. Except for two cases, our SVM outperforms both
models, with an average improvement of 3.4% of AUC with

respect to the ANN method and 7.6% with respect to the ADT
approach, again without touching the test set when fitting our

parameters since they were selected by internal cross validation.

As we said in introduction, our original concern was to improve
binding prediction for alleles with few training points, and for

which it is hard to generalize. This was the main point of using
a multitask learning approach. The results on this last bench-

mark suggest that the leveraging approaches succeed in improv-
ing prediction performances when few training points are

available.

5 DISCUSSION AND CONCLUDING REMARKS

In this article, we introduce a general framework to share

efficiently the binding information available for various alleles

Table 3. AUC results for an SVM trained on the MHCBNþ

SYFPEITHIþLANL benchmark with various kernels and estimated error

on the 10-folds

Method AUC

Leveraged LR (from Heckerman et al. (2006)) 0.906

Klinseq�Kstype 0.911� 0.010

Kpoly�Kdirac 0.876� 0.010

Kpoly�Kmultitask 0.938� 0.007

Kpoly�Ksupertype 0.934� 0.007

Kpoly�Kpoly 0.938� 0.007

Table 4. AUC results for an SVM trained on the IEDB benchmark with

various methods

Method AUC

SVM with Kpoly�KDirac kernel 0.879

SVM with Kpoly�Ksupertype kernel 0.893

SVM with Kpoly�Kpoly kernel 0.903

ADT 0.874

ANN 0.897
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by simply defining a kernel for the peptides, and another one

for the alleles. The result is a model for MHC–peptide binding
prediction that uses information from the whole dataset to

make specific prediction for any of the alleles. Our approach is

simple, general and both easy to adapt to a specific problem by

using more adequate kernels, and to implement, by running

any SVM implementation with these kernels. Everything is

performed in low dimensions and with no need for feature
selection.

We presented performances on three benchmarks. On the

three benchmarks, our approach performed better than state-
of-the-art results, which illustrates its generally good behavior

in terms of prediction accuracy. These experiments confirmed

the interest of leveraging the information across the alleles,

especially when trying to predict peptide binding for an allele

with few training data available. They also illustrated the

interest of using non-linear kernels in terms of performance
accuracy. We believe highly accurate prediction models

are crucial for vaccine design, and complementary to more

analysis-oriented models.
The method we describe has been implemented and is freely

available through a KISS (Kernel-based Inter-allele peptide

binding prediction SyStem) web server: http://cbio.ensmp.fr/

kiss. For this implementation, we trained an SVM using

Kpoly�Kpoly kernel on the concatenation of the MHCBNþ

SYFPEITHIþLANL and IEDB databases, removing all duplicates.
This tool is intended to predict MHC-I binding, but could as

well be used directly as an efficient approximation for epitope

prediction.
Although the kernels we used already gave good perfor-

mances, there is still room for improvement. A first way to

improve the performances would be to use more adequate

kernels to compare the peptides and, probably more impor-

tantly, to compare the alleles. In other words we would be

answering the question: what does it mean in the context of
MHC–peptide-binding prediction for two alleles to be similar?

Possible answers should probably involve better kernels for

the allele sequences, and structural information which could be

crucial to predict binding and, as we said in introduction,

is already used in some models. Finally, it could be useful to

incorporate the quantitative IC50 information when available,
instead of simply thresholding as we did for the last benchmark.

Using the binding affinity information, it is possible to

apply our general framework to predict quantitative values,

using regression models with the same type of kernels. More

generally, it would be interesting, and more useful in terms

of vaccine design, to try to predict immunogenicity of the
peptides instead of the mere MHC class I binding, as it has been

proposed, for example, in Tung and Ho (2007). This could be

done by adding to the peptide kernel information relevant to

the other major steps of the MHC-I pathway, i.e. proteasome

cleavage and TAP transporter affinity.

The multitask kernels could also be used for a lot of similar
problems involving binding, like MHC-II-peptide binding

where sequences can have variable length and the alignment

of epitopes, usually performed as pre-processing, can be

ambiguous. Salomon and Flower (2006) has already proposed

a kernel for this case. Another interesting application for the

general approach of predicting affinity between small molecules

and families of related proteins would be drug design, for

example protein-kinase-inhibitor or GPCR-binding prediction

(Jacob and Vert, 2007).
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